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Parameter tracking with partial forgetting method
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SUMMARY

This paper concerns the Bayesian tracking of slowly varying parameters of a linear stochastic regression
model. The modelled and predicted system output is assumed to possess time-varying mean value, whereas
its dynamics are relatively stable. The proposed estimation method models the system output mean value
by time-varying offset. It formulates three extreme hypotheses on model parameters’ variability: (i) no
parameter varies; (ii) all parameters vary; and (iii) the offset varies. The Bayesian paradigm then provides a
mixture as posterior distribution, which is appropriately projected to a feasible class. Exponential forgetting
at ‘second’ hypotheses level allows tracking of slow variations of respective hypotheses.

The developed technique is an example of a general procedure called partial forgetting. Focus on a simple
example allows to demonstrate essence of the approach. Moreover, it is important per se as it corresponds
with a varying load of otherwise (almost) time-invariant dynamic system. Copyright © 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The modelling of dynamical systems is mostly complemented by estimation of their parameters
based on observed data [1]. Often, the parameters (slowly) vary and have to be tracked. The concep-
tually correct Bayesian solutions explicitly model the parameters’ variations and convert tracking
into filtering. Specific variation models and evaluation techniques lead to the Kalman filter [2] and
its modifications, such as H1 filter, extended Kalman filter, particle filtering [3], Markov Chain
Monte Carlo based techniques [4] and so on. Filtering is naturally extended to smoothing [5]. Some
alternative approaches comprise, for example, employment of reproducing kernel Hilbert spaces [6].
Various properties of filtering have been widely studied; papers [7–10] represent just samples of this
rich area.

Still, there is a lot of cases in which detailed models of parameter variations are unavailable
and they are substituted in various ways. An unknown-but-bounded types technique, for example
[11], represents an intermediate stage between a detailed stochastic modelling and a group of track-
ing techniques still dominated by exponential forgetting (EF). The EF is viewed as time-weighted
recursive least squares (RLS) [12] or as Bayesian flattening of the posterior distribution [13]. The
Bayesian linear forgetting is its dual version [14]. Their basic variants suffer various drawbacks. For
instance, EF method has a blow-up tendency: the gain of the estimation algorithm could grow with-
out bounds for nonpersistently exciting signals [15]. This leads to many modifications, for example,
RLS with constant forgetting factor in EF is modified to keep the covariance matrix bounded [16].
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Directional [17,18], variable forgetting [19] and variable memory-length parameter estimation [20]
represent various successful techniques preventing the EF blow-up both at RLS and Bayesian level.

Parameter entries may change at different rates. This calls for a sort of vector forgetting. For
instance, the variable forgetting [19] has its vector counterpart in [21]. Surprisingly, this RLS related
technique has no Bayesian counterpart. Such counterpart is highly desirable as it can be immedi-
ately combined with the consistent and versatile Bayesian framework, which allows, for instance,
the inclusion of prior information [22], systematic model selection [13, 23], model averaging etc.
[24]. Even more importantly, general Bayesian solutions are not confined to linear-in-parameters
Gaussian autoregressive, regressive and possibly controlled models (briefly referred as regression
models) for which they are algorithmically equivalent to RLS. For instance, the Bayesian estima-
tion with EF and its extensions are immediately applicable to exponential family [25] that among
others includes controlled Markov chains with unknown transition probabilities [26]. Besides the
generality, a Bayesian algorithm being supplied with a valuable prior information is advantaged to
the nonBayesian ones. However, if the prior is noninformative, the solutions are often identical,
compare, for example, the EF [12] and the Bayesian view on it in [13]. This indicates importance of
filling the discussed gap.

The proposed solution is based on the Bayesian treatment of appropriate hypotheses on parameter
variations with the Bayesian EF used at the second hypotheses level. The basic steps are presented
at general level independent of a particular form of parametric model. Then, they are elaborated for
one practically important case of SISO regression model. Parameters describing its basic dynamics
are assumed to vary slowly at most, but its offset may change substantially faster. The elaboration
(i) is useful per se as the considered case models well the changes of the modelled system load
(like the road traffic intensity); (ii) illustrates the general theory; and (iii) indicates relatively low
computational demands of the proposed technique.

