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Abstract—The paper deals with a set of the mathematical al-
gorithms for a time parameterization of the motion paths 
of the machine tools. The key descriptors of the paths follow 
from CAD documentation, technical drawings or from tech-
nological demands. The presented algorithms provide a time 
mapping of individual path coordinates. The algorithms are 
based on the kinematical relations and on analytical geometry 
in space. They work with position, velocity, acceleration 
and jerk quantities. All algorithms are implemented in a path 
simulator, which was developed as a user friendly utility 
windows application. The described mathematical principles are 
demonstrated by several testing motion paths. 

I. INTRODUCTION 

A conversion of input requirements to a suitable range 
and format for real control system of machine tool is impor-
tant procedure at integration or change of product properties 
into production process. The requirements can be given ma-
nually by user or by data from CAD documentation, technical 
drawings or from technological demands. Relative to control 
system used in machine tool or robot, the conversion repre-
sents a specific task of time parameterization of the motion 
tool or robot gripper path (Fig. 1) [7]. It is subjected to given 
machine parameters, surrounding path obstacles and other 
factors influencing the shape or geometrical profile of the mo-
tion paths. The main purpose of the parameterization 
is to generate the reference inputs i.e. desired, required values 
with appropriate timing [2]. The timing has to correspond 
to used control system and to user requirements, demands. 
In mechatronic field, those demands are usually given by a set 
of positions with kinematic parameters as desired velocities 
or constraints specifying a maximum permissible acceleration 
and jerk. The demands can follow from • technology of pro-
duction procedures: machining velocities, motion orientation; 
but even from • system construction: minimum radiuses, sha-
pes, kinematic and dynamic limits. 

From control point of view, the time parameterization 
itself represents generating a time sequence of the reference 
values according to some deterministic way defined in ad-
vance, where this time reference sequence interpolates the ini-
tial parameters from user demands. 
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Figure 1.  Example of spatial path in 3D Cartesian space 

In majority cases, the machine tools and robots are highly 
dynamic systems [1], [3], therefore the right forming of fea-
sible reference inputs is important. Due to high dynamics, 
ordered set or pairs of time and reference values (time table) 
is considered. 

The obtained sequence of time reference i.e. ordered pairs 
of time marks and coordinates as a result of the parameteri-
zation are intended for control system either as desired values 
pre-computed offline or continually computed online similarly 
by the same algorithms adapted for online processing. The pa-
rameterizing algorithms are based on motion kinematics 
and analytical geometry in space. They work with position, 
velocity, acceleration and jerk quantities. All presented algo-
rithms are implemented in a path simulator, which is being 
developed as utility windows application. The described ma-
thematical principles are demonstrated by several examples, 
which show time dependencies of parameterized tested geo-
metrical paths. 

The paper is organized as follows. Section II, the principal 
section, deals with an explanation of partial mathematical 
algorithms. The section goes from pre-processing, through 
core time parameterization up to computation of individual 
kinematical quantities as individual axis components in 3D 
Cartesian space. The section III briefly outlines implemen-
tation issues of proposed algorithms in the path simulator. 
The sections IV and V demonstrate the algorithms on the out-
puts of the path simulator as a set of examples for several 
selected testing geometrical path segments. 
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II. MATHEMATICAL ALGORITHMS 

The section focuses on mathematical relations of the algo-
rithms for computation of all necessary quantities of time 
parameterization. The section is divided into three following 
parts: pre-processing, time parameterization and component 
computation of the time parameterized kinematical quantities 
in 3D Cartesian space. 

Let us assume a raw set of coordinates of key points, 
which sufficiently describe the shape of the path as an initial 
data set for the parameterization. The key points represent 
specific boundary points, which split the path into specific 
shorter parts. Let us call these parts as path segments. The seg-
ments are considered as the simplest primitive geometrical 
shapes like abscissa, arc or spline curves. The ordered seg-
ment connection forms whole geometrical profile of the para-
meterized path. This description is sufficient for beginning 
of the pre-processing stage. 

