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ABSTRACT
We are concerned with Bayesian identification and prediction
of a nonlinear discrete stochastic process. The fact, that a
nonlinear process can be approximated by a piecewise linear
function advocates the use of adaptive linear models. We pro-
pose a linear regression model within a Rao-Blackwellized
particle filter. The parameters of the linear model are adap-
tively estimated using a finite mixture, where the weights of
components are tuned with a particle filter. The mixture re-
flects a priori given hypotheses on different scenarios of (ex-
pected) parameters’ evolution. The resulting hybrid filter lo-
cally optimizes the weights to achieve the best fit of a nonlin-
ear signal with a single linear model.

Index Terms— Particle filters, Bayesian methods, Recur-
sive estimation

1. INTRODUCTION

The theory of approximation of nonlinear signals by piece-
wise linear functions has attained considerable attention in
the past decades [1], mainly in the field of control engineer-
ing, e.g., [2]. The method is popular, because in many tech-
nical applications, it offers a reasonable trade-off between the
models’ complexity and its performance [3, 4]. Our method
is inspired by the fact, that if the transitions between two suc-
cessive (almost) linear segments is smooth enough, it can be
modelled with switching models, e.g. [5, 6, 7], or model av-
eraging [8].

Notational conventions: ∝ denotes proportionality, i.e.,
equality up to a constant factor. A′ denotes transpose of A.
p(a|b) is a probability density function (pdf) of a (multivari-
ate) random variable a given b. The pdfs are distinguished by
their argument. t ∈ {1, 2, . . .} denotes discrete time instants.
All integrations are over the maximal plausible support.

2. BAYESIAN APPROACH TO MODELLING

Assume, that we are given a time series of real observations
Y t−1 = (y1, . . . , yt−1) and our purpose is to determine its
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next value yt. The statistical approach employs, among oth-
ers, the parametric models describing the dependence of yt on
previous observation Y t−1 through conditional distributions
with probability density functions (pdf)

p(yt|Y t−1,Θ). (1)

Under the Bayesian treatment, Θ is a set of constant model
parameters with a pdf p(Θ|Y t−1). If this distribution is
properly chosen from a class conjugate to the model (1), the
Bayes’ theorem yields a posterior pdf of the same type, and
the recursive data update reads [9, 10]

p(Θ|Y t) =
p(yt|Y t−1,Θ)p(Θ|Y t−1)

p(yt|Y t−1)
. (2)

The predictive pdf p(yt+1|Y t) provides the Bayesian out-
put prediction. Using Chapman-Kolmogorov equation [11], it
holds

p(yt+1|Y t) =
∫
p(yt+1|Y t,Θ)p(Θ|Y t)dΘ =

It+1

It
, (3)

where I denotes the normalizing integral, see, e.g. [10].
Although the described methodology is important per se,

its lack of adaptivity prevents successful application to non-
static cases, when Θ is not time-invariant. For a time varying
Θt, it is necessary to perform an additional update

p(Θt|Y t)→ p(Θt+1|Y t). (4)

Here, two significant cases can occur:

(i) The evolution model p(Θt+1|Θt,Y
t) is known a pri-

ori.

(ii) A suitable model of parameter evolution is not known,
but we can expect that they vary relatively slowly.1

The case (i) allows to aggregate both (1) and p(Θt+1|Θt,Y
t)

into a single complex model. Then, Θt represents the system
state and under certain conditions, the estimation task leads to
the well known Kalman filtering [10].

1However, this is a vague statement, there is no exact definition of “slowly
variations”, hence it is understood intuitively.



However, there exists a wide variety of cases, when the
explicit model of parameter evolution is not known. If we
adopt the assumption of slowly varying parameters (ii), the
popular group of estimation methods using forgetting pro-
vides a solution. It is heuristically circumventing the prob-
lem of parameter model ignorance by recursive discounting
the old and potentially outdated information carried by the
parameter pdf. Formally, we introduce a forgetting operator
F:

p(Θt+1|Y t) = F[p(Θt|Y t)]. (5)

The application of the forgetting operator is equivalent to the
time update in state space models [12].

3. PARTIAL FORGETTING

The use of “classical” forgetting methods, e.g., exponential
forgetting [10], is limited in nonlinear cases. We present a
new approach appealing to partial forgetting [13]. While it
enumerates hypotheses about variability of elements of Θt,
our modification is more general.

Let us define a finite set H of hypotheses {Hi} regarding
the distribution of Θt+1 given Θt. The distributions induced
by these hypotheses are merged together in form of a finite
mixture,

p(Θt+1|Y t,πt) =
∑

i

πi,t qi(Θt+1|Y t),
∑

i

πi,t = 1,

(6)
i.e., the posterior distribution of Θt+1 is represented by a fi-
nite mixture of hypothetical pdfs qi(Θt+1|Y t).