The organization of the paper is as follows: in Section 2, we describe the Bayesian parameter
estimation methodology; in Section 3, the general idea of partial forgetting is presented; Section 4
applies the results to the popular Gaussian regression model; in Section 5, we provide illustrative
experiments using artificial and real traffic data. Finally, Section 6 presents the conclusions.

Throughout: 0 denotes transposition,� is defining equality,/means proportionality. x?�Rdim.x/

is a set of x values. Most variables are viewed as random, thus, for the sake of better readability,
we adopt the following conventions: The vectors d t include observations at time t . f .x/ is a
PDF of a (multivariate) random variable distinguished by the argument x. The conditional PDF
ft j� .xj´/ � f .xt D xj´t D ´,d.�//, where t > � 2 f1, 2, 3, : : :g label discrete time instants and
d.�/� fprior knowledge,d1,d2, : : : ,d�g. The variables x, ´ 2 fy,u,‚, , : : :g. For instance, the
notation ft jt�1.yj ,‚/ is identical to f .yt j t ,‚t ,d.t � 1//. For the sake of convenience, we do
not distinguish among random variable, its realization and a corresponding argument of a PDF.

2. BAYESIAN PARAMETER ESTIMATION

Consider a stochastic SISO system observed at discrete time instants t D 1, 2, : : :. Its directly manip-
ulated input ut 2 u? � R affects the output yt 2 y? � R. The input–output pairs d t D Œut ,yt �0

observed at each time instant t form the data record.
Dependence of the output yt on the current input ut and previous data d.t � 1/ is modelled by

the conditional PDF

ft jt�1.yju,‚/D f .yt jut ,‚t ,d0, : : : ,d t�1/D ft jt�1.yj ,‚/ (1)

where ‚ D Œ‚1, : : : ,‚N � is the value of an unknown multivariate model parameter ‚t and  is
the value of a fixed length regression vector  t , fully determined by data ut , d.t � 1/ influencing
the output yt . The prior knowledge is formed by initial data d.0/ that is either chosen by an expert
or observed before estimation.

The Bayesian approach treats the unknown model parameter ‚t as a random variable and
describes it by a conditional PDF ft jt�1.‚/. The Bayes’ rule updates this PDF by a new data
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record d t as follows [13],

ft jt .‚// ft jt�1.yj ,‚/ft jt�1.‚/. (2)

If the parameter is supposed to vary, the posterior PDF ft jt .‚/ in (2) is to be updated to ftC1jt .‚/
to complete the recursion. If not, ftC1jt .‚/ is identical to ft jt .‚/. Stochastic filtering [13] repre-
sents an exact solution of this time-update. It requires, however, an evolution model ‚t ! ‚tC1,
which is often unknown or too complex to be treated. Such a situation calls for heuristic methods
labelled as forgetting. The current paper contributes to this important field of interest. It follows
the tracking scheme discussed in the Introduction, and in Section 3 it proposes a way to perform
this update without an explicit evolution model, assuming that parameter entries vary slowly but at
different rates.

The predictive PDF ftC1jt .yj / provides the Bayesian output prediction. It employs the
regression vector  tC1 depending on the considered input utC1 and observed data d.t/. It holds

ftC1jt .yj /D

Z
‚?
ftC1jt .yj ,‚/ft jt .‚/d‚. (3)

Note that point or interval estimates of‚t and ytC1 are suitable characteristics of the PDFs ft jt .‚/
and ftC1jt .yj /, respectively. The set‚� is time-independent.

3. PARTIAL FORGETTING

Let us now be concern with time-varying parameters and assume that they vary with different rates.
The way around the problem of ignorance of an explicit evolution model is to employ a heuristic
forgetting method, evaluating the best available approximation of the posterior parameter PDF.