A. Pre-processing  

The pre-processing serves for calculation of initial path 
quantities, which are calculated in boundary points for each 
segment. The quantities are lengths of segments, transition 
angle between two neighbouring segments and terminal 
velocities. The determination of the lengths and transition 
angles is simply given by Pythagorean theorem and gonio-
metric functions among tangential and normal vectors in indi-
vidual boundary path points. The calculation of terminal 
velocities is more complicated. For that reason, it will be 
explained in detail. 

The terminal velocity computation begins by a determi-
nation of the segments, which terminate with zero speed. 
These segments have too sharp transition angles or they are 
followed by pause/dwell segments. Furthermore, if the seg-
ment is the last segment of the path, then it has to terminate 
with zero speed too [8]. 

The algorithm can be expressed by the following recurrent 
equation: 

   1,2,,1,2 )()()( 11 −=+++= Niilaiviv maxmaxfmaxf  (1) 

where i  is a number of actual segment, )(iv maxf  is a maximum 

terminal velocity, )(il  is a segment length and maxa  is 
a maximum acceleration – a parameter of the real machine. 

B. Time parameterization  

The real procedure of time parameterization is based on 
the computation of time dependent parameter and its appro-
priate time derivatives for every segment. Altogether, 
computed values represent the kinematical quantities for tan-
gential direction of parameterized path spread in 1D line  
(one-dimensional line). The time dependent parameter repre-
sents a time dependent distance s(t), and its appropriate 
derivatives mean velocity v(t), acceleration a(t) and jerk j(t). 
The geometrical shape of the time parameterized path i.e. 
generated trajectory is not important in this stage, but the po-
sition on the path. The shape is considered in used conditions 
e.g. in condition of maximum terminal velocity. 

The parameterization is based on a definition of the order 
and the structure of the kinematical model of the acceleration. 
In this paper, model is considered in the form of the first order 
polynomial (3). It gives the fastest start-up to the fast manipu-
lation or working velocity. It is possible to choose higher 
orders e.g. 3rd or 5th [5], [6], which give smoother profiles [12] 
of all kinematical quantities. They are a little bit slower, but 
the generated values, due to their smoothness, lead to smaller 
wear of motors and robot joints, i.e. lead to more flowing 
motion. The procedure for higher orders is similar. 
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where constants c1, c2, c3 are determined according to time 
position within the topical parameterized segment, see Fig. 2. 

For the 1st order kinematical model (3), from acceleration 
point of view, there are two cases of behaviour of acceleration:  
triangular and trapezoidal. The both cases are described se-
parately for different way of the time computation [8]. 

The triangular behaviour appears when the half of maxi-
mum velocity is reached earlier than the maximum accele-
ration. On the contrary, the trapezoidal behaviour is charac-
terised by the reaching the maximum of acceleration earlier 
than half of the maximum velocity. It implies constant 
acceleration on its maximum magnitude for certain time. 

The condition for triangular behaviour can be written as: 
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The condition follows from a simple integration of the jerk 
or acceleration polynomial as indicated in (2) - (4). If the con-
dition (6) is not fulfilled, the acceleration is switched to 
the trapezoidal case. Equation (6) shows that the behaviour 
type depends only on parameters of used machine. There are 
some special cases, when the trapezoidal behaviour can 
change to the triangular behaviour, e.g. for too short segments 
or in segment with strict maximum value of the velocity. 

The graphs of time dependences of jerk, acceleration, 
velocity and length (graphical illustration of (2) - (5)) are 
shown in the Fig. 2. In it, there is a simple general case:  
the machine first accelerates from initial velocity, then it runs 
steadily for some time and it decelerates finally back 
to the initial value. The triangular behaviour is on the left side 
and the trapezoidal behaviour on right side. In the both cases, 
the maximum velocity is reached. Moreover, in the case of tra-
pezoidal behaviour, the maximum acceleration is reached too. 



 
Figure 2.  Triangular (left) and trapezoidal (right) acceleration profile a(t) and other kinematical quantities within one parameterized segment 

C. Computation of 3D Cartesian kinematical quantities 

The aim of the computation is to determine the individual 
components for individual axes in 3D Cartesian space as co-
ordinates and other kinematical quantities. The all quantities 
are determined for working point in the operational space 
of the machine tool or robot. The quantities here mean com-
ponent values of position, velocity, acceleration and jerk 
related to the time. The computation follows from time 
dependent parameter and its appropriate derivatives. Thus, 
the time parameterization by time dependent parameter 
and computation of appropriate kinematical component 
quantities are closely related. 

