
Akademie věd České republiky
Ústav teorie informace a automatizace, v.v.i.

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

Miroslav Pǐstěk

Approximate Dynamic Programming

based on High Dimensional Model

Representation

2310 October 2011

ÚTIA AVČR, v.v.i., P.O.Box 18, 182 08 Prague,
Czech Republic

Fax: (+420)286890378, http://www.utia.cas.cz,
E-mail: utia@utia.cas.cz

Abstract

In this article, an efficient algorithm for an optimal decision strat-
egy approximation is introduced. The proposed approximation of the
Bellman equation is based on HDMR technique. This non-parametric
function approximation is used not only to reduce memory demands nec-
essary to store Bellman function, but also to allow its fast approximate
minimization. On that account, a clear connection between HDMR min-
imization and discrete optimization is newly established. In each time
step of the backward evaluation of the Bellman function, we relax the pa-
rameterized discrete minimization subproblem to obtain parameterized
trust region problem. We observe that the involved matrix is the same
for all parameters owning to the structure of HDMR approximation.
We find eigenvalue decomposition of this matrix to solve all trust region
problems effectively. The achieved estimates of minima are immediately
stored in HDMR approximation to avoid a full-domain representation
of Bellman function. We assume that the newly developed approximate
minimzation of HDMR can be beneficial also in other applications.

1 Motivation

The main focus of this article is to develop an approximative tool suitable
for enlarging the class of computationally feasible decision-making problems.
This work copes with the principal problem within the stochastic dynamic
programming, which is known as curse of dimensionality, see [4]. In the con-
temporary state of arts, there is a lack of approximative techniques capable of
encompassing problems with a larger decision-making horizon.

The aim of this work is to reduce both computational and memory demands
necessary to compute and store the optimal strategy. To this end, properties of
an approximation tool called High Dimensional Model Representations (there-
inafter ”HDMR”) are promising. It was stimulated by applications in chem-
istry, see Ref. [5], which focused on reducing enormous memory demands of the
involved models. In its background, there stands a simple observation: only
low-order correlations amongst the input variables have a significant impact
upon the outputs of a typical model.

We shall use the second order HDMR approximation throughout this artice.
For general function g(x) it reads

g(x) ≈ g̃(x) ≡ g̃(x1, x2, . . . , xd) = (1)

g̃∅ +
d∑

m=1

g̃m(xm) +
d−1∑
m=1

d∑
n=m+1

g̃mn(xm, xn)

Here, a zero-order component g̃∅ denotes a constant scalar value over the do-
main of g(x); the first-order components g̃m(xm) describe an independent effect

1

of each variable xm and the second-order component g̃mn(xm, xn) represents the
joint effect of the variables xm and xn. Experience shows that even this low-
order case of HDMR often provides a sufficient description of g(x).

Such a function approximation (representation) yields two main advantages.
The first one is the data reduction. The memory space necessary to store all
the values of the original function g(x) grows exponentially with the dimension
d, whereas the size growth of decomposition components is just quadratic in
d. This property helps us to cope with high-dimensional problems of the real
world. It was already shown that HDMR is capable to represent strategy on
large control horizon [3], however, the linearization of the Bellman equation
was necessary.

In this article, we show another advantage of HDMR representation, which
is the reduction of computational complexity. The key observation is the fact
that the second order HDMR decomposition allows fast upper estimate on min-
ima, which is especially important in the context of the decision making theory.
It suggests to develop new algorithm for approximate dynamic programming
based directly on the second order HDMR approximation.

The outline of this work is as follows. Section 2 deals with the current state
of art in the decision making theory. A central point here is the presentation
of the Bellman equation with its notorious difficulties, mainly the problem of
a rapidly growing domain of the Bellman function. To cope with this incon-
venience, an approximate technique of HDMR is introduced in detail within
Section 3. Also, a system of linear equation determining an optimal func-
tion approximation is derived here. Its linearity does not match well with the
non-linear Bellman equation. On that account, an algorithm for approximate
minimization of HDMR function is introduced in Section 4. Combining these
approaches, a viable technique for approximate decision making is obtained,
see Section 5. Section 6 is devoted to the conclusion.

