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Abstract: Recursive estimation forms core of adaptive prediction and control. Dynamic
exponential family is the only but narrow class of parametric models that allows exact Bayesian
estimation. The paper provides an approximate estimation of important autoregressive model
with exogenous variables (ARX) and uniform noise. This model reflects well physical nature
of modelled system: majority of signals, noise and estimated parameters are bounded. Unlike
former solutions, the paper proposes an algorithm that provides a full (approximate) posterior
probability density function (pdf) of unknown parameters. Behaviour of the designed algorithm
is illustrated by simulations.
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1. INTRODUCTION

Adaptive systems, Astrom and Wittenmark [1989], com-
puter intensive single-pass data processing, Hand et al.
[2001], and various practical applications, Alaei et al.
[2010], strongly rely on recursive estimation. Its exact
version is rarely feasible, Daum [2005], and either general
or tailored approximation techniques are developed. This
paper belongs to the second group and proposes recur-
sive estimation of parameters determining autoregressive
model with exogenous variables (ARX) and uniform noise.
The posterior pdf has a simple form but complexity of
its convex parameter-dependent support quickly grows
with the number of processed data. It can be limited
by windowing them but even in this case maximum a
posteriori estimate is at most evaluated using linear pro-
gramming, Kárný and Pavelková [2007]. Circumscription
of the support by ellipsoids provides a richer description
of the posterior pdf, Polyak el al. [2004]. This approxima-
tion can be rather poor in practically important transient
estimation period. This observation led to proposition to
evolve circumscribing boxes Bemporad et al. [2004], which,
however, can suffer the same problem. This brief paper
proposes approximation by a regular polytope for which
evaluation characteristics of the (approximate) posterior
pdf is computationally cheap. Theoretical analysis of its
asymptotic properties is yet incomplete so that its be-
haviour is illustrated by simulation.

Section 2 formalises the problem. Section 3 provides al-
gorithmic solution. Illustrating example is in Section 4.
Section 5 contains closing comments.

⋆ This work was partially supported by the Research Centre DAR -

MŠMT 1M0572 and project TA01030123.

2. ADDRESSED PROBLEM

The considered parametric model of the system is a prob-
ability density function (pdf) with the bounded support
delimited by the indicator function χyt(set of yt)

fyt(Θ) = 0.5Θnχyt(−1 ≤ Ψ′

tΘ ≤ 1) (1)

describing a real system output yt in discrete time
t ∈ {1, 2, . . .} depending on the past measured outputs
y1, . . . , yt−1, on the past and current exogenous variables
x1, . . . , xt and on unknown parameter Θ ∈ Θ⋆ 1 which
is n-dimensional vector. The support of fyt(Θ) is a poly-
tope in n-dimensional real space. Ψt is n-dimensional data
vector Ψ′

t = [ψ′

t, yt], where ′ denotes transposition and
ψt is n− 1 dimensional regression vector constructed in a
known, recursively implementable, way from y1, . . . , yt−1,
x1, . . . , xt and known initial condition Ψ0. Positive pa-
rameter entry Θn = 1/r is inversion of the half-width of
the pdf support r delimited by the set indicator function
χyt . The initial n − 1 entries of the vector parameter
Θ′ = [−θ′Θn,Θn] are regression coefficients θ normalised
by Θn. Note that an equivalent description of the model
is

yt = ψ′

tθ + et (2)

with et uniformly distributed on [−r, r], i.e., et ∼ U(−r, r).

Under natural conditions of control, Peterka [1981], stating
that parameters are unknown to xt generator, Bayes rule,
Bernardo and Smith [1994], provides the posterior pdf
fΘ(Vt, νt, Lt, Ut,mt) of Θ conditioned on data up to and
including time t which has the form

fΘ(Vt, νt, Lt, Ut,mt) =
Θνtn χΘ (Lt ≤ VtΘ ≤ Ut)

J(Vt, νt, Lt, Ut,mt)
(3)

where Vt is a (mt, n) matrix constructed from Ψ vectors,
see below, νt is a scalar corresponding to degrees of free-

1 Θ⋆ means a set of Θ
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dom, Lt and Ut are lower and upper bounds, respectively,
they are vectors of the length mt.

