
Chapter 2

On Support of Imperfect Bayesian Participants

Miroslav Kárný and Tatiana V. Guy

Abstract. Bayesian decision theory provides a strong theoretical basis for a single-

participant decision making under uncertainty, that can be extended to multiple-

participant decision making. However, this theory (similarly as others) assumes

unlimited abilities of a participant to probabilistically model the participant’s en-

vironment and to optimise its decision-making strategy. The proposed methodol-

ogy solves knowledge and preference elicitation, as well as sharing of individual,

possibly fragmental, knowledge and preferences among imperfect participants. The

approach helps to overcome the non-realistic assumption on participants’ unlimited

abilities.

2.1 Introduction

Dynamic decision making (DM) under uncertainty concerns a dynamic interaction

of a decision maker (participant) with its environment, a part of the World. Dur-

ing the interaction the participant selects among available actions while aiming to

reach own DM goals expressing its DM preferences. The interacting participants

may cooperate or compete to achieve their personal DM goals or may be engaged

in a collaborative DM, i.e. may have an additional common DM goal. The solution

of decentralised DM relies on the participant considering future behaviour of its

neighbours [10]. This requires modelling knowledge and preferences of the neigh-

bours that cannot be performed by participant’s limited capabilities.

Unlike many other approaches to decision making, Bayesian decision theory

with its solid axiomatic basis proposes a systematic treatment of the considered DM
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30 M. Kárný and T.V. Guy

problem [23]. When the description of the environment and the participant’s pref-

erences are specified in probabilistic terms, the optimal strategy can be explicitly

found [15, 30]. The assumption on availability of complete probabilistic descrip-

tion is, however, quite restrictive as the participant operates with its DM preferences

expressed in domain-specific terms and (at most) with a part of domain-specific

knowledge rising from its interaction with the environment. The limited cognitive

and computational resources of the participant prevent it to make the proper infer-

ences from this limited and uncertain knowledge and to transfer it into the relevant

probabilistic descriptions. This needs an algorithmic solution of knowledge elicita-

tion and preference elicitation problems.

Many of the proposed knowledge elicitation methods heavily depend on the qual-

ity of DM experts, see for instance [6]. Theoretical and algorithmic support of the

preference elicitation still remains to be a fundamental problem and no efficient and

feasible solution has been proposed. A promising exception [5] treats the preference

elicitation as an independent DM problem optimising elicitation effort or time with

respect to a gain in decision quality yielded by the elicited preferences.

Another hard problem within cooperative distributed DM is sharing individual

fragmental1 knowledge and preferences among other imperfect participants. The

main challenge here is to improve DM quality of individual selfish participants,

while respecting their limited cognitive, computational and interacting abilities.

Chapter proposes a unified approach to knowledge and preference elicitation as

well as sharing. The approach recognises typical subtasks arisen within the men-

tioned problems, formulates them as the independent supporting DM tasks and

solves them via a fully probabilistic design [15, 17]. The provided solutions do

not force the selfish imperfect participants to increase complexity of their models of

environment or preferences while allowing to handle partially incompatible, frag-

mental knowledge and preferences.

The methodology respects the participant’s selfishness by preserving the partic-

ipant’s formulation of the DM task and allowing the participant to follow its DM

preferences. The participant’s imperfection is also unchallenged by restricting its

interaction to a small number of neighbours directly influencing its environment,

and by not requiring a detailed modelling of its neighbours.

The proposed solution considers a sort of passive cooperation even for a

non-collaborative selfish DM, that can be implemented as follows: i) the interact-

ing participants offer their probabilistic models or their parts to the neighbours; ii) a

feasible and implementable algorithm merges these models and projects the resulted

compromise back to domains of the respective participants; iii) the back-projected

compromise2 can be exploited by the participants in order to efficiently reach their

selfish DM goals. The projected compromise represents an additional information

source, which does not force a participant to increase its load.

1 A group of participants may interact on an intersection of their individual behaviour. Thus

each participant has only fragmental knowledge about the whole behaviour of the group

and may not be aware of the complete behaviour of any its neighbour.
2 The exploitation of the merged and back-projected information is out of the chapter’s scope.
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Chapter layout is as follows. Section 2.2 summarises a formalisation of DM un-

der uncertainty. The adopted normative Bayesian DM is recalled in Section 2.3.

Section 2.4 provides an essence of the fully probabilistic design of decision-making

strategies that densely extends the standard DM design. Section 2.5 describes, for-

mulates and solves the typical supporting DM tasks. Section 2.6 outlines the solu-

tions of elicitation and merging tasks. Section 2.7 summarises open problems.

In description of the underlying theory, capital roman letters denote random vari-

ables as well as their realisations. The following common notation are used:

t,τ ∈ N is a discrete time

AAA denotes a set of As

At is a random variable at time t

At is a finite sequence (Aτ)
t
τ=0, Aτ ∈AAAτ and t ∈ N

Am
n is a finite sequence (Aτ)

m
τ=n, Aτ ∈AAAτ , n, m ∈ N, n≤m

mappings are distinguished by san serif font, for instance S(A).

Since Section 2.5 intertwined supporting and original DM problems are addressed.

Capital letters denote variables and mappings related to the supporting DM and

small letters are used for the original DM.

2.2 Dynamic Decision Making under Uncertainty

This section recalls a formalisation of dynamic DM. It exploits and unifies results

presented in [7, 12, 17], introduces notation and provides a theoretical basis of the

proposed support of imperfect participants described in Section 2.5 and exploited in

Section 2.6.

Dynamic DM under uncertainty deals with a dynamic interaction of a partici-

pant (decision maker) with its environment (World part of the participant’s interest)

that aims to reach participant’s DM goal. DM goal expresses the participant’s pref-

erences with respect to the behaviour B ∈ BBB of the closed decision-making loop

formed of the participant and its environment.

DM considers a sequence of participant’s actions with respect to the participant’s

environment. The actions are not independent and the state of the environment

changes either due to always present development of the environment3 or/and as

a reaction on the participant’s actions. The knowledge available to the participant

for selecting an action includes: the knowledge gained from the environment (ob-

servations); the knowledge associated with the participant’s past actions (generated

by the participant’s decision-making strategy) and the knowledge considered by the

participant (prior knowledge of the environment). Always limited cognitive, com-

putational and acting resources of the participant are considered as the participant’s

imperfectness.

3 The environment’s behaviour reflects some inherent laws of the environment that are un-

known (or incompletely known) to the participant.
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A closed-loop nature of interaction and information exchange between the par-

ticipant and its environment has allowed to use the notion “closed-loop description”,

which models a coupling of the decision-making strategy and the environment form-

ing a closed (DM) loop. Its behaviour B ∈ BBB 6= /0 is identified with observations Y ,

internals X , actions A and prior knowledge K0 as follows

B = (Y,X ,A,K0) = (observations, internals,actions,prior knowledge) ∈ BBB. (2.1)

Here it is assumed that observations made on the environment are available to

the participant. Besides, the closed-loop nature of information exchange considers

both the case when an action affects the environment and the case when it does not,

i.e. when actions applied have no influence on the future behaviour of the environ-

ment. The tasks of this type arise when the DM goal is to describe or predict the

environment based on observations made4.

Note, the “closed-loop description” should not be confused with the “closed-

loop control system”. The last assumes the controller (decision maker) observes the

system (environment) and adjusts the control action (decision) to obtain the desired

system’s behaviour (environment’s behaviour) while an opposite open loop notion

considers no observations are available to design the action.

DM consists of the selection (also known as DM design) and of the applica-

tion of a DM strategy, i.e. a sequence of mappings S ≡ (St)t∈ttt ∈ SSS formed of de-

cision rules St , t ∈ ttt, where t ∈ ttt ≡ {1, . . . ,h}, h < ∞ is a given decision horizon.

Each strategy maps a knowledge sequence K ≡ (Kt−1)t∈ttt on an action sequence

A ≡ (At)t∈ttt ∈ AAA 6= /0. Actions describe or influence the participant’s environment.