Throughout this work, a few general conventions are followed. The domain
of the variable x is denoted X, x ∈ X, |X| denotes the count of elements
of finite set X. Next, xt is the quantity x at the discrete time instant labeled by
t ∈ T . The letter ”f” is reserved for conditioned probability density functions,
arguments in condition are separated by ”|” in the argument list. Knowing
f(x|y), we introduce the expected value of the variable x conditioned by y

E [x | y] ≡
∫
X

x f(x|y) dx

For the vector x ∈ X, X ⊂ Rd, and m ∈ M ≡ {1, . . . , d}, xm denotes its m-
th coordinate. Therefore, it reads x = (x1, . . . , xd). Taking some N ⊂ M , we
denote set of complementary indices by N c ≡M \N . A HDMR approximation
of the function h(x) is marked by h̃(x). For the domain of h(x), dom(h) is used.

2

2 Decision Making Theory

Within this section, the classical results are briefly summarized together with
their classical troubles. A detailed discussion is to be found in Ref. [2], for
example.

The decision-making task consists in selecting the decision-maker’s strategy
in order to reach decision-maker’s aim with respect to the part of the world
(so-called system). The decision maker observes or influences the system over
the finite decision making horizon τ <∞. Value yt ∈ Yt provides the decision
maker with all knowledge influencing the future behavior of system, thus yt
evolves with time t ∈ T ≡ {1, . . . , τ}. It includes the current state of system
together with other external data observed at time instance t. Furhter, we
shall reference yt simply as state of the system. Analogously, the decisions
(actions) are denoted as at ∈ At. It is the value that can be directly chosen
by the decision maker for reaching decision-maker’s aims. The strategy is
a collection of mappings of the current state yt−1 ∈ Yt−1 into the choice of
the next decision at ∈ At, for the optimal strategy we use {aoptt (yt−1)}t∈T . To
formalize a degree of achievements of the decision-maker’s aims, a loss function
Z is given assigning a loss to each possible system trajectory (a1, y1, . . . , aτ , yτ).
It respect just one rule: the more suitable the trajectory is, the lower loss value
it possesses. Here, a less general concept of the additive loss function is used
when the losses accumulate with time as

Z(a1, y1, . . . , aτ , yτ) =
τ∑
t=1

zt (at, yt) (2)

The involved system is completely described in a probabilistic manner by the
following collection of pdfs called the outer model of a system

{f(yt|at, yt−1)}t∈T (3)

There are many ways how to find these formulae.

Knowing the loss function (2) altogether with the system model (3), the
optimal strategy is determined by the Bellman theorem. If we recursively
evaluate the Bellman function

Vt−1(yt−1) = min
at∈At

E [zt(at, yt) + Vt(yt) | at, yt−1] (4)

at all times t ∈ T with the boundary condition Vτ ≡ 0, then the optimal strat-
egy that minimizes the value of the overall expected loss Z(a1, y1, . . . , aτ , yτ) is
defined by simple formula

aoptt (yt−1) ≡ argmin
at∈At

E [zt(at, yt) + Vt(yt) | at, yt−1] (5)

3

However, the exact calculation of the Bellman function is computationally
infeasible in the majority of practical applications [4].

For our purposes, this standard form of Bellman equation is not conve-
nient. It is the whole expresion on the right hand side of (4) which we need to
aproximate using HDMR. Thus, we rewrite Bellman equation into the following
equivalent form

Et(at, yt−1) = E
[
zt(yt, at) + min

at+1∈At+1

Et+1(at+1, yt))

∣∣∣∣ at, yt−1] (6)

with optimal strategy composed of actions satisfying

aoptt (yt−1) = argmin
at∈At

Et(at, yt−1) (7)

In that setting, the value of Et(at, yt−1) is the expected loss of choosing action
at provided the current state of system is yt−1.