It holds for a conjugate prior fΘ(V0, ν0, L0, U0,m0) de-
termined by the optional (m0, n) matrix V0, ν0 and m0-
vectors L0 and U0. They have to guarantee finiteness of
the normalisation integral

J(Vt, νt, Lt, Ut,mt) =

∫

Θ⋆

Θνtn χΘ (Lt ≤ VtΘ ≤ Ut) dΘ

(4)
The statistics Vt, νt, Lt, Ut, mt update “recursively”

Vt =

[

Vt−1

Ψ′

t

]

, Lt =

[

Lt−1

−1

]

, νt = νt−1 + 1, (5)

Ut =

[

Ut−1

1

]

, mt = mt−1 + 1.

The quote marks at the word “recursively” stress that this
“recursion” cannot run permanently – with increasing t
the dimension mt grows permanently together with the
complexity of the support of the posterior pdf. Thus, an

approximate posterior pdf f̂Θ is to be constructed. The pdf

f̂Θ is a projection of fΘ(Vt, νt, Lt, Ut,mt) (3) on a properly

selected set f̂⋆Θ of feasible pdfs. In Bernardo [1979], it was

shown that the pdf ÔfΘ ∈ f̂⋆Θ approximating optimally the
exact pdf fΘ is to be a minimiser of the Kullback-Leibler

divergence D(fΘ||̂fΘ), Kullback and Leibler [1951],

Ô
fΘ∈Argmin

f̂∈f̂⋆
Θ

D(fΘ||̂fΘ)=Argmin
f̂∈f̂⋆

Θ

∫

Θ⋆

fΘ(Vt, νt, Lt, Ut,mt)

(6)

× ln

(

fΘ(Vt, νt, Lt, Ut,mt)

f̂Θ

)

dΘ.

The key obstacle is that the minimiser is to be found with-
out storing the approximated pdf. This is rarely possible
Kulhavý [1990a], Kulhavý [1993b] but it can be approxi-
mately done in the studied case if we select the following
set of approximating pdfs

f̂
⋆
Θ =

{

f̂Θ(v, ν, l, u,m) =
ΘνnχΘ (l ≤ vΘ ≤ u)

J(v, ν, l, u,m)
(7)

J(v, ν, l, u,m) given by (4) and a fixed m and ν = νt} .

Theorem 1. (Almost Recursive Feasibility). The optimal ap-
proximate pdf minimising (6) over (7) is given by ν = νt,
chosen m and optimum triple

O(v, l, u) ∈ Arg min
(v,l,u)∈(v,l,u)⋆

J(v, νt, l, u,m), (8)

where the set (v, l, u)⋆ guarantees that the support of

f̂Θ(v, νt, l, u,m) circumscribes the support of
fΘ(Vt, νt, Lt, Ut,mt).

Proof. Inserting the approximated and approximating
pdfs into the definition, we get

D(fΘ||̂fΘ) = ln(J(v, νt, l, u,m))− ln(J(Vt, νt, Lt, Ut,mt))

+

∫

Θ⋆

fΘ ln

(

χΘ(support of fΘ)

χΘ(support of f̂Θ)

)

dΘ.

The first term is increasing function of J(v, νt, l, u,m).
The second term does not depend on the optimised triple
(v, l, u) and the last term is zero for all optimised triples

guaranteeing that the support of f̂Θ circumscribes the
support of fΘ(Vt, νt, Lt, Ut,mt). ✷

This guides us directly to the recursive construction of the
approximate pdf. Knowing that

St−1 = {Θ : Θn > 0, Lt−1 ≤ Vt−1Θ ≤ Ut−1} (9)

⊂ {Θ : Θn > 0, lt−1 ≤ vt−1Θ ≤ ut−1} = Ŝt−1,
we know that, see (5),

St = {Θ : Θn > 0, Lt ≤ VtΘ ≤ Ut} (10)

⊂

{

Θ : Θn > 0

[

lt−1

−1

]

≤

[

vt−1

Ψ′

t

]

Θ ≤

[

ut−1

1

]}

= S̃t.

Thus, triples (v, l, u) guaranteeing that the set

Ŝt = {Θ : Θn > 0, l ≤ vΘ ≤ u} (11)

includes the set S̃t on the right hand side of (10) guarantee
the circumscribing. By minimising over them the function
J(v, νt, l, u,m) (8), we get suboptimal approximating pdf.
Its sub-optimality follows from the fact that some opti-
mality candidates were dropped.