The processed knowledge sequence K ∈ KKK is assumed to be non-shrinking, i.e. the

knowledge Kt−1 is extended by observations Y = (Yt)t∈ttt , Yt ∈YtYtYt ≡KKKt \ (KKKt−1∪AAAt).
Thus, the knowledge Kt−1 available for choosing the action At at time t is

Kt−1 = (Y t−1
1 ,At−1

1 ,K0) = ((observations, actions)
︸ ︷︷ ︸

from 1 until t−1

,prior knowledge) (2.2)

with K0 denoting prior knowledge. Yet unmade observations and actions form a

part of ignorance I ≡ (Ih
t )t∈ttt ∈ III, which shrinks with time. Generally, ignorance also

contains – considered but never observed –internals X = (Xt)
h
t=0 ∈XXX , i.e.

Ih
t = (Y h

t ,Xh
0 ,Ah

t+1) = (observations, internals,actions). (2.3)

Definition 2.1 (Admissible strategies). A set SSS of admissible strategies is formed

by sequences of decision rules (St(B))t∈ttt that are causal with respect to the available

knowledge, i.e. St(B) = St(K
t−1) ∈AAAt .

4 This important class of DM tasks is widespread in many areas ranging from finance to

medical applications, transportation, etc.
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The strategy S is selected from a set of compared strategies SSS⋆ 6= /0, which is usually

a proper subset SSS⋆ (SSS of the admissible strategies. The set of compared strategies is

given by a detailed specification of the DM task solved. For instance, the strategies

can have a prescribed form, complexity or can rely on a common description of

environment.

2.3 Bayesian DM

Bayesian DM is based on the idea that the participant’s choice among possible DM

strategies indirectly reflects the participant’s preference ordering of the closed-loop

behaviour. The Savage’s utility theory [23] allows a representation of this preference

ordering by an expected utility. Thus, the optimal DM strategy optS can be found as

follows

optS ∈Arg min
S∈SSS⋆

∫

BBB

US (B)µS(dB), (2.4)

where US(B) is a real-valued utility function defined on BBB and µS(B) is a countably

additive probability measure on BBB. Assuming that µS(B), S ∈ SSS⋆, are absolutely

continuous5 with respect to a measure ν(dB) operating on the same space BBB, then

each µS(B) has a density, so-called Radon-Nikodým derivative (rnd) FS(B) with

respect to µS(B), i.e.

µS(dB) = FS(B)ν(dB) ν-almost everywhere

FS(B)≥ 0,

∫

BBB

FS(B)ν(dB) = 1. (2.5)

The rnd FS(B) defined by (2.5) can be interpreted as the closed-loop model de-

scribing an interaction of the participant’s DM strategy S and the environment. The

optimal DM strategy (2.4) then reads

optS ∈Arg min
S∈SSS⋆

∫

BBB

US (B) FS(B)ν(dB). (2.6)

Note that the participant actually defines a description of the optimal closed loop by

selecting the optimal DM strategy.

2.4 Fully Probabilistic Design

Here an essence of Fully Probabilistic Design (FPD) of decision-making strategies

is briefly outlined. For the detailed treatment, see, for instance [9, 11, 15, 14]. Its

specification exploits the following notion.

5 For any measurable subset BBB⋆ ⊂BBB with ν(BBB⋆) = 0 also µS(BBB⋆) = 0, ∀S ∈ SSS⋆.
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Definition 2.2 (Ideal closed-loop model). Ideal closed-loop model iF(B) is a closed-

loop model (2.5) describing an interaction “participant-environment”, when the par-

ticipant’s DM strategy is optimal optS, (2.6), for the treated DM task.

The DM-design goal is thus to make a closed-loop behaviour close to the desired

one, i.e. to the behaviour described by the ideal closed-loop model.

Let us consider the utility function in the form

US (B) = ln

(
FS(B)
iF(B)

)

.

Then, by substituting it to (2.6), the optimised functional (2.6) becomes Kullback-

Leibler divergence (KLD), [19], D
(
FS||

iF
)
, of the closed-loop model FS(B) on the

ideal closed-loop model iF(B), i.e.

∫

BBB

FS(B) ln

(
FS(B)
iF(B)

)

ν(dB)≡ D
(
FS||

iF
)
. (2.7)

KLD (2.7) of a pair of rnds H, F on BBB has the following properties, see [19],

D(H||F)≥ 0, D(H||F) = 0 iff H = F ν− almost everywhere

D(H||F) = ∞ iff H is not absolutely continuous with respect to F. (2.8)

Definition 2.3 (Fully probabilistic design). The FPD searches a DM strategy via

minimising the Kullback-Leibler divergence (2.7) of the closed-loop model FS de-

scribing “participant-environment” behaviour to the ideal closed-loop model iF de-

termined by Definition 2.2. The optimal DM strategy optS reads

optS ∈ Arg min
S∈SSS⋆

D
(
FS||

iF
)
. (2.9)

The formalised justification of the FPD can be found in [17].

The key features of the FPD approach are: i) a closed-loop behaviour and the

preferred behaviour are probabilistically described; ii) the existence of the explicit

minimiser in the stochastic dynamic programming significantly simplifies the opti-

misation; iii) FPD can approximate any standard Bayesian DM arbitrarily well; iv)

some FPD formulations have no standard Bayesian counterpart.

The FPD approach also provides methodology for a feasible treatment of

multiple-aim DM, as well as allows to efficiently solve an unsupervised coopera-

tion of multiple participants including sharing non-probabilistic and probabilistic

knowledge and preferences among participants, see Section 2.6.

2.4.1 DM Elements in FPD

This section introduces so-called DM elements, which are rnds processed by the

FPD. The DM elements serve for the specification of the closed-loop model FS(B)
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and its ideal counterpart iF(B), see Definition 2.2. These rnds act on a non-empty

behaviour set BBB. A behaviour B ∈ BBB describes an interaction of the participant and

its environment and is structured as in (2.1). Let us stress that the internals X ∈ XXX

can be influenced by the applied actions.

The chain rule applied to FS(B) yields the following factorisation of the closed-

loop model

FS(B) = FS(X0,K0)
∏

t∈ttt

FS(Yt |At ,X
t
,Kt−1)FS(Xt |At ,X

t−1
,Kt−1)

∏

t∈ttt

FS(At |X
t−1

,Kt−1).

(2.10)

It can be shown that a suitable definition of Xt ∈XXX allows the simplification

FS(Yt |At ,X
t
,Kt−1) = FS(Yt |At ,Xt ,K

t−1) (2.11)

FS(Xt |At ,X
t−1

,Kt−1) = FS(Xt |At ,Xt−1,K
t−1)

The following result is easy to check.

Lemma 2.1 (On strategy-independent models). Let all compared strategies use a

common factor FS(X0,K0) = F(X0,K0) and common rnds (2.11). Let us consider the

compared strategies S∈SSS⋆ 6= /0 described by the identical model FS(At |X
t−1,Kt−1).

Then, all these strategies lead to the same closed-loop model (2.10) and need not be

distinguished. This allows to introduce the simplified notation

FS(At |X
t−1

,Kt−1) = S(At |X
t−1

,Kt−1), t ∈ ttt. (2.12)

Hereafter, the set of compared strategies meeting conditions of Lemma 2.1 are con-

sidered. Consequently, the subscript S of FS(X0,K0) and rnds (2.11) is dropped.

The following important conditions have been originally proposed within the con-

trol domain [22] and extended to decision making in [13]. These natural conditions

of DM formalise that an admissible DM strategy cannot exploit the unknown reali-

sations of internals, i.e.

S(At |X
t−1

,Kt−1) = S(At |K
t−1), ⇔ (2.13)

F(Xt−1|At ,K
t−1) = F(Xt−1|K

t−1), t ∈ ttt.

Under (2.11), (2.12) and (2.13), the closed-loop model (2.10) gets the form

FS(B) = F(X0|K0)F(K0)

︸ ︷︷ ︸

prior rnd

∏

t∈ttt

F(Yt |At ,Xt ,K
t−1)F(Xt |At ,Xt−1,K

t−1)

︸ ︷︷ ︸

environment model

∏

t∈ttt

S(At |K
t−1)

︸ ︷︷ ︸

strategy S

.

The factors S(At |K
t−1), t ∈ ttt, model decision rules forming the strategy S. The

closed decision loop given by the ideal closed-loop model iF(B) (see Definition

2.2) can be factorised in a way similar to (2.14)
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iFS(B) =

ideal prior rnd
︷ ︸︸ ︷
iF(X0|K0)

iF(K0) (2.14)

×
∏

t∈ttt

iF(Yt |At ,Xt ,K
t−1) iF(Xt |At ,Xt−1,K

t−1)

︸ ︷︷ ︸

ideal environment model

∏

t∈ttt

iS(At |Xt−1,K
t−1)

︸ ︷︷ ︸

ideal strategy iS

.