3 High Dimensional Model Representation

This section is to prepare a HDMR approximation technique to reduce memory
demands necessary to represent function Et(at, σt−1) defined by (6). There are
many ways how to construct the decomposition like (1), see Ref. [5]. To
reduce this ambiguity, it is necessary to formalize the desired properties of the
decomposition.

The function Hilbert space L2(X) is an useful concept for the function
approximation. Generally, it is a space of real functions defined over X with
the finite norm ‖g‖ ≡

√
〈g , g〉 inducted by the following scalar product

〈g , h〉X ≡
∫
X

g(x)h(x) dx (8)

Then, the optimal HDMR decomposition g̃ of the function g ∈ L2(X) is defined
as minimizer of an approximation error evaluated in this norm, i.e., it is a
function minimizing ‖g − g̃‖. The uniqness of projection on closed subspaces
of L2(X) implies the uniqness of minimizing function g̃(x) matching this form

g̃(x) ≡ g̃∅ +
d∑

m=1

g̃m(xm) +
1

2

d∑
m,n=1

g̃mn(xm, xn) (9)

where we introduce symmetrized components g̃mn(xm, xn) ≡ g̃nm(xn, xm) for
n < m and zero components g̃mm ≡ 0 into the game to get rid of uncomfortable
sumation over m < n, recall (1). We shall stick to this convention throughout
the whole article.

4

Let X be d-dimensional product of finite sets Xi

X ≡
d∏
i=1

Xi (10)

and let the integration in (8) be summation over X. Next, for any subset of
indices M ⊂ {1, . . . , d}, we denote its complement by M c ≡ {1, . . . , d} \M
and define

X⊥M ≡
∏
i∈Mc

Xi (11)

Then, the minimizer g̃(x) has especialy convenient form and the formulae for
its decomposition components read

g̃∅ ≡
1

|X|
∑
y∈X

g(y1, . . . , yd) (12)

g̃m(xm) ≡ 1

|X⊥m|
∑
y∈X⊥

m

g(y1, . . . , ym−1, xm, ym+1, . . . , yd)− g̃∅

g̃mn(xm, xn) ≡ 1

|X⊥mn|
∑

y∈X⊥
mn

g(y1, ., xm, ., xn, ., yd)− g̃m(xm)− g̃n(xn)− g̃∅

We note that this variant directly corresponds to ANOVA-HDMR in Ref. [5].

The key observation in our aplication of HDMR is its simple construction.
Even if dom(g) is too large to operate with all the function values at once,
the decomposition components can be constructed point-wise, evaluating and
adding values g(x) to proper sums in (12) point by point. This proces is also
highly paralelizable.

4 Fast Minimization of HDMR

In the previous section, we show how to find HDMR approximation of Et(at, yt−1)
at one time step t ∈ {1, . . . , T}. However, to fully approximate equation (6)
using HDMR, it is inevitable to find a way of minimizing functions in HDMR
decomposition. Owning to the regular structure of this approximation, mini-
mization of approximated function could be even easier then minimization of
the original function.

For set of indices M ⊂ {1, . . . , d} we are interested in point-wise minima of
function g̃(x) in HDMR approximation

h(y) ≡ min
z∈X⊥

M

g̃(y, z) (13)

5

for all y ∈
∏

i∈M Xi. The arguments y, z of the minimized function should be
reordered to correspond to the original variable x. For the sake of simplicity,
however, we shall omit this permutation in the notation. Next, we rewrite the
previous equation in a more detailed view recalling (9). Thus, we obtain

h(y) = g̃∅ +
∑
m∈M

g̃m(ym) +
1

2

∑
m,n∈M

g̃mn(ym, yn) + min
z∈X⊥

M

wy(z) (14)

where we separated the interesting part of calculation by defining function

wy(z) ≡
∑
m∈Mc

g̃m(zm) +
1

2

∑
m,n∈Mc

g̃mn(zm, zn) +
∑

m∈Mc,n∈M

g̃mn(zm, yn) (15)

Regardless of a specific choice of y, minimization of this function is equiv-
allent to search for the clicque of minimal weight in complete multipartite
edge-weighted graph. To show it, identify different Xm as partities of graph,
zm ∈ Xm as vertices in particular partite set Xm and gmn(zm, zn) as weight
of edge between two vertices zm ∈ Xm, zn ∈ Xn taken from distinct partities
(gmm ≡ 0 as we claimed). Weights of vertices g̃m(xm) together with those in-
ducted by parameter y can be added to weights of corresponding edges. This
problem is known to be NP-hard [1]. As it plays a role of repeatedly solved
subproblem in our case, it is obvious that we should search only for approx-
imate solution of (13). We introduce an approximative algorithm based on
the exact solution of the associated trust region problem which exploits the
repetetive nature of this minimization.