The component computation differs for different shapes  
of path segments: for abscissa segments, for arc segments  
or further e.g. for spline segments. In this computation,  
the shape of the segment is important on the contrary to fac-
tual time parameterization in previous subsection. 

 
Figure 3.  Abscissa segment 

The abscissa segment (Fig. 3) can be described as follows: 
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where p(t) ∈0, ℓ is the time dependent parameter as a 
function of time t, u = [ux, uy, uz] is a directional vector 
of the abscissa, x(0), y(0), z(0) are individual coordinates 
of the initial point of the abscissa. 

 
Figure 4.  Arc segment 
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The arc segment (Fig. 4) can be considered either in some 
of the three main planes or in parallel planes of 3D Cartesian 
system only or in some general position. The former 
assumption allows us to use simpler description of the arc 
in the space, e.g. for the arc in parallel plane to horizontal 
ρXY plane: 
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where r is arc radius, δ is angle between initial radius vector 
and normal vector of ρXY plane [1; 0; 0] and φ(t) is time-
dependent parameter defined as follows: 
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where p(t) ∈0, ℓ represents lengths of arc elements and ℓ is 
length of whole arc. As it is obvious, the z-coordinate is 
constant. If the arc segment is located in other plates ρXZ or 
ρYZ, the constant coordinate will be  y  or  x  respectively. 

For completeness, i.e. for some general position of arc seg-
ment in 3D space, the individual coordinates of arc segment 
are defined as follows: 

 ))((sin))((cos)( 21 ttt C ϕϕ hhXYZXYZ ++=  (14) 

where h1 and h2 are appropriate vectors of the primary and se-
condary arc radiuses and XYZ is a vector [x(t), y(t), z(t)]. 

In similar way, it is possible to use time dependent parameter 
for other parametric curves (elliptic, parabolic or hyperbolic 
arcs or spline curves). The formulas of parametric curves 
represent similarly expressions for computation for coordi-
nates. From practical use point of view, they can be simply 
replaced (approximated) by composition via sets of very small 
elemental abscissa segments, if appropriate curve format is not 
directly supported by a control system or it is not required 
by user. 

The relations for velocities, accelerations and jerks are cal-
culated by derivatives the equations (7) - (9) and (10) - (13) 
or (14) for appropriate segments respectively. 

III. IMPLEMENTATION OF ALGORITHMS 
IN THE PATH SIMULATOR 

The described mathematical relations of algorithms in pre-
vious section are implemented in user friendly path simulator 
application. The application was programed as platform 
independent application in C++ using standard templates [9]. 
To create the graphical user interface, the Qt libraries [10] 
were used together with OpenGL libraries [11]. They provide 
functionalities for 3D space trajectory visualisation. 

 
Figure 5.  Diagram of logical blocks within the path simulator 

The path simulator consists of many classes as collabo-
rating logical blocks. Their diagram is shown in Fig. 5. 
The classes for storing the results are not shown. The class 
File reads the trajectory description and its result is conti-
nuously processed by class Gcode (Pre-processing). When all 
path segments are processed, the time parameterization 
is performed. Then, the individual kinematical quantities are 
calculated. The front-end interface manages interactions 
with user, application logic and displays of numerical results. 

A. Expected user input parameters 

The path simulator processes and analyses the trajectory 
obtained from user defined path. As the initial description  
of the trajectory, the G code is used, but it can be considered 
another unified format containing key descriptors of the path 
considered for time parameterizing in the simulator. The path 
processing algorithms use both path geometrical descriptors 
and machine parameters. The machine parameters are gene-
rally independent of the path geometry. Therefore, they are set 
up individually in simulator via appropriate application menu. 

The generated trajectory consists of abscissa and arc seg-
ments generally. The abscissa segments are described by final 
coordinates and maximum velocity. The initial coordinates 
can be derived from terminal coordinates of previous segment. 
The arc segments are described by final coordinates, maxi-
mum velocity and by coordinates of the arc center. These 
parameters were used due to compatibility with industrial 
control systems. 