Note there is no reason to apply the natural conditions of DM (2.13) to the ideal

DM strategy. On contrary, an explicit dependence on internals allow to respect

incomplete knowledge of the participant’s preferences regarding the behaviour B,

see [14].

Definition 2.4 (DM elements). DM elements are rnds processed by the FPD and

defined on the respective domains given by the decompositions (2.1) and (2.2). The

DM elements consist of

observation model

F(Yt |At ,Xt ,K
t−1), (2.15)

time evolution model of internals

F(Xt |At ,Xt−1,K
t−1), (2.16)

prior rnd

F(X0,K0) = F(X0|K0)F(K0), and (2.17)

a set of the compared strategies SSS⋆ ⊂ SSS, where SSS is a set of the admissible strategies,

ideal observation model
iF(Yt |At ,Xt ,K

t−1),

ideal time evolution model of internals

iF(Xt |At ,Xt−1,K
t−1),

ideal prior rnd
iF(X0,K0) = iF(X0|K0)

iF(K0), and

ideal DM strategy
iS(At |Xt−1,K

t−1).

The observation model (2.15) and the time evolution model of internals (2.16) de-

termine environment model
∏

t∈ttt F(Yt |At ,Xt ,K
t−1)F(Xt |At ,Xt−1,K

t−1), see (2.14).

The ideal environmental model, is defined in a similar way, see (2.14).
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2.4.2 Solution of FPD

The presented solution of the general FPD shows how DM elements, specified by

Definition 2.4, are used in this DM design. It also exemplifies that the minimisation

in the FPD is done explicitly. The proof is skipped as only the simplest variant of

the FPD, Lemma 2.2, is used in Section 2.5. It essentially coincides with the basic

DM lemma of the standard Bayesian DM, which transforms a minimisation over

randomised decision rules into a minimisation over actions generated by them, see

for instance [13].

The solution of the FPD requires the solution of stochastic filtering problem,

i.e. evaluation of the posterior rnds F(Xt |At ,K
t−1), F(Xt |K

t). Stochastic filtering is

summarised in the following theorem implied by the elementary operations with

rnds. The proof can be found, for instance, in [15].

Theorem 2.1 (Stochastic filtering). Let the compared strategies use a common

prior rnd (2.17) and a common environment model (2.14) and meet (2.13). Then,

the following recursions, describing stochastic filtering, hold

Time updating F(Xt+1|At+1,K
t) =

∫

XtXtXt

F(Xt+1|At+1,Xt ,K
t)F(Xt |K

t)ν(dXt)

Data updating F(Xt |K
t) =

F(Yt |At ,Xt ,K
t−1)F(Xt |At ,K

t−1)

F(Yt |At ,Kt−1)
.

The recursions are initiated by the prior rnd F(X0|K0) and depend on action reali-

sations but not on the strategy generating them.

Theorem 2.2 (Solution of FPD). Let there is a stabilising strategy S ∈SSS⋆ such that

KLD D(FS||
iF) < ∞ and the compared strategies use a common prior rnd (2.17) and

a common environment model (2.14) and meet (2.13). Then, the optimal strategy
optS (2.9) minimising KLD D(FS||

iF), (2.7), of the closed-loop model FS (2.14) on

its ideal counterpart iF (2.14) consists of the following decision rules, t ∈ ttt,

optS(At |K
t−1) =

exp[−ω(At ,K
t−1)]

γ(Kt−1)

γ(Kt−1) =

∫

AAAt

exp[−ω(At ,K
t−1)]ν(dAt)

ω(At ,K
t−1) =

∫

YYY t ,XXX t ,XXX t−1

F(Yt |At ,Xt ,K
t−1)F(Xt |At ,Xt−1,K

t−1)F(Xt−1|K
t−1)×

ln

(
F(Yt |At ,Xt ,K

t−1)F(Xt |At ,Xt−1,K
t−1)

γ(Kt) iF(Yt |At ,Xt ,Kt−1) iF(Xt |At ,Xt−1,Kt−1) iF(At |Xt−1,Kt−1)

)

ν(dYt dXt dXt−1).

Starting with γ(Kh+1)≡ 1, the functions ω(At ,K
t−1) are generated in the backward

manner for t = h,h−1, . . . ,1. The evaluations exploit the given DM elements, Defi-

nition 2.4, and rnds F(Xt−1|K
t−1) resulting from stochastic filtering, Theorem 2.1.
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Proof. The proof just unites the results [15] and [14] while explicitly adding the

need for existence of the stabilising strategy S. ⊓⊔

The application of the FPD requires a complete specification of all factors forming

the ideal closed-loop model. However in many cases, the participant does not care

about some factors in (2.14) and leaves them to their fate.

Definition 2.5 (Leave-to-fate option). If there is no requirement on a factor in the

decomposition (2.14), then it is left to its fate, i.e. the corresponding factor in the

ideal closed-loop model (2.14) is taken to be equal to its non-ideal counterparts

resulting from the DM design.

The factors left to their fate cancel in logarithm occurring in the definition of KLD

(2.7). Consequently, the FPD reduces to the standard Bayesian design, if the strategy

is left to its fate. The following lemma makes this property explicit in the simplest

case of static design, which: i) selects the optimal action in one-shot without mod-

elling time evolution of internals; ii) uses no observations (behaviour (2.1) includes

no Y ), and iii) selects a single decision rule forming the strategy. In this case, the

ignorance I (2.3) coincides with internals X .

Lemma 2.2 (Static design: basic DM lemma). Let the behaviour B = (X ,A,K) =
(internals,action,knowledge) be modelled by FS(B) = F(X |A,K)S(A|K)F(K) and

let the strategy be left to its fate, Definition 2.5, i.e.

iF(B) = iF(X |A,K)S(A|K) iF(K).

Let within the set of compared strategies SSS⋆ there is stabilising strategy S ∈ SSS⋆ for

which KLD D(FS||
iF) < ∞.

Then, the optimal strategy (2.9) minimising D(FS||
iF) is deterministic one and

the optimal action optA = optA(K)

optA ∈ Argmin
A∈AAA

∫

XXX

F(X |A,K) ln

(
F(X |A,K)
iF(X |A,K)

)

ν(dX). (2.18)

Thus, the optimal action is found as a minimiser of the conditional version (2.18)

of KLD (2.7). It is conditioned on the optimised action A and knowledge K that is

available for the action choice. The ideal prior rnd does not influence the design

and can always be left to its fate, Definition 2.5, iF(K) = F(K).

Proof. The described deterministic strategy is admissible as optA = optA(K) ∈ AAA,

see (2.18). The definition of the minimum and independence of the expression

ln
(

F(K)
iF(K)

)

=
∫

XXX
F(X |A,K) ln

(
F(K)
iF(K)

)

ν(dX) of the action A, resulting from (2.5),

imply that for any A ∈AAA

∫

XXX

F(X |optA,K) ln

(
F(X |optA,K)F(K)
iF(X |optA,K) iF(K)

)

ν(dX)

≤

∫

XXX

F(X |A,K) ln

(
F(X |A,K)F(K)
iF(X |A,K) iF(K)

)

ν(dX).



2 On Support of Imperfect Bayesian Participants 39

Multiplying this inequality by an arbitrary strategy S(A|K) ≥ 0, integrating over AAA

and using Dirac delta δ [29] for describing the deterministic strategy, we get

∫

(AAA,XXX)
F(X |A,K)δ (A− optA(K)) ln

(
F(X |A,K)F(K)
iF(X |A,K) iF(K)

)

ν(d(A,X))

≤

∫

(AAA,XXX)
F(X |A,K)S(A|K) ln

(
F(X |A,K)F(K)
iF(X |A,K) iF(K)

)

ν(d(A,X)).

Multiplication of this inequality by the rnd F(K) ≥ 0 and integration over KKK pre-

serves it, while the left-hand side remains finite due to the assumed existence of S

making the inspected KLD for optS(A|K) = δ (A− optA(K)) finite. This, with the

leave-to-fate option, Definition 2.5, S(A|K) = iF(A|K) demonstrates the claimed

optimality. ⊓⊔

2.5 DM Tasks Supporting Imperfect Bayesian Participants

Many DM problems cannot be solved by imperfect individual participants work-

ing in isolation as they do not possess the necessary experience, information or

resources. Such DM problems are successfully addressed by distributed solutions

[24, 28]. Despite the evident positive effect of the distributed solutions, the lack of

systematic support of multiple imperfect DM participants allowing them to cooper-

ate and interact in complex, dynamic and uncertain environments has significantly

restricted an efficient use of these solutions. The interdependencies between partic-

ipants domains, the necessity of meeting individual and global constraints, as well

as the participants’ limited cognitive and computational abilities have indicated a

strong need for the efficient algorithmic support of computational aspects of DM.