Theoretically correct solution would express one hypo-
thetical pdf for each (almost) linear window. In practice, this
is hardly possible and a generalization of the approach is ex-
ploited. The hypotheses Hi ∈ H enumerate several cases,
which are likely to occur. Their number depends on a spe-
cific task, mainly the signal properties, and the user’s ability
to guess the properties of Θt in each window. For instance,
we may state a hypothesis about each particular element of
Θt = {Θ1,t, . . . ,ΘN,t} and about all of them in one shot:

H0 : p(Θt+1|Y t, H0) = p(Θt|Y t)

= q0(Θt+1|Y t)

H1 : p(Θt+1|Y t, H1) = p(Θ2,t, . . . , ΘN,t|Y t, Θ1,t)

×F[p(Θ1,t|Y t)] = q1(Θt+1|Y t)

...

HN : p(Θt+1|Y t, HN ) = p(Θ1,t, . . . , ΘN−1,t|Y t, ΘN,t)

× F[p(ΘN,t)] = qN (Θt+1|Y t)

HN+1 : p(Θt+1|Y t, HN+1) = F[p(Θt|Y t)]

= qN+1(Θt+1|Y t)

This particular set ofN+1 hypotheses is an example of many
possible choices. The two extreme hypotheses H0 and HN+1

represent the user’s belief that none or all parameter vary, re-
spectively. The remaining hypotheses H1, . . . ,HN concern

the case of variability of Θt’s one element (with appropriate
index). We can choose different operators F or completely
expert pdfs qi(Θt+1|Y t) as well.

Working with the mixture (6) would require a rather com-
plex treatment. Instead, we prefer to find a single pdf p̃ of
the same class as the components, minimizing the expected
Kullback-Leibler divergence of p on p̃

E
[
D (p||p̃) |H,πt,Y

t
]

= (7)

= E
[∫

p(Θt+1|Y t,πt)
p(Θt+1|Y t,πt)
p̃(Θt+1|Y t,πt)

dΘ
∣∣∣H,πt,Y

t

]
︸ ︷︷ ︸

→min

.

It can be shown, that D (f ||g) ≥ 0 with equality for f = g
almost everywhere [14]. A solution, for certain cases analyti-
cal [13], defines the approximate pdf p̃(Θt+1|Y t,πt), which
may be directly used as the next prior distribution pdf in (2).

4. RAO-BLACKWELLIZED PARTICLE FILTER

Let Ψt+1 = (Θ′t+1,π
′
t)
′ be a real column vector. Given the

value of πt, the minimization (7) yielding the approximation
p̃(Θt+1|Y t,πt) of (6), can be evaluated. The approximate
pdf can be used for linear recursive estimation of model (1).
Since weights πt are unknown, we attempt to estimate joint
pdf of regression parameters and weights p(Ψt+1|Y t). We
exploit the natural factorization of Ψt+1 and decompose the
pdf p(Ψt+1|Y t) as follows

p(Ψt+1|Y t) = p(Θt+1|Y t,πt)︸ ︷︷ ︸
linear

p(πt|Y t)︸ ︷︷ ︸
PF

(8)

where p(Θt+1|Y t,πt) is analytically tractable while p(πt|Y t)
is not. The latter pdf is approximated using particle filter (PF)
[15].

Particle filtering refers to a range of techniques for gener-
ating an empirical approximation of the pdf

p
(
Πt|Yt

)
≈ 1
M

M∑
j=1

δ
(
Πt −Πt,(j)

)
, (9)

where Πt = (π1, . . . ,πt) and Πt,(j), j = 1, . . . ,M are in-
dependent identically distributed samples from the posterior;
δ(·) denotes the Dirac δ-function. Therefore, this approach
is feasible only if the we can sample from the exact poste-
rior p (Πt|Yt). If this is not the case, the samples can be
drawn from a chosen proposal distribution (importance func-
tion), f (Πt|Yt), as follows:

p
(
Πt|Yt

)
=

p (Πt|Yt)
f (Πt|Yt)

f
(
Πt|Yt

)
≈ p (Πt|Yt)

f (Πt|Yt)
1
M

M∑
j=1

δ
(
Πt −Πt,(j)

)
.(10)



Using the properties of the Dirac δ-function, the approxima-
tion can be written in the form of a weighted empirical distri-
bution, as follows:

p
(
Πt|Yt

)
≈

M∑
j=1

w
(j)
t δ

(
Πt −Πt,(j)

)
, (11)

w
(j)
t ∝

p
(
Πt,(j)|Yt

)
f
(
Πt,(j)|Yt

) . (12)

Under this importance sampling procedure, the true posterior
distribution needs only be evaluated pointwise.