Although the desired updated posterior PDF ftC1jt .‚/ is unknown, the simple structure of the
problem allows us to characterize its expectations E within a small set of hypotheses fHi Itg. With
respect to the announced application, three hypotheses are considered:

H0It W E
h
ftC1jt .‚/

ˇ̌̌
‚, H0It ,d.t/

i
D ft jt .‚/

H1It W E
h
ftC1jt .‚/

ˇ̌̌
‚, H1It ,d.t/

i
D gt jt .‚/

H2It W E
h
ftC1jt .‚/

ˇ̌̌
‚, H2It ,d.t/

i
D ft jt

�
‚2, : : : ,‚N

ˇ̌
‚1
�
ht jt .‚1/

(4)

Each of the hypotheses reflects our expectation on the true posterior PDF ftC1jt .‚/ at each point
‚ under the knowledge of data d.t/ and validity of the current hypothesis Hi It , i D 0, 1, 2. H0It
corresponds to the expectation that no time evolution is needed. H1It expects that all parameter
entries will evolve and should be described by an externally supplied alternative PDF gt jt .‚/, for
instance, a flattened version of ft jt .‚/ (any other standard forgetting method can be used for its
construction). H2It corresponds to the case that just a single parameter entry (the offset) is expected
to change and may be described by a suitable externally supplied PDF ht jt .‚1/, whereas the con-
ditional part ft jt .‚2, : : : ,‚N j‚1/ remains identical to that one in H0It . The marginal part can be
gained, for example, by flattening, or even the marginal of the prior PDF f1j0.‚1/ can be used. The
other entries are expected to remain unchanged.

The number of similar hypotheses can be much larger. For instance, it is possible to formulate
many hypotheses and to reduce their number by elimination of those that proved not to be valid
through a longer modelling period. Another option is to set only a few hypotheses and to rely on
the algorithm that it will do the best decision; that is, weights tunning. This is indeed a trade-off
between the universality and the speed of computation. Anyway, it is important that even a small
number of well formulated hypotheses will perform acceptably in most practical situations, because
the Bayesian testing algorithm chooses the most probable information being at disposal. The ideal
solution to this issue would consist of automated generating of hypotheses, which is, however,
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nontrivial. Although this issue was already given some effort, for example, [13, 26, 29], the remain-
ing constraints still prevent its use in the presented method. Monte-Carlo type generating is possible
as well, but has not been sufficiently elaborated yet.

The special choice (4) is the only sacrifice with respect to generality of the partial-forgetting
description. It fits the application discussed in Section 4.

3.1. Evolution of hypotheses probabilities

Each of the hypotheses is assigned prior probability �i It jt�1 of becoming true at the particular time
instant

�i It jt�1 D Probabilityt jt�1.Hi /,
2X
iD0

�i It jt�1 D 1. (5)

Bayes’ rule provides data update of these probabilities

�i It jt D Probabilityt jt .Hi // �i It jt�1Fi It jt�1, (6)

where

Fi It jt�1 D

Z
‚�
ft jt�1.yj ,‚/E

h
ft jt�1.‚/

ˇ̌̌
‚,Hi It ,d.t/

i
d‚.

Notice that each probability is updated by the predictive PDF (3) relevant to the induced hypothetic
PDF from (4).

The exact time update of �i It jt!�i ItC1jt would require a model of the time evolution Hi It !
Hi ItC1 of respective hypotheses. It is convenient to address this tracking problem at hypotheses
level by a sort of forgetting. Bayesian flattening yields

�i ItC1jt / �
˛
i It jt , (7)

with the ‘second level’ forgetting factor ˛ 2 .0, 1/ that can be interpreted as probability that
the hypothesis validity does not change with time. Experience shows that ˛ > 0.95 is suitable
(c.f. [13]).

The next section demonstrates that the probabilities �i ItC1jt weight the estimation results obtained
within respective hypotheses. Their evolution (6), (7) is robustly driven by the optional ˛. The initial
values �i I1j0 can be chosen by an expert or selected randomly within the appropriate probabilistic
simplex.