The needed support is mostly developing in the following interconnected direc-

tions: i) extending the solvable special cases dealing with linear systems, quadratic

performance indices and Gaussian distributions, e.g., [1, 13, 21], or controlled

Markov chains, e.g., [4]; ii) using various versions of approximate filtering like [20],

and approximate dynamic programming, e.g. [27].

Still there is a significant gap between the needs of multiple imperfect partic-

ipants and the available systematic support. The problems requiring primarily the

support are: knowledge and preferences elicitation and sharing of knowledge and

preferences among imperfect selfish participants. The section consider the typical

tasks arising within these problems, formulates them as DM tasks and provides their

solution via FPD. The use of the FPD relies on the ability to properly construct the

DM elements: a detailed guide how to do that for the most common tasks from the

participants’ knowledge and preferences is given together with the solution.

As the considered DM tasks support decision making of multiple participants,

they are called supporting DM tasks to distinguish them from the original DM task

solved by the supported participant. The variables and DM elements related to the
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supporting task are denoted by capital letters, for instance, B ∈ BBB is a closed-loop

behaviour of the supporting DM task, and FS(B) is its closed-loop model. Variables

and DM elements of the original DM task are denoted by small letters, for instance,

b∈ bbb is a closed-loop behaviour of the original DM task and the rnd f(b) denotes its

closed-loop model6

f ∈ fff ⊂ F =

{

f(b) : f(b)≥ 0,

∫

b∈bbb

f(b)ν(db) = 1

}

. (2.19)

A finite cardinality |bbb|< ∞ of the behaviour set bbb = {b1, . . . ,b|bbb|} is assumed. In this

case, ν(db) is a counting measure and the rnd f(b) is a finite-dimensional vector

belonging to the probabilistic simplex F (2.19). General validity of the obtained

results is conjectured.

The following types of supporting DM tasks met within distributed solutions are

recognised: an approximation of a known rnd (Section 2.5.1); an approximation of

an unknown rnd (Section 2.5.2) and a description of an unknown rnd based on avail-

able knowledge (Section 2.5.3). Section 2.6 illustrates how the provided solutions

can further be employed to support a cooperative decision making.

2.5.1 Approximation of Known Rnd

Let us consider the closed-loop model f(b), b∈bbb, derived from the available knowl-

edge and/or preferences description. In reality, the constructed rnd f(b) can be in-

tractable by an imperfect participant and needs to be approximated by a rnd f̂(b)∈ f̂̂f̂f,

where f̂̂f̂f is a set of feasible rnds on bbb

f̂(b) ∈ f̂̂f̂f ⊂ F, see (2.19). (2.20)

The proposed approach formalises the considered approximation task as a static

supporting DM problem solved by Lemma 2.2. Recall that in the static case the

ignorance I coincides with internals X .

Definition 2.6 (Approximation of known rnd as supporting DM task). Approx-

imation (2.20), formulated as a static supporting DM task in FPD sense, is charac-

terised by the behaviour B, (2.1), structured as follows

B = (X ,A,K) = (b, f̂(b), f(b)), where (2.21)

the internals X , coinciding with the ignorance I (2.3), consist of an unknown re-

alisation of behaviour b ∈ bbb within the original DM task; the action A represents

a searched approximation f̂(b) and the knowledge K is the known rnd f(b) to be

approximated.

6 The subscript referring to the strategy in the original DM problem is dropped as it plays no

role in the solved supporting DM tasks.
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The next step is to specify the DM elements (see Definition 2.4) of the supporting

DM task corresponding to the approximation considered. To simplify reading, the

argument b is mostly omitted, i.e. f(b) = f in the following expressions.

Definition 2.7 (Closed-loop model and its DM elements). For the supporting DM

task summarised in Definition 2.6, the closed-loop model (2.14) reads

FS(B) = FS(X ,A,K) = F(X |A,K)FS(A|K)F(K) = F(b|f̂, f)FS(f̂|f)F(f)

= f(b)S(f̂|f)F(f). (2.22)

The motivation for the choice of DM elements (Definition 2.4) follows.

FS(X ,A,K) = FS(b, f̂, f) is a model of the closed-loop behaviour.

F(X |A,K) = F(b|f̂, f) = f(b) is the environment model within the static support-

ing DM task. It equals the known description f of the

behaviour b ∈ bbb of the original DM task.

FS(A|K) = FS(f̂|f) = S(f̂|f) is a model of the strategy within the supporting DM

task. It is a single rule determining how to select an

approximation f̂ based on the knowledge K = f.

F(K) = F(f) is a model of the knowledge K, which is the known

approximated rnd f. Lemma 2.2 implies that its spe-

cific form is unimportant.

The following definition complements the DM elements by the ideal closed-loop

model for the supporting approximation DM task and explains the choice made.

Definition 2.8 (Ideal closed-loop model and its elements). The considered ideal

closed-loop model (2.14) for the supporting DM task, Definition 2.6, is

iF(B) = iF(b, f̂, f) = iF(b|f̂, f) iF(f̂|f) iF(f) = f̂(b)S(f̂|f)F(f). (2.23)

The motivation for the choice of DM elements (Definition 2.4) follows.

iF(X ,A,K) = iF(b, f̂, f) is an ideal model of the closed-loop behaviour.

iF(X |A,K) = iF(b|f̂, f) = f̂(b) is the ideal environment model, i.e. the ideal model

of internals X in the static supporting approxima-

tion DM task. Its matching with the f̂(b) expresses

the wish to choose an approximating rnd f̂(b), which

well describes the original behaviour b ∈ bbb, which

is unknown when choosing the action A = f̂(b).

iF(A|K) = iF(f̂|f) = S(f̂|f) is the model of the ideal strategy. The strategy is left

to its fate, Definition 2.5. This choice reflects a lack

of common requirements on the way how to select

an approximation f̂(b) of the known approximated

rnd f(b).
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iF(K) = F(f) is an ideal model of the knowledge K, where K is

the known approximated rnd f. Lemma 2.2 explains

why it is left to its fate, Definition 2.5.

The static FPD, applied to the formalisation above, results in the following theorem.

Theorem 2.3 (Approximation of known rnd). Let the static supporting DM task

be given by Definitions 2.6, 2.7 and 2.8. Then, the strategy minimising KLD

D(FS||
iF) is the optimal deterministic strategy, which generates the optimal approx-

imation optf̂ ∈ f̂̂f̂f of the known rnd f describing the original closed-loop behaviour

b ∈ bbb, and

optf̂ ∈ Argmin
f̂∈f̂̂f̂f

D(f||f̂) =

∫

bbb

f(b) ln

(
f(b)

f̂(b)

)

ν(db). (2.24)

Proof. For the models considered in Definitions 2.7 and 2.8, the minimised KLD

becomes linear in the optimised strategy. According to Lemma 2.2, the optimal

strategy is deterministic with the optimal action being a minimising argument in

(2.18). The minimised functionals (2.18) and (2.24) coincide. ⊓⊔

Note that a Bayesian formulation of the considered approximation task has been

inspected in [2]. Under the widely acceptable conditions, the optimisation (2.24)

has been found as the preferred approximation principle.

2.5.2 Approximation of Unknown Rnd

The approximation discussed in Section 2.5.1 assumes the knowledge of the approx-

imated rnd for selecting the approximating rnd. This section considers an approxi-

mation of an unknown rnd f(b)∈ fff, b∈bbb, describing the available knowledge and/or

preferences of the original DM task7. The set fff and the prior guess f̂0(b) about f(b),
b ∈ bbb, is the only available knowledge K of f(b)

K : f(b) ∈ fff ⊂ F (2.19) and a rnd f̂0 ∈ F is a prior (flat) guess about f(b). (2.25)

The corresponding static supporting DM task constructs the approximating rnd

f̂(b) ∈ f̂ff ≡ fff based on the available knowledge (2.25). The incompleteness of the

knowledge implies the approximated unknown rnd f(b) is to be treated as internals

(see Section 2.2) within the supporting DM task.