3. ALGORITHMIC SOLUTION

Here, we propose an algorithm for the recursive updating
of the matrix v. We restrict ourselves to square matrices
v, i.e., m = n. The meaningful options with m > n
are discarded pragmatically: analytical evaluation of the
optimised J (8) is known to be computationally difficult,
Gelfand and Dey [1994]. The vt−1 is supposed to be
an upper triangular matrix with unit diagonal and the
proposed construction preserves this form for vt.

Before providing a simple construction of Ŝt (11) covering

S̃t in (10), we evaluate the normalisation factor (4) and
moments of Θ. It can be done analytically. The splitting
with the separated last column

v =

[

vψ vy
0 1

]

(12)

helps us to express them.

Theorem 2. (Normalisation and Expectation of Posterior
Pdf). The normalisation factor (4) of the pdf (7) has the
form

J(v, ν, l, u, n) =
n−1
∏

i=1

(ui − li)
uν+1
n − (max(ln, 0))

ν+1

ν + 1
(13)

and the expected values are

[

θ̂
r̂

]

= E

([

θ
r

]∣

∣

∣

∣

v, ν, l, u, n

)

(14)

θ̂= r̂v−1
ψ [In−1, 0]

u+ l

2
− v−1

ψ vy,

[In−1, 0] denote n− 1 rows of unit n matrix

r̂=
ν + 1

ν

1− γν

1− γν+1
u−1
n , γ =

max(ln, 0)

un
.

Proof. The straightforward integration uses Fubini theo-
rem and the substitution x = vΘ, which has unit Jacobian
and leaves xn = Θn,

J(v, ν, l, u, n) =

∫

Θ⋆

Θνnχ(l ≤ vΘ ≤ u) dΘ

=

n−1
∏

i=1

(ui − li)
uν+1
n − (max(ln, 0))

ν+1

ν + 1
.
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Introducing γ = max(ln,0)
un

< 1, we get

r̂ =
J(v, ν − 1, l, u, n)

J(v, ν, l, u, n)
=
ν + 1

ν

1− γν

1− γν+1
u−1
n .

The expectation of θ = Θ/Θn is obtained via the
substitution as above and by exploiting that v−1 =
[

v−1
ψ −v−1

ψ vy
0 1

]

and using the first n − 1 rows of n-

dimensional unit matrix [In−1, 0]

θ̂=

∫

Θ⋆ [In−1, 0]ΘΘν−1
n χ(−l ≤ vΘ ≤ u) dΘ

J(v, ν, l, u, n)

=

∫

x⋆

[

v−1
ψ ,−v−1

ψ vy
]

xxν−1
n χ(−l ≤ x ≤ u) dx

J(v, ν, l, u, n)

= r̂v−1
ψ [In−1, 0]

u+ l

2
− v−1

ψ vy.

✷

The result provides immediately point output prediction

as θ̂′ψ. Higher moments of parameters can be evaluated
similarly as in the theorem and serve for evaluation of
moments of the predicted output.

The form of the normalisation factor (13) confirms (intu-
itively obvious) optimal choice of circumscribing set as the
set having small differences of individual lower and upper
bounds.

The algorithm providing Ŝt (11) is based on the following
simple theorem.

Theorem 3. (Orthogonal Reduction of Weight Entry). Let
us have a pair of inequalities for n-dimensional real vector
z, given by scalar lower L̃, l̃ and upper Ũ , ũ bounds and
weighting n-vectors W̃ , w̃, respectively

{z : L̃ ≤ W̃ ′z ≤ Ũ , l̃ ≤ w̃′z ≤ ũ}, (15)

where W̃1 = 1 and w̃1 ≥ 0. Let us define

a =
1

1 + w̃2
1

, b = w̃1a =
w̃1

1 + w̃2
1

≥ 0. (16)

Then, the set (15) is included in the set

{z : L̂ ≤ Ŵ ′z ≤ Û , l̂ ≤ ŵ′z ≤ û} (17)

Ŵ = aW̃ + bw̃, L̂ = aL̃+ bl̃, Û = aŨ + bũ

ŵ = −bW̃ + aw̃, l̂ = −bŨ + al̃, û = −bL̃+ aũ, ⇒

Ŵ1 = 1 and ŵ1 = 0. (18)