3.2. Approximate estimation of ftC1jt .‚/

It remains to construct a ‘point’ estimate of the unknown ftC1jt .‚/ and use it in a subsequent recur-

sive estimation. Expected value E
h
ftC1jt .‚/

ˇ̌̌
‚,d.t/

i
offers itself as such estimate. It is a convex

combination of the PDFs induced by hypotheses and weighted by their probabilities

E
h
ftC1jt .‚/

ˇ̌̌
‚,d.t/

i
D E

h
E
�
ftC1jt .‚/

ˇ̌
‚,d.t/,Hi

� ˇ̌̌
‚,d.t/

i
D

2X
iD0

�i ItC1jtE
�
ftC1j.‚/

ˇ̌
‚,d.t/,Hi

�
. (8)

Though the mixture (8) expresses our expectation about the unknown PDF ftC1jt .‚/, its use for
modelling in (1) is impractical. Instead, we approximate it by the PDF QftC1jt .‚/ from a set f ?

tC1jt
of feasible PDFs, whose divergence from the original mixture is the smallest one. The paper [27]
provides arguments for selecting the Kullback–Leibler (KL) divergence [28] defined as follows.

Definition 1 (Kullback–Leibler divergence)
Let f and g be two PDFs of a random variableX , acting on a common set x?. The Kullback–Leibler
divergence is defined
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D.f jjg/D

Z
x?
f .x/ ln

f .x/

g.x/
dx. (9)

It can be shown that D.f jjg/> 0 with equality for f .x/D g.x/ almost everywhere on x?.
Note that the minimization of the KL divergence of the expected PDF (8) on QftC1jt .‚/ is equiva-

lent to the minimization of the expected KL divergence E
h
D
�
ftC1jt jj QftC1jt

�i
of unknown ftC1jt

on QftC1jt

QftC1jt .‚/D arg min
f 2f ?

tC1jt

E
h
D
�
ftC1jt jjf

� ˇ̌̌
‚,d.t/

i
, (10)

hence, we use (8) in place of ftC1jt . The resulting best approximation ftC1jt .‚/ � QftC1jt .‚/,
found within the set of feasible PDFs f ?

tC1jt
, is used as the prior PDF for the subsequent data-update

and parameter tracking steps.

4. APPLICATION TO GAUSSIAN REGRESSION MODEL

This section demonstrates an application of the developed method to the popular Gaussian regres-
sion model. First, the standard theory of the Bayesian regression with Gaussian model and its
conjugate prior Gauss-inverse-Wishart distribution is recalled in a necessary detail. On the base
of this theory, summarized, for example, in [26], we derive an approximation of the unknown
PDF ftC1jt .‚/. The abstract formula (10) gets its application counterpart. The data update of
probabilities of hypotheses follows.

To derive the partial forgetting method for the Gaussian regression model, let us follow the way
it is described in Section 3. Suppose that a SISO system can be modelled by a regression model,
whose output yt is influenced by inputs ut , : : : ,ut�qC1, previous outputs yt�1, : : : ,yt�p and off-
set, forming a regression vector  t 2 Rn, where n D p C q C 1Ip, q 2 N0. Then, the output is
characterized by a Gaussian PDF with the mean  0t� t and variance r ,

ft jt�1.yj ,‚/DN . 0t� t , r/�
1

p
2�r

exp

( �
yt � 

0
t™t
�2

2r

)
, ‚ D f� , rg (11)

where � t is a real n-vector of regression coefficients. The number of unknown parameters N D
nC 1. The recursive Bayesian estimation of (11) employs the Gauss-inverse-Wishart PDF, repre-
senting a conjugate (i.e., reproducing) prior PDF suitable for estimation of model parameters [13].
An exhaustive description of GiW PDF and its use can be found in [26], pp. 251–260.

Definition 2 (Gauss-inverse-Wishart PDF)
The Gauss-inverse-Wishart PDF has the form

GiW.V , �/�
r�0.5.�CnC2/

I.V , �/
exp

�
�1

2r

	
�1
�


0
V

	
�1
�


 �
or in terms of the decomposition V D L0DL, where L is a unit lower triangular matrix and D is a
diagonal matrix

GiW.L,D, �/�
r�0.5.�CnC2/

I.L,D, �/
exp

�
�1

2r

h
.� � O�/0C�1.� � O�/CDy

i�
.