Definition 2.9 (Approximation of unknown rnd as supporting DM task). The

static supporting DM task (in FPD sense) searching the approximation f̂(b) ∈ fff ⊂
F of an unknown rnd f(b), b ∈ bbb, with knowledge (2.25), is characterised by the

behaviour B, (2.1), structured as follows

B = (X ,A,K) =
(
(f(b),b), f̂(b), (fff, f̂0)

)
, where (2.26)

7 A content and goal of the original DM task is not important here.
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the internals X , (2.3), consist of an unknown rnd f(b) to be approximated and un-

known realisation of the original behaviour b ∈ bbb; the action A is the searched ap-

proximation f̂(b); and the knowledge K is represented by the set fff and the prior

guess f̂0.

The following definitions specify the DM elements (see Definition 2.4) of the sup-

porting DM task considered. To simplify reading, the argument b is mostly omitted,

i.e. f(b) = f in the following expressions.

Definition 2.10 (Closed-loop model and its DM elements). For the supporting

DM task summarised in Definition (2.9), the closed-loop model (2.14) reads

FS(B) = FS(X ,A,K) = FS((f,b), f̂, (fff, f̂0)) (2.27)

= F(f|b, f̂,fff, f̂0)F(b|f̂,fff, f̂0)FS(f̂|fff, f̂0)F(fff, f̂0)

= F(f|b,fff, f̂0)f̂(b)S(f̂|fff, f̂0)F(fff, f̂0).

The motivation for the choice of DM elements (Definition 2.4) follows.

FS(X ,A,K) = FS(f,b, f̂,fff, f̂0) is a model of the closed-loop behaviour.

F(X |A,K) = F(f|b, f̂,fff, f̂0)F(b|f̂,fff, f̂0) = F(f|b,fff, f̂0)f̂(b)
is the environment model within the static support-

ing DM task. The first factor is a model of unknown

approximated rnd f for the given behaviour b ∈ bbb

of the original DM task. The second factor is a de-

scription of behaviour b ∈ bbb for a fixed approximat-

ing rnd f̂. Easy to see that it equals f̂(b). Note, the

omitted condition in the first factor reflects the ob-

vious assumption that the approximated rnd f is not

influenced by its approximation f̂.

FS(A|K)=FS(f̂|fff, f̂0)=S(f̂|fff, f̂0) is a model of the strategy within the supporting DM

task. It is a single rule determining how to select an

approximation f̂ based on the knowledge K =(fff, f̂0).

F(K) = F(fff, f̂0) is a model of the knowledge, which is determined

by the chosen fff and f̂0. Lemma 2.2 implies that its

specific form is unimportant.

The following definition specifies the DM elements of the ideal closed-loop model

for the discussed static supporting DM task and explains the choice made.

Definition 2.11 (Ideal closed-loop model and its elements). The considered ideal

closed-loop model for the supporting DM task summarised by Definition 2.9 is

iF(B) = iF(X ,A,K) = iF((f,b), f̂, (fff, f̂0)) (2.28)

= iF(f|b, f̂,fff, f̂0)
iF(b|f̂,fff, f̂0)

iF(f̂|fff, f̂0)
iF(fff, f̂0)

= iF(f|b,fff, f̂0) f̂0(b) S(f̂|fff, f̂0) F(fff, f̂0).

The motivation for the choice of DM elements (Definition 2.4) follows.
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iF(X ,A,K) = iF(f,b, f̂,fff, f̂0) is an ideal model of the closed-loop behaviour.

iF(X |A,K) = iF(f|b, f̂,fff, f̂0)
iF(b|f̂,fff, f̂0) = iF(f|b,fff, f̂0) f̂0(b)

is an ideal model of the environment within the

static supporting DM task. The unknown approx-

imated rnd f and behaviour b play role of the task’s

internals X , hence two constituents contribute its

ideal description. The first factor is an ideal model

of the rnd f at given b ∈ bbb, while the second one is

an ideal model of behaviour b ∈ bbb. Since there is

no knowledge of f at disposal, the rnd f̂0(b) serves

as the best a priori available description of b ∈ bbb.

Note f̂ is excluded from the condition in the first

factor as the unknown approximated rnd f cannot

be influenced by its approximation f̂.

iF(A|K) = iF(f̂|f) = S(f̂|f) is the model of the ideal strategy. The strategy is

left to its fate, Definition 2.5. This choice reflects

a lack of common requirements on the way how to

select an approximation f̂(b) of the unknown ap-

proximated rnd f(b).

iF(K) = F(fff, f̂0) is an ideal model of the knowledge fff and f̂0. The

model is left to its fate, Definition 2.5. This choice

is implied by Lemma 2.2.

The static FPD, applied to the formalisation above, results in the following theorem.

Theorem 2.4 (Approximation of unknown rnd). Let the DM task be given by Def-

initions 2.9, 2.10 and 2.11. Then, the strategy minimising KLD D(FS||
iF) is the op-

timal deterministic strategy, which generates the optimal approximation optf̂ ∈ fff of

the unknown rnd f using the knowledge (2.25), and

optf̂ ∈ Argmin
f̂∈fff

D(f̂||f̂0) =

∫

bbb

f̂(b) ln

(

f̂(b)

f̂0(b)

)

ν(db). (2.29)

Proof. For the models considered by Definitions 2.10 and 2.11, the optimised KLD

becomes linear in the optimised strategy. According to Lemma 2.2, a minimising

argument of its version conditioned on A = f̂ and K = (fff, f̂0) is the corresponding

optimal action. Thus,

optf̂ ∈ Argmin
f̂∈fff

∫

(bbb,fff)
F(f|b,K)f̂(b) ln

(

F(f|b,K)f̂(b)
iF(f|b,K)f̂0(b)

)

ν(d(b, f))

= Argmin
f̂∈fff

∫

bbb

f̂(b) ln

(

f̂(b)

f̂0(b)

)

ν(db)

and the optimal optf̂ is given by (2.29). ⊓⊔
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The result (2.29) coincides with the minimum KLD principle and reduces to the

maximum entropy principle if f̂0 is a uniform rnd. It has been axiomatically justified

in [26] for the set fff specified by the given values of linear functionals on F (2.19).

2.5.3 Description of Unknown Rnd

The previous sections formulate the approximation problems as a supporting DM

tasks and solve them. Section 2.5.1 searches an approximation of the known rnd

by a rnd from the predefined set. Section 2.5.2 describes how to approximate an

unknown random rnd, i.e. how to construct its point estimate based on the prior

knowledge available.

The present section addresses the problem of how to find the complete proba-

bilistic description of the unknown rnd f(b) ∈ fff, b ∈ bbb using the knowledge

K : f(b) ∈ fff ⊂ F and a rnd F̂0(f) is a (flat) prior guess about F(f) on F. (2.30)

The following definition specifies the static supporting DM task corresponding to

the description problem. To simplify reading, the arguments are mostly omitted, i.e.

f(b) = f, F̂(f) = F̂ and F̂0(f) = F̂0 in the following expressions.

Definition 2.12 (Description of unknown rnd as supporting DM task). The static

supporting DM task (in FPD sense) searching for a probabilistic description F̂∈F of

an unknown rnd f(b)∈ fff, b∈bbb, with the available knowledge (2.30), is characterised

by the behaviour B, (2.1), structured as follows

B = (X ,A,K) =
((

b, f(b)
)
, F̂

(
f|fff, F̂0

)
,
(
fff, F̂0

))

, where (2.31)

the internals X , (2.3), consist of an unknown rnd f(b) to be described and realisation

of the original closed-loop behaviour b∈bbb. The action A is a searched rnd F̂(f|fff, F̂0),
where the set of admissible actions is a set of all rnds having the support in fff ⊂
F, (2.30). The knowledge K is represented by the set fff, defining the domain of

F̂(f|fff, F̂0), and by the prior guess F̂0 about the targeted description.

The following definitions specify the DM elements (see Definition 2.4) of the static

supporting DM task considered.

Definition 2.13 (Closed-loop model and its DM elements). For the supporting

DM task with the behaviour (2.31), the closed-loop model (2.14) reads

FS(B) = FS(X ,A,K) = FS

(
(b, f), F̂, (fff, F̂0)

)
(2.32)

= F(b|f, F̂,fff, F̂0) F(f|F̂,fff, F̂0) FS(F̂|fff, F̂0) F(fff, F̂0)

= f(b)F̂(f|fff, F̂0)S(F̂|fff, F̂0) F(fff, F̂0).