Proof. For w1 = 0, both sets are identical. Let us con-
sider w1 > 0. Then, the parameters Ŵ , L̂, Û determine
inequality that arisen as linear combination of the original
inequalities with positive weights a, b. The parameters

ŵ, l̂, û determine inequality that arisen as linear combi-
nation of the original inequalities with the negative weight
−b and positive weight a. The weights were chosen so that
(18) holds. ✷

With this simple result, it suffices run a cycle over all rows

of vt−1, lt−1, ut−1 in the role Ŵ , L̂, Û whereas ŵ, l̂, û
starts with the values Ψt,−1, 1, see (10) and is gradually
zeroed, see (18). Non-negativity of w̃1 is simply reached
by multiplying the corresponding inequalities by signum
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Fig. 1. Time course of regression-coefficients estimates θ1
and θ2 (full lines) with true values (dashed lines)

of w1. This procedure corresponds with gradual orthog-
onal (not orthonormal) rotations known in connection
with factorised least-squares, Rontogiannis and Theodor-
idis [1998].

4. ILLUSTRATIVE EXAMPLE

This section numerically illustrates behaviour of the re-
sulting algorithm on ARX model (2) which has two poles
±0.9604 and static gain approximately one. It is described
by the following equation with ψ = [yt−1, yt−2, xt, xt−1]

′,
θ = [0, 0.9604, 1, −0.96]′, t ∈ t⋆ = {1, 2, . . . , 105}

yt = 0yt−1 + 0.9604yt−2 + 1xt − 0.96xt−1 + et, (19)

where noise terms et are uniformly distributed with half-
width r = 0.05, i.e., et ∼ U(−0.05, 0.05). The system is
stimulated by deterministic bi-level signal.

Estimation results are in Figures 1–3, which indicate
typical satisfactory behaviour of the proposed algorithm.
The values of the regression coefficient θ1 – θ4 estimates
converges to their true values. The value of the half width
r estimate converges to a slightly lower value than a real
one.

Courses of lower l and upper u bounds are depicted in
Figures 4 and 5. The bounds l1 – l3, u1 – u3 oscillate
around a certain level from the very beginning. The
bounds l4 and u4 are growing initially and stabilize for
t ≈ 2000. The bound l5 = 0 by definition while bound u5
grows up relatively long and up to a relatively high value
but it finally also stabilizes for t ≈ 20000.

Samples of simulated data are in Figures 6 and 7. The
estimation quality is confirmed by computing absolute
prediction error

Et = |yt − (θ̂′ψt + êt)|

where êt ∼ U(−r̂, r̂). The time course of the absolute
prediction error is in Figure 8. You can see that prediction
error quickly decreases up to a certain minimal level.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1805



0 500 1000 1500 2000
−1

−0.5

0

0.5

1

time t

re
g
re

s
s
io

n
 c

o
e
ff
ic

ie
n
ts

  
θ

3
, 

θ
4

 

 

θ
3

θ
4

Fig. 2. Time course of regression-coefficients estimates θ3
and θ4 (full lines) with true values (dashed lines)
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Fig. 3. Time course of half-widths estimates r (full line)
with true value (dashed line)
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5. CONCLUDING REMARKS

The proposed recursive estimation of ARX model with
uniform noise seems to be effective. Still there is a couple
open problems and inevitable further steps. For instance:

• We conjecture that this construction guarantees quite
tight circumscription but we have no definite analysis
in this respect.
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Fig. 5. Time course of upper bounds u in (11)

• The accumulation of errors caused by the use approx-
imate prior pdf as the starting point for the applica-
tion of Bayes rule is to be counteracted. In Kárný
and Dedecius [2012], the problem was addressed
generally and leads to a sort of forgetting technique.
Its application to the considered case is desirable.

• The considered hard bound on the noise is realistic
but at the same time sensitive to outlying observa-
tions. Inspection of counter-measures is inevitable.

• The available analytic description of the (approx-
imate) posterior pdf allows Bayesian structure es-
timation. The corresponding efficient search within
the extensive space of possible hypotheses is to be
developed, Kárný and Kulhavý [1988].

• Currently, the uniformly distributed noise is con-
sidered. Further research will focus also on another
distribution with restricted support, e.g. truncated
Gaussian or triangular one, that are supposed to
approximate the reality more precisely.
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