The individual terms have the following meaning:

V 2 RN�N , N D nC 1, is the extended information matrix, that is, symmetric square positive
definite matrix, which carries the information about the past data,
� 2RC stands for the degrees of freedom,
n denotes the length of the regression vector  ,
r 2RC is the noise variance.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2011)
DOI: 10.1002/acs



K. DEDECIUS, I. NAGY AND M. KÁRNÝ

With the split of L andD to block matrices of corresponding dimensions (Dy scalar)

LD

	
1

Ly L 



, D D

	
Dy

D 




O� �L�1 Ly is the least-squares (LS) estimate of � ,

C �L�1 D
�1
 .L

�1
 /
0 2Rn�n is the LS covariance of O� ,

Dy 2RC is the LS remainder,
I stands for the normalization integral

I.L,D, �/� �.0.5�/

s
2�.2�/n

D�
y jD j

. (12)

As proved in [26], the used L0DL decomposition allows simple evaluation of marginal PDF of
GiW PDF.

Theorem 1 (Marginal PDF of GiW PDF)
Given a PDF f .‚/D f .�˛ ,�ˇ , r/D GiW.V , �/. Let L0DL be the corresponding decomposition
of the extended information matrix V of its PDF as follows:

L�

2
4 1

Ly˛ L˛
Lyˇ L˛ˇ Lˇ

3
5 , D �

2
4 Dy

D˛

Dˇ

3
5 . (13)

Then, the marginal PDF for .�˛ , r/ can be extracted:

f .�˛ , r/� GiW
� 	

1

Ly˛ L˛



,

	
Dy

D˛



, �


. (14)

4.1. Parameter estimation

Parameter estimation in the Gaussian regression model, as given in (2), evolves the statistics V and
� by the data update

V t jt D V t jt�1C‰ t‰
0
t , �t jt D �t jt�1C 1, (15)

where ‰ t � Œyt , 
0
t �
0 is an extended regression vector. The recursion (15) expressed in terms of the

LS representation coincides with the RLS [13].

4.2. Partial forgetting

In this part of the paper, we apply the theory described in Section 3 on the Gaussian regression model
(11) with the GiW conjugate prior PDF. Recall from (4) that we need to specify three hypotheses
about parameter variability. Here, the PDFs induced by the hypotheses (4) will differ in terms of
statistics V and �:

H0It W E
h
ftC1jt .‚/

ˇ̌̌
‚,d.t/, H0It

i
D GiW

�
V
f

t jt
, �f
t jt

�
DG0It jt

H1It W E
h
ftC1jt .‚/

ˇ̌̌
‚,d.t/, H1It

i
D GiW

�
V
g

t jt
, �g
t jt

�
DG1It jt

H2It W E
h
ftC1jt .‚/

ˇ̌̌
‚,d.t/, H2It

i
D GiW

�
V
f jh

t jt
, �h
t jt

�
DG2It jt

(16)

where to stress connection with (4), the upper indices denote the correspondence to particular PDFs
f ,g, h. The hypothesis H2It in (4) assumes the exchange of marginal PDF of related parameter
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with a suitable alternative h. For the Gaussian regression model, we may proceed with the help of
Theorem 1. It allows us to select the statistics of the marginal PDF to be exchanged with alternative
ones, for example, from H1It .