The motivation for the choice of DM elements (Definition 2.4) follows.
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FS(X ,A,K) = FS

(
b, f, F̂, fff, F̂0

)
is a model of the closed-loop behaviour.

F(X |A,K) = F(b|f, F̂,fff, F̂0) F(f|F̂,fff, F̂0) = f(b)F̂(f|fff, F̂0)
is the environment model within the static support-

ing DM task. The first factor describes an original

behaviour b ∈ bbb that equals f(b) for a fixed f. The

omitted condition on F̂ in the first factor reflects

the assumption that the description of behaviour f

is not influenced by selecting F̂.

The second factor is the opted description of rnds

f ∈ fff based on (2.30) and given F̂ ∈ F. Obviously,

F(f|F̂,fff, F̂0) = F̂(f|fff, F̂0).

FS(A|K)= FS(F̂|fff, F̂0)= S(F̂|fff, F̂0) is a model of the strategy within the supporting

DM task. It is a single rule determining how to se-

lect the description F̂(f|fff, F̂0) of an unknown f ∈ fff

based on the available knowledge K = (fff, F̂0).

F(K) = F(fff, F̂0) is a model of knowledge K, which is determined

by the chosen fff and F̂0. Lemma 2.2 implies that its

specific form is unimportant.

The following definition specifies the DM elements of the ideal closed-loop model

for the supporting DM task and explains the choice made.

Definition 2.14 (Ideal closed-loop model and its DM elements). The considered

ideal closed-loop model (2.14) for the static supporting DM task described in Defi-

nition 2.12 is

iF(B) = iF(X ,A,K) = iF
(
(b, f), F̂, (fff, F̂0)

)
(2.33)

= iF(b|f, F̂,fff, F̂0)
iF(f|F̂,fff, F̂0)

iF(F̂|fff, F̂0)
iF(fff, F̂0)

= f(b)F̂0(f) S(F̂|fff, F̂0)F(fff, F̂0).

The motivation for the choice of DM elements (Definition 2.4) follows.

iF(X ,A,K) = iF
(
b, f, F̂, fff, F̂0

)
is an ideal model of the closed-loop behaviour.

iF(X |A,K) = iF(b|f, F̂,fff, F̂0)
iF(f|F̂,fff, F̂0) = f(b) F̂0(f)

is an ideal environment model within the static

supporting DM task. F̂ is excluded from the con-

dition in the second factor as the ideal description

of f ∈ fff is independent of its selected description

F̂. The first factor equals to a description of the

behaviour f(b) in the original DM task, which is

fixed in the condition.

The second factor is an ideal description of rnd

f ∈ fff based on (2.30) based on a sole available

prior guess F̂0.
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iF(A|K)= F(F̂|fff, F̂0)= S(F̂|fff, F̂0) is the model of the ideal strategy. The strategy is

left to its fate, Definition 2.5. This choice reflects

a lack of common requirements on selecting a de-

scription F̂(f|fff, F̂0).

iF(K) = F(fff, F̂0) is an ideal model of the knowledge K, (2.30). It is

left to its fate, Definition 2.5. This choice is im-

plied by Lemma 2.2.

The static FPD, applied to the formalisation above, results in the following theorem.

Theorem 2.5 (Description of unknown rnd). Let the DM task be given by Defi-

nitions 2.12, 2.13 and 2.14. Then, the strategy minimising KLD D(FS||
iF) is the

deterministic one. This strategy generates the optimal rnd optF̂ = optF describing

the unknown rnd f(b) ∈ fff ⊂ F, b ∈ bbb, using the knowledge (2.30), determined by the

domain fff and prior guess F̂0 ≡ F0

optF ∈Arg min
F(f)∈F

∫

fff

F(f) ln

(
F(f)

F0(f)

)

ν(df). (2.34)

Proof. For the DM elements specified by Definitions 2.13 and 2.14, the optimised

KLD becomes linear in the optimised strategy and according to Lemma 2.2 the

optimal action is the minimising argument of its version conditioned on A and K,

which gets the form

∫

(bbb,fff)
f(b)F̂(f|K) ln

(

f(b)F̂(f|K)

f(b)F̂0(f)

)

ν(d(b, f)) =

∫

fff

F̂(f|K) ln

(

F̂(f|K)

F̂0(f)

)

ν(df),

where cancelling, Fubini theorem and normalisation of rnds imply the last equality.

This minimised functional coincides with (2.34), where the symbol ˆ at the prior

guess and the final optimum is dropped. ⊓⊔

To our best knowledge, the result (2.34) has no published counterpart and represents

a sort of generalised minimum KLD principle.

2.6 Use of Supporting DM Tasks

This section employs the solutions of the supporting DM tasks (Section 2.5) to

support interaction and cooperation of an imperfect selfish participant with its neigh-

bours. The relevant tasks solved here are: i) how to map non-probabilistic, domain-

specific expert knowledge and preferences onto rnds, Section 2.6.1; ii) how to

extend rnd describing only a part of behaviour to rnd describing the entire behaviour,

Section 2.6.2; iii) how to convert a collection of incompletely compatible rnds pro-

vided by different participants into a single rnd representing a satisfactory compro-

mise for all participants, Section 2.6.3. These types of tasks frequently arise within
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multi-participant settings when cooperating participants exchange their incomplete

and incompatible rnds, which express their imprecise and partial knowledge and

DM preferences.

Throughout, the approximation of rnds, Section 2.5.1, is explicitly used as a

guide for selection of appropriate divergence measures. Practically, it will be used

more often as many intermediate results are expected to be too complex.

Recall, the small letters indicate variables coming from the original DM task.

2.6.1 Mapping Knowledge and Preferences on Rnds

Within a DM problem a participant deals with raw, application-specific, informa-

tion representing its incomplete knowledge and DM preferences with respect to the

closed-loop behaviour b ∈ bbb, see (2.1). The raw information directly characterises

only a part of the behaviour, p, and models other part, m, while provide no informa-

tion about the rest of the behaviour, u. The following decomposition of the behaviour

reflects the relation of raw information to closed-loop behaviour

b = ( u
︸ ︷︷ ︸

part untreated by raw info

, m
︸ ︷︷ ︸

part modelled by raw info

, p
︸ ︷︷ ︸

part provided by raw info

).

(2.35)

The modelled m ∈ mmm and provided parts p ∈ ppp of raw information can always be

treated as random. Even a specific realisation, say p, can formally be described

by f(p) = δ (p− p), where δ is Dirac delta. Mostly, the knowledge of the usual

ranges the behaviour b, can be quantified by a flat positive prior rnd f0(b) on bbb. The

availability of f0(b) is assumed from here onwards.

Generally, the model f(m|p) is characterised only partially. Typical raw informa-

tion includes ranges of modelled variables, their means, variances, information on

expected monotonicity or known deterministic relations between them. These types

of raw information can be expressed using generalised moments

∫

mmm

φ(m, p)f(m|p)ν(dm) ≤ 0, (2.36)

where φ : (mmm,ppp)→ (−∞,∞) is a known function determined by the raw information

expressed. The common examples of generalised moments are in Table 2.1. In the

case when no information about p is provided, the condition is taken as superfluous,

i.e. f(m|p) = f(m). Note that raw information always concerns some modelled part,

mmm 6= /0. The constraint (2.36) determines a set of rnds fff(m|p), which is a conditional

variant of the set fff, see (2.19). The set fff(m|p) is convex as the rnd f(m|p) enters

(2.36) linearly.

Searching an unknown f(m|p) ∈ fff(m|p) can be formulated as an approximation

of unknown rnd using the knowledge of fff(m|p) and prior rnd f0(b), see Section 2.5.2.
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The direct application of the Theorem 2.4 gives the optimal approximation of an

unknown rnd representing the raw information processed

optf̂(m|p) ∝ f0(m|p)exp[−λ (p)φ(m, p)], (2.37)

where ∝ denotes proportionality, f0(m|p) is the rnd derived from the prior rnd f0(b),
and the Kuhn-Tucker multiplier λ (p)≥ 0 is chosen to satisfy (2.36). Recall, λ (p) =
0 if the constraint (2.36) is not active, [18], i.e. when (2.36) does not modify f0(m|p).