The challenge for on-line algorithms is to achieve recur-
sive generation of samples and evaluation of the importance
weights. Using standard Bayesian calculus, (12) may be writ-
ten in the following recursive form:

w
(j)
t ∝

p (yt+1|Y t) p
(
π

(j)
t |π

(j)
t−1

)
f
(
π

(j)
t |Πt−1,(j),Y t

) w
(j)
t−1 (13)

Furthermore, if f
(
π

(j)
t |Πt−1,(j),Y t

)
= p

(
π

(j)
t |π

(j)
t−1

)
,

then the importance density becomes only dependent on the
πt−1 and yt. This is particularly useful in the common case
when only a filtered estimate of the posterior p(πt|Y t) is
required at each time step. It means, that only π(i)

t need to be
stored [16]. Then, the marginal posterior density p(πt|Y t)
can be approximated as

p
(
πt|Yt

)
≈

M∑
j=1

w
(j)
t δ

(
πt − π(j)

t

)
. (14)

Substituting (14) into (8) yields

p
(
Ψt|Y t

)
=

M∑
j=1

w
(j)
t p

(
Θt|π(j)

t ,Y t
)
δ
(
πt − π(j)

t

)
(15)

Now, we have to sample from the space of πt. The weights
can be evaluated recursively:

w
(j)
t ∝

p
(
yt|π(j)

t

)
p
(
π

(j)
t |π

(j)
t−1

)
f
(
π

(j)
t |π

(j)
t−1, yt

) w
(j)
t−1. (16)

For exact marginalization, all proofs of global convergence
hold [17].

5. IMPLEMENTATION

Let the model (1) be a linearN -th order autoregressive model
with Gaussian disturbances

p(yt|Y t−1,Θt) = p(yt|ϕt,θt,Y
t−1) ∼ N (ϕ′tθt, σ

2),
(17)

where ϕt = (yt−1, . . . , yt−N , 1)′ is a regression vector and
θt ∈ RN+1 is a vector of regression coefficients; σ2 ∈ R+

is the noise variance. The Bayesian paradigm exploits the
Gauss-inverse-Wishart distribution as a suitable conjugate
prior distribution [12]

p(Θt|Y t−1) ∼ GiW(Vt, νt), (18)

where Vt ∈ R(N+1)×(N+1) denotes an extended information
matrix, i.e., a positive definite symmetric matrix. The term
νt ∈ R+ stands for the degrees of freedom [10]. The data
update rule (2) reads

Vt = Vt−1 + (yt,ϕ
′
t)
′(yt,ϕ

′
t)

νt = νt−1 + 1

There are various methods accomplishing the time update
based on forgetting (5), e.g. [10, 18, 19], and many others.
The approximation of mixture (6) of GiW pdfs, in the sense
of minimization of the Kullback-Leibler divergence (7), is
thoroughly described in [13]. The weights πt are sampled
from the Dirichlet distribution Dir(πt) by the particle filter.
The evolution model πt|πt−1 is given by the following tran-
sition pdf

πt|πt−1 ∼ Dir(πt−1/∆ + s), (19)

where ∆ is the width of the random walk and s is the stabiliza-
tion term. Both of them, plus the proposal distribution, are a
priori given by the user. A popular choice of the proposal dis-
tribution f

(
π

(j)
t |π

(j)
t−1, yt

)
= p

(
π

(j)
t |π

(j)
t−1

)
simplifies (16),

w
(j)
t ∝ p

(
yt|π(j)

t

)
w

(j)
t−1.

There exist more optimal choices of proposal density as well,
see, e.g. [15].

6. SIMULATION

In this simulation, we analyze a time series yt = x(t) + et,
where x(t) is given by the x-component of the Lorenz system
[20]

ẋ = σ(y − x)
ẏ = ρx− y − xz
ż = −βz + xy

and et ∼ N (0, 1). We integrate the system numerically by the
Runge-Kutta algorithm of the fourth order with time step 0.05
and parameters σ = 10, ρ = 28 and β = 8/3. The integration
was initialized with x0 = 0, y0 = 1 and z0 = 1.05. The sam-
pling period coincides with the integration step. The system
was modelled using a second-order autoregressive model (17)
with ϕt = (yt−1, yt−2, 1). Its parameters were estimated us-
ing partial forgetting with hypotheses formulated in Section 3,
where F is the exponential forgetting with factor 0.95. The re-
sult of modelling of the first 500 samples is depicted in Fig. 1.



We can see, that after the learning period (approx. first 100
samples), the estimator stabilizes and the model achieves a
good performance.

Fig. 1. Results of the numerical experiment.

7. CONCLUSION

The autoregressive model with partial forgetting within the
Rao-Blackwellized particle filter was discussed. We pre-
sented a hybrid filtering method, where a subset of parame-
ters is estimated using a particle filter. The rest of parameters
is estimated conditionally linearly. The presented algorithm
in its basic form performed well, however, there is a lot of
space for further improvements.
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