Suppose, that we are given the probabilities �i ItC1jt for i D 0, 1, 2 according to (5). Then, we can
express the expectation of the true PDF ftC1jt .‚/ as the mixture (8),

E
h
ftC1jt .‚/

ˇ̌̌
‚,d.t/

i
D

2X
iD0

�i ItC1jtGi It jt . (17)

According to Section 3, the mixture (17) has to be approximated by a single PDF from the same
family. In order to do this, we use the Kullback–Leibler divergence of GiW PDFs as follows:

Theorem 2 (KL divergence of two GiW PDFs)
Given two GiW distributions with PDFs f and Qf . The Kullback–Leibler divergence of these two
functions has the following form

D
�
f
ˇ̌ˇ̌
Qf
�
D ln

�.0.5 Q�/

�.0.5�/
� 0.5 ln jC QC

�1
j C 0.5 Q� ln

Dy
QDy

C 0.5.� � Q�/‡.0.5�/� 0.5n� 0.5�C 0.5Tr
�
C QC

�1
�

C 0.5
�

Dy

	�
O� �
OQ�
�0
QC
�1
�
O� �
OQ�
�
C QDy



, (18)

where ‡.�/ denotes the digamma function, that is, the first logarithmic derivative of the gamma
function �.�/.

The proof is nontrivial and is given in [26].
In our case, we substitute the expectation of ftC1jt for f and search for its best approxima-

tion QftC1jt that minimizes the expected KL divergence. For this purpose, we take its derivatives

with respect to QO� , QC , QDy and Q�. The result of the minimization is summarized in the following
proposition.

Proposition 1
Given a convex combination (mixture) of Gauss-inverse-Wishart PDFs (17). Its best approximation
minimizing the Kullback–Leibler divergence within the set of the GiW distributions is given by the
following parameters (statistics):

OQ� tC1jt D

 
2X
iD0

�i ItC1jt
�i It jt

Dyi It jt

!�1  2X
iD0

�i ItC1jt
�i It jt

Dyi It jt
O� i It jt

!

QDyItC1jt D Q�i ItC1jt

 
2X
iD0

�i ItC1jt
�i It jt

Dyi It jt

!�1

QC tC1jt D

2X
iD0

�i ItC1jt

	
�i It jt

Dyi It jt

�
O� i It jt �

OQ� i ItC1jt

� �
O� i It jt �

OQ� i ItC1jt

�0
CC i It jt




Q�tC1jt D
1C

q
1C 4

3
.A� ln 2/

2.A� ln 2/

AD ln

 
2X
iD0

�i ItC1jt
�i It jt

Dyi It jt

!
C

2X
iD0

�i ItC1jt
�
lnDyi It jt �‡.0.5�i It jt /

�
.

‡.�/ is the digamma function. The index i refers to the i-th hypothesis; that is, to the PDF Gi It jt .
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Proof
Except on �, all results are obtained directly using the derivative rules @

@X
ln jAXBj D .X�1/0 and

@
@X

Tr.AX/DA0. Differentiation of (18) with f being the mixture (8) with respect to Q�tC1jt yields

@D
�
ftC1jt

ˇ̌ˇ̌
QftC1jt

�
@ Q�tC1jt

D ‡.0.5 Q�tC1jt /� ln Q�tC1jt CAD 0,

where A is given above. The digamma function ‡.0.5 Q�tC1jt / is approximated [30]

‡.x/D ln x �
1

2x
�

1

12x2
CO

�
1

x4


„ ƒ‚ …
!0

,

hence, for x D 0.5 Q�tC1jt and back substitution, we get a quadratic equation, which has the claimed
form. �

4.3. Data update of hypotheses probabilities

In Section 3.1, we introduced a method for tuning the weights of Hypotheses (4). The data update
(6) consists of recursive update of probabilities (5) by the predictive PDFs. Expressing the predictive
PDF in term of a ratio of normalization integrals (12) allows us to specify the corresponding rule
for the Gaussian regression model; that is,

�i It jt / �i It jt�1
Ii It jt .L,D, �/

Ii It jt�1.L,D, �/
, (19)

where I.�/ is the normalization integral (12).