Table 2.1 Generalised moments for the common examples of raw informationa.

Function φ : (mmm, ppp)→ (−∞,∞) Raw Information Expressed

1−χ(mmm) a range of m

π−χ(mmm) a probable range of m, π ∈ (0,1)
m−µ a finite expected value µ of m

(m−µ)2−σ2 a finite variance σ2 of m

m1−m2 expected monotonicity between entries m1, m2 of m

φ(m, p)−ζ a deterministic relationship φ between m and p valid

with expected error smaller than ζ

a χ is an indicator function of the set in argument. Parameters π, σ ,ζ are included in p.

2.6.2 Extension of Incomplete Rnds

The gained approximation optf̂(m|p) (2.37) describes only a part of the behaviour

b ∈ bbb and has to be extended to a rnd ef(b) ∈ efefef describing the whole behaviour. Let

there exist a rnd g(b) ∈ ggg fully expressing the available knowledge about relations

existing within b ∈ bbb. Then the targeted extension can be viewed as an approxi-

mation of the known g(b) by the rnd ef(b) ∈ efefef , where efefef is constrained by the

requirement

(∀ ef ∈ efefef) ef(m|p) = optf̂(m|p). (2.38)

The approximation problem is formulated and solved as in Section 2.5.1.

Theorem 2.6 (Optimal extension of a rnd). Let rnd g on b∈ bbb, fully describing all

known relations within b, be given and optf̂(m|p) be defined by (2.37) on a part of be-

haviour b, see (2.35). Then the optimal extension ef(b), (2.38), of the rnd optf̂(m|p)
minimises KLD D(g|| ef), and has the form

ef(b) = g(u|m, p) optf̂(m|p) g(p), (2.39)

where g(u|m, p) and g(p) are rnds derived from the given g(b).

Proof. According to Theorem 2.3, the extension ef(b) should minimise KLD of

g(b) on ef(b), i.e.
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D(g|| ef) =

∫

(uuu,mmm,ppp)
g(u|m, p)g(m|p)g(p) ln

(
g(u|m, p)g(m|p)g(p)

ef(u|m, p) ef(m|p) ef(p)

)

ν(d(u,m, p))

=

∫

(mmm,ppp)
g(m, p)

[∫

uuu

g(u|m, p) ln

(
g(u|m, p)
ef(u|m, p)

)

ν(du)

]

ν(d(m, p))

+

∫

ppp

g(p)

[∫

mmm

g(m|p) ln

(
g(m|p)
ef(m|p)

)

ν(dm)

]

ν(dp)

+

∫

ppp

g(p) ln

(
g(p)
ef(p)

)

ν(dp)

The first term is an expectation of the conditional version of KLD minimised by
ef(u|m, p) = g(u|m, p), the second term is fixed as ef(m|p) = optf̂(m|p), see (2.38).

The last term is KLD of g(p) on ef(p), which is minimised by ef(p) = g(p). Thus

(2.39) determines the targeted rnd. ⊓⊔

Remark 2.1 (On relationships).

• The constraint (2.36) represents a special case of more general constraints

Φ
(
f(m|p)|p

)
≤ 0, (2.40)

with functionals Φ delimiting a convex set fff(m|p). This generalisation can be

useful when a bound on KLD of the constructed rnd f(m|p) on another rnd is

known. Elaboration of this case is out of the chapter’s scope.

• Moment and ranges constraints apply either to plain variables in the behaviour

or to innovations, i.e. deviations of the modelled random variables from their

(conditional) expectations.

• Participants often exploit deterministic models resulting from the first principles

and domain-specific knowledge. They are mostly expressed by a set of equa-

tions φ(m, p) = ε(m, p), where ε(m, p) is a modelling error. Then the constraints

(2.36) express a bound on the expectation of the modelling error.

• The application of Theorem 2.4 may lead to too complex rnd. The corresponding

approximating rnd can be constructed by a direct use of Theorem 2.3.

• Generally, a vector form of (2.36) should be considered. This case, however, may

have no solution when the vector constraints are incompatible and delimit an

empty set fff(m|p). To avoid this, a vector case is treated as a collection of respec-

tive scalar cases and the resulting collection of rnds is merged into a common

compromise, see Section 2.6.3 and [16]. This solution decreases the computa-

tional load on the participant treating raw information.

2.6.3 Combination of Rnds

The section proposes a reliable way how to construct a single rnd (compromise)

representing a collection

{fκ(b)}κ∈κκκ , κκκ = 1,2, . . . , |κκκ | , b ∈ bbb, (2.41)
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of incompletely compatible rnds in F, which act on the same behaviour set bbb and

originate from |κκκ| different information sources8. The rnds (2.41) may either be ex-

tensions of rnds representing raw knowledge and preferences (see Theorem 2.6) or

be provided by the participant’s neighbours. The partial incompatibility of rnds may

be caused by: i) imprecise processed observations; ii) extension and approximation

errors resulted from the use of Theorem 2.3 and Theorem 2.4; iii) natural differences

in knowledge, preferences, and abilities of interacting participants.

It is often desirable and even inevitable to find a compromise which respects all

information sources, i.e. a rnd yielding a sufficiently good approximation of each

fκ(b), κ ∈κκκ . The compromise’s acceptability, i.e. a condition when the compromise

is taken as a satisfactory approximation of fκ(b), is determined by the individual

sources9.

Let a bound on the acceptable degree of compromise βκ ∈ (0,∞) for the κ th

source be provided together with the respective κ th rnd from (2.41). Assume βκ ,

κ ∈ κκκ , determine a non-empty set fff 6= /0 of all possible compromises f ∈ fff of the

collection (2.41) such that

fff :

∫

fff

D(fκ ||f)F(f)ν(df) ≤ βκ < ∞, κ ∈ κκκ = {1, . . . , |κκκ |}, |κκκ |< ∞, (2.42)

where F(f) ∈ F is a probabilistic description of f. Notice the order of arguments in

the KLD in (2.42). Theorem 2.3 indirectly motivates this choice: as f ∈ fff must be a

good approximation of fκ , the divergence of fκ on f should be optimised. This also

results from [2], which is tightly connected with the formalised justification of the

FPD, see for instance [12].

The available {fκ}κ∈κκκ (2.41) reflect an unknown rnd f ∈ fff describing their opti-

mal compromise. Theorem 2.5 provides its optimal probabilistic description.

Theorem 2.7 (Optimal compromise). Let a collection (2.41) and respective βκ ,

κ ∈ κκκ determining a non-empty set fff, (2.42), of all possible compromises f ∈ fff of

(2.41) be given.

Then the optimal probability that f is the optimal compromise of rnds (2.41) is given

by the rnd optF(f), Theorem 2.5,

optF(f) ∝ F0(f)
∏

b∈bbb

f(b)ρ̃(b)
, ρ̃(b)≡

∑

κ∈κκκ

λκ fκ (b). (2.43)

It is determined by a chosen prior (flat) guess F0(f) = F̂0(f) (2.30) and Kuhn-

Tucker multipliers λκ ≥ 0 chosen to respect inequalities in (2.42). The assumed

non-emptiness of fff, which depends on the choice of βκ , κ ∈ κκκ , guarantees the exis-

tence of such λκ .

8 The term information source denotes either outcome of processing of raw information or a

cooperating participant in multiple-participant DM.
9 Generally the acceptability defined by individual sources may lead to no compromise.
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If the prior rnd F0(f) is selected in the conjugate Dirichlet form

F0(f) =Df(ρ0) ∝
∏

b∈bbb

fρ0(b)−1(b), ρ0(b) > 0, ρ̄ ≡

∫

bbb

ρ0(b)ν(db) < ∞, (2.44)

where ρ0(b) is a free parameter expressing previous experience, then optF(f) (2.43)

is also Dirichlet rnd

optF(f) =Df(ρ) with ρ(b) = ρ0(b)+ ρ̃(b) = ρ0(b)+
∑

κ∈κκκ

λκ fκ (b). (2.45)

The expectation of the rnd (2.45), that serves as an estimate f̂ of the optimal com-

promise f, has the form

f̂(b) =
ρ0(b)+

∑

κ∈κκκ λκ fκ(b)

ρ̄ +
∑

κ∈κκκ λκ
. (2.46)

It is a convex combination of rnds
ρ0(b)

ρ̄ and {fκ}κ∈κκκ with weights α0 = ρ̄
ρ̄+

∑

κ∈κκκ λκ
>

0 and ακ = λκ
ρ̄+

∑

κ∈κκκ λκ
≥ 0, α0 +

∑

κ∈κκκ ακ = 1.