The parameters without direct connection with the input 
path are the following: initial coordinates of the machine tool, 
maximum jerk, maximum acceleration, maximum mani-
pulation velocity and maximum working velocity. These 
parameters can be changed independently by the graphical 
user interface within the simulator. 

File Opening of the source data
file with user path description

Pre - proc. Pre-processing and storing
of trajectory data

Time param. Time parameterization i.e.
calculation and storing of ti-
me dependent parameter
and appropriate derivatives

Calculation and storing
of component k inematical
quantities (s(t), v(t), a(t), j(t))
in 3D Cartesian space

OpenGL Qt GUI

Quantities



 
Figure 6.  Screenshot of the path simulation application 

IV. GRAPHICAL USER INTERFACE 

The program is equipped by a standard window graphical 
user interface to set up the trajectory and the machine tool 
parameters and show and save the results. To develop GUI, 
standard Qt [10] and OpenGL [11] libraries were used. 

The main window of the application is shown in the Fig. 6. 
Shape of the trajectory is drawn in OpenGL area on the right. 
The Zoom slider allows user to zoom in or out the OpenGL 
area. Rotation of the view can be realized by a dragging 
of the mouse cursor. The path description is written on the left 
in text-box. The Select block slider on the left down allows 
user to highlight any instruction line of the path description 
simultaneously with appropriate shape segment. 

All other functions are accessible from the menu bar. 
For better illustration, all sub-menus are expanded in the figu-
re. The File sub-menu controls the opening of files containing 
path description, the parameterization process execution 
and proper exit of the application. The View sub-menu con-
tains options for visualization of the results. The sub-menu 
Options allows user to set up the application variables like file 
path for storing the results and initial parameters. The machine 
parameters can be set up by options in the Machine sub-menu. 
The last option About displays the window with the informa-
tion about author and application version. 

V. APPLICATION OUTPUTS AND EXAMPLES 

The path simulator offers several outputs to user. The first 
and most obvious result is visualization output by the gra-
phical window of the application. It was designed to provide 
scalable and rotatable view on shape the trajectory with ability 
of highlighting each segment. The axes controls for the mani-
pulating with the model are shown in Fig. 6. There are three 
pre-set basic views: XY Plane, XZ Plane and YZ Plane here. 
The further output consists in graphs (Fig. 7). The graphs 
serve for detail analysis of the time dependent parameter 
and the quantities in each main plane of 3D coordinate space 
(three main views). These graphs are drawn in separate 
window out of the main application graphical window. 

Moreover, in the application, there is a possibility to ex-
port the output data into text files. These files are in wide 
compatible format, which can be imported into any standard 
application as MS Excel or MATLAB, or in general, directly 
into real control system of the machine tool or robot. 

The following illustrative examples show time behaviors 
of the time dependent parameter and appropriate kinematical 
quantities (Fig. 7) for the parameterized path visualized 
in the OpenGL area (Fig. 6). This graphical output represents 
the main and the most widely used user output of the appli-
cation. 



 
Figure 7.  Time behaviours of time dependent parameter (4 subfigures on the left) and appropriate kinematical quantities (12 subfigures on the right) 

for the parameterized path shown in the OpenGL area in Fig. 6 (test machine parameters: vmax = vwork = 0.25ms-1; amax = 20ms-2; jmax = 1000 ms-3) 

The graphs in the Fig. 7 are closely related to the trajectory 
or parameterized path shape. It is visible, that representative 
path from Fig. 6 lies in the vertical XZ plane (all y-components 
are constantly zeros). In general, the user can analyse beha-
viour for individual axes in relation to the permitted or recom-
mended technological conditions. In the inadmissible cases,  
the user can change the initial properties of the paramete-
rization and optimize the desired behaviour of the machine 
tool or robot motion. 

VI. CONCLUSION 

The paper deals with a time parameterization of the motion 
paths for machine tools and robots. The result of time parame-
terization of the path is a time parameterized trajectory. 
The information involved with the trajectories is ordered pair 
of the time t and kinematical quantities (s(t), v(t), a(t) and j(t)). 
The presented theoretical expressions are demonstrated by the 
graphical and numerical outputs of path simulator application. 
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