5. EXAMPLES

In this section, we demonstrate the method on two examples, one being a simulation example and
the other one being based on a real traffic data.
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5.1. Simulation example

This example shows the ability of the method to track simulated coefficients of a first-order Gaussian
autoregressive model with  t D Œyt�1, 1�0. The data was generated with y0 D 0.5 and coefficients
�1,t D 0.95 for the whole time run and �2,t D 1.5 for t D 1, : : : , 100 and �2,t D 0.5 C x3t for
t D 101, : : : , 200, where xt are 100 consecutive evenly spaced numbers from the interval Œ�1, 0.5�,
respectively. The additive Gaussian white noise had zero mean and for this special purpose, a small
standard deviation 	 = 0.1. The data evolution is depicted in Figure 1. The prior information was
gathered from the first 20 samples; the following 180 samples were used for estimation. The split is
depicted in Figure 1 by a vertical dashed line. The prior probabilities �i ,1j0 D 1=3 for i D f0, 1, 2g,
that is, no hypothesis was preferred by the user. Their flattening factor ˛ D 0.99. To demonstrate the
feasibility of the method, any use of an externally supplied expert information in hypotheses was
avoided. Instead, we flattened the posterior PDF by factor 0.85 and used it as an information for H1
and a source of the marginal PDF of �2,t for H2.

Figure 2 shows the evolution of point estimates of the regression coefficients. Apparently, after
the faster change at t D 100, the model lacked any useful information, but the estimation quickly
stabilizes and the coefficients are estimated well during their evolution. The mean squared errors
were 0.0022 for �1 and 0.8815 for �2, respectively.

The evolution of probabilities of the three hypotheses is depicted in Figure 3. During the first
linear part, the weights of H1 and H2 were continually suppressed. After t D 100, their probabilities
rapidly grew to reflect the change and as the data became almost linear, they slowly decreased.

5.2. Traffic data example

This example demonstrates the ability of the method to track a time-varying mean value of a stochas-
tic process. The data batch represents working day traffic intensities measured in Prague, Czech
Republic – Figure 4 (thin line).

Figure 1. Artificial data series.

Figure 2. True and estimated coefficients.
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Figure 3. Evolution of probabilities of hypotheses Hi .

Figure 4. True data (thin line) and predictions (thick line).

Figure 5. Parameter estimates – dynamics (dashed line) and the offset (solid line).

A first-order autoregression model with  t D Œ1,yt�1�0 was used for a step-ahead prediction of
the data. The initial GiW statistics were V 1j0 with diagonal Œ0.1, 0.01, 0.01� and zeros elsewhere,
and �1j0 D 5. The alternative information for H1 was created each time step by multiplication of
both statistics by 0.85, which is identical to EF. An alternative marginal PDF for the offset in H2 was
made the same way. Weights flattening factor ˛ D 0.99. Both factors were chosen directly without
optimization. The estimation started with uniformly distributed weights �i I1j0 D 1=3.

The predictions are depicted in Figure 4 (thick line). The model followed the course of the true
data quite well. Root mean squared error (RMSE) of prediction was 5.328. To compare, the EF with
factor 0.98 led to RMSE D 6.039. Except for the noise variance estimation, the GiW regression
model is equivalent to RLS. A counterpart of the proposed method is then the vector forgetting
[21], providing qualitatively similar results with RMSE D 5.2937 using forgetting factors 0.85 for
�1 (offset) and 0.99 for �2. However, compared with the proposed method, this combination was
obtained by intensive optimization and the method is strictly connected with RLS.

The evolution of model parameters – the offset �1 and dynamics �2 – is depicted in Figure 5.
Evidently, the model preferred to track the change in the mean value with the offset.

6. CONCLUSION

The problem of estimation of a linear time varying model with different speed of parameter varia-
tions has been faced within the parametric Bayesian framework with an approximation minimizing
the Kullback–Leibler divergence. It has been shown that a varying mean value of the system output
can be tracked with the offset of the model. The presented approach allows to formulate hypotheses
about the multivariate parameter variability and recursively tune their probabilities. Furthermore,
the user can insert available expert information connected with alternative hypotheses H1 and H2
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into the estimation process. The risk of discrepancy between the true and the estimated parameter
values is suppressed by the recursive weighting as well.

APPENDIX A: SIMULATION EXAMPLE – COMMENTED APPLICATION OF
ALGORITHM 1
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