Proof. The constraints (2.42) specifying a convex set of FFF of possible descriptions of

fff are respected by employing Kuhn-Tucker multipliers λκ ≥ 0. The elementary ma-

nipulations with the corresponding Kuhn-Tucker functional transform it into KLD

D(F||optF)+ constant independent of F with optF given by the formula (2.43). Prop-

erties of KLD (2.8) imply the optimality of the rnd (2.43). Reproducing property of

Dirichlet rnd and its expectation can be verified by direct evaluations [13]. ⊓⊔

An additional problem arises when rnds from the collection are defined on a part of

behaviour b ∈ bbb (see (2.35)), i.e. the compromise is searched among

{fκ(mκ |pκ)}κ∈κκκ , κκκ = {1,2, . . . , |κκκ|}, m ∈mmmκ ⊂ bbb, p ∈ pppκ ⊂ bbb (2.47)

b = (uκ ,mκ , pκ) is an individual split (2.35) for a source κ ∈ κκκ.

Note that the bound βκ on the acceptable degree of compromise provided by the

individual source κ ∈ κκκ concerns only the part mκ ∈ b known to the source

∫

fff

D
(
fκ(mκ |pκ)||f(mκ |pκ)

)
F
(
f
)
ν(df)≤ βκ < ∞, κκκ = {1, . . . , |κκκ|}, |κκκ |< ∞.

Then to find an optimal compromise representing (2.47), the individual rnds forming

the collection should first be extended over the whole behaviour, see Theorem 2.6.

This extension, however, requires a rnd g(b) describing fully the known relations on

b∈bbb, see Section 2.6.2. As such it has to be a single rnd, defined on the entire b∈bbb,

common for all fκ(mκ |pκ) (2.47) . Here, an existence of such g(b) is assumed and

a set of possible compromises is thus defined
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fff :

∫

fff

D
(

efκ ||f
)
F
(
f
)
ν(df)≤ βκ < ∞, κ ∈ κκκ = {1, . . . , |κκκ|}, |κκκ|< ∞, (2.48)

where efκ (b) ∈ efefef is an optimal extension of fκ(mκ |pκ) over b ∈ bbb, see (2.39).

Similarly to Theorem 2.7, a description of the optimal compromise for incompletely

compatible rnds can be found.

Theorem 2.8 (Optimal compromise of incompletely compatible rnds). Let the

collection (2.47) and respective βκ , κ ∈ κκκ , determining a non-empty set fff, (2.48),

of all possible compromises f ∈ fff of (2.47) be given.

Then the optimal probability that f(b), b ∈ bbb, is the optimal compromise among

rnds from fff (2.48) is given by the rnd optF(f) (2.43). The used prior (flat) guess is

assumed to be Dirichlet rnd F0(f) = Df(ρ0) given by ρ0(b) > 0 on bbb, (2.44). The

expectation f̂(b) of the optimal description optF(f) fulfills the equation

f̂(b) = α0
ρ(b)

ρ̄
+

∑

κ∈κκκ

ακ f̂(uκ |mκ , pκ)fκ (mκ |pκ)f̂(pκ), (2.49)

where values ακ , κ ∈ κκκ , are chosen so that constraints in (2.48) are respected for

F(f) = optF(f). If some of them are not active, then the corresponding αs are zero.

Proof. For a rnd g(b) expressing fully the available knowledge, determined by the

given {fκ(mκ |pκ), βκ}κ∈κκκ and ρ0(b), b ∈ bbb, the optimal extensions efκ(b) have the

form g(uκ |mκ , pκ)fκ (mκ |pκ)g(pκ), Theorem 2.6. (2.46) provides the expectation

of the corresponding optimal compromise

f̂(b) =
ρ0(b)+

∑

κ∈κκκ λκg(uκ |mκ , pκ)fκ (mκ |pκ)g(pκ)

ρ̄ +
∑

κ∈κκκ λκ
. (2.50)

This compromise fully expresses the available knowledge, i.e. it has to hold g = f̂,

and (2.50) becomes (2.49).

It remains to check existence of f̂ solving (2.49). Let us try to solve (2.49) by

successive approximations starting from an initial guess nf̂(b) > 0 on bbb, for n = 0.

The assumed positivity of ρ0(b) and positivity of α0, obvious from (2.46), imply

that nf̂(b) > 0 on bbb for all iterations n. This implies that the right-hand side of (2.49)

evaluated for f̂ = nf̂ provides a value in (0,1) for each b and n. Thus there is a

converging subsequence of the sequence (nf̂(b))n≥0 and its limit f̂(b) is a fixed point

of the equation (2.49). ⊓⊔

Theorem 2.8 gives a way how to merge rnds coming from different informational

sources having at disposal only fragmental information about the entire behaviour.

It effectively solves sharing of raw information and probabilistic knowledge and

preferences within multiple-participants’ DM.

To ensure participants’ cooperation, the optimal compromise f̂(b) is supposed to

be projected back to the respective participants10 by computing f̂(mκ |pκ). This way

10 Information sources.
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of sharing of raw information can be performed in algorithmic way, which decreases

a computational load on the imperfect participants.

Remark 2.2 (On relationships).

• The proposed merging offers an efficient tool for solving, otherwise extremely

hard, problems of decentralised decision making [3]. Importantly, the individual

participant is not forced to model its neighbours as required in theory of incom-

plete (Bayesian) games, [10].

• The exploitation of the projection f̂(mκ |kκ), given to the participant as the pro-

cessed raw information offered by its neighbours, is an additional DM task. It

can be (relatively simply) solved by the participant or by an upper cooperative

level. Both cases are out of the scope of Chapter.

• The compromise f̂(b) can be exploited by the upper level participants within a

hierarchical scheme [31], whenever problem complexity allows it.

• The knowledge (2.48) with F = optF is parameterised by ρ0(b), (2.44). The rnd

F0 serves for a soft delimitation of fff and its choice is simple. A fair selection

of βκ guaranteeing non-emptiness of fff is open. It is conjectured that, without

additional reasons for preferring information coming from some sources, all βκ ,

should be equal to the smallest common value for which the solution exists.

• The presented compromise f̂ (2.49) extends and refines its predecessors [16],

[25]. It: i) replaces supra-Bayesian approach [8] by generalised minimum KLD

principle, Theorem 2.5; ii) includes non-constant ρ0(b), which allows to apply

the result also to original behaviours with countable number of realisations.

2.7 Concluding Remarks and Open Questions

A feasible support of interaction and cooperation of imperfect selfish participants

within multiple participant dynamic DM is addressed. The efficient support is espe-

cially of importance for interacting participants exchanging their incomplete and

incompatible models, which express the participants’ imprecise domain-specific

knowledge and DM preferences. The proposed approach respects the participant’s

inability to devote unlimited cognitive and computational resources to decision mak-

ing, as well as its intention to follow own DM goal. The methodology allows a sort

of soft cooperation even for non-collaborative selfish participants.

Chapter defines typical subtasks arisen within participants’ interaction, formu-

lates them as independent supporting DM tasks and uses fully probabilistic design

to their solution. This solution is then employed for: i) mapping domain-specific ex-

pert knowledge and preferences onto probabilistic description; ii) extending proba-

bilistic models describing only fragmental knowledge; iii) merging a collection of

incompletely compatible models provided by different participants into a single one

representing a acceptable compromise for all participants.

Further studies will be primarily pursued to analyse the proposed methodology

and assumptions made, and to verify whether our results are competitive with the
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alternative approaches. Conceptually, it is inevitable to clarify whether the load of

DM tasks related to the exploitation of the merged knowledge and preference de-

scriptions can be structurally controlled. A comparison with a descriptive approach

modelling natural/societal system will be advantageous and may give a deeper in-

sight onto intuitive engineering solutions used. The most challenging and hard prob-

lem will be to analyse emergent behaviour of a network of interacting participants,

which use the proposed approach.
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12. Kárný, M.: Bayesian paradigm and fully probabilistic design. In: Preprints of the 17th

IFAC World Congress. IFAC (2008)

13. Kárný, M., Böhm, J., Guy, T.V., Jirsa, L., Nagy, I., Nedoma, P., Tesař, L.: Optimized
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56 M. Kárný and T.V. Guy
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