4.1 Problem Reformulation

At the moment, however, it is fruitful to rewrite function wy(z) in a more
convenient form. For i ∈ {1, . . . , |Xm|} we denote Xm[i] the i-th element of
finite set Xm, m ∈ {1, . . . , d}. Then, for all m,n ∈M c we define matrices Fmn

in this way
Fmn
ij ≡ g̃mn(Xm[i], Xn[j]) (16)

In the same manner, we define matrices Gmn

Gmn
ij ≡ g̃mn(Xm[i], Xn[j]) (17)

for all m ∈M and n ∈M c and vectors ~pm

pmi ≡ g̃m(Xm[i]) (18)

for all m ∈ M c. Then, we represent variables zm ∈ Xm by binary vectors
~zm ∈ {0, 1}|Xm| in this way

zmi = 1⇐⇒ zm = Xm[i], zmi = 0 otherwise (19)

6

Finally, we compose all matrices Fmn into one matrix F , matrix G out of
matrices Gmn and construct vectors ~p and ~z similary. Thus, we obtain a concise
reformulation of wy(z)

w~y(~z) =
1

2
~zTF~z + ~yTG~z + ~pT~z (20)

parameterized by binary vector ~y related to y ∈ XM in the same manner as
~z is related to z ∈ X⊥M . In what follows, we refer to particular element of ~z
as zmi to stress its meta-vector structure. Then, we implicitly expect m ∈ M c

and i ∈ {1, . . . , |Xm|}.
Now we abbreviate

s ≡
∑
m∈Mc

|Xm| (21)

and find a better way of formalizing a one-to-one correspondance (19) between
z ∈ X⊥M and ~z ∈ {0, 1}s. We introduce vectors ~em

emi ≡ 1 (22)

and rewrite conditions (19) as constraints

~em~zm = 1 (23)

for all m ∈ M c. These constraints ensure proper minimization domain as we
already restricted elements zmi ∈ {0, 1} for all m and i. Furhter, we define
vector ~ε

~ε ≡ (1, . . . , 1) ∈ R|Mc| (24)

and introduce matrix E composed of vectors ~em extended by zeros in such a
way that it permits to rearrange constraints (23) as

E~z = ~ε (25)

Then we rewrite the mimimization task in (14) into an equivalent form

min
~z∈{0,1}s,E~z=~ε

{
1

2
~zTF~z + (G~y + ~p)T~z

}
(26)

which is still NP-hard problem. On that account, we introduce a computa-
tionally feasible algorithm to get estimates on minima in (26) for all relevant
values of parameter ~y.

7

4.2 Trust Region Based Minimization

To prosper out of this repetitive nature of our problem, we observe that the
involved matrix F does not depend on the value of parameter and thus we
can afford some intiensive matrix preprocessing. This fact suggests to turn our
attention to the trust region problem. For symmetric matrix A and vectors ~x,
~b of proper dimension it can be formulated as follows

min
‖~x‖2=1

{
1

2
~xTA~x+ bT~x

}
(27)

This classical optimization problem is amenable to fast solution even though it
is non-convex in general. From vide spectra of developed methods, we choose
the one which is computetionaly expensive for an one step minimization, but
which will pay out in our repetetive setting. If we find ortoghonal matrix U
such that A = UTDU holds with D diagonal, the minimizer ~x? of (27) reads

~x? = −UT (D − λ I)−1U~b (28)

where λ ∈ R is a solution of one-dimensional equation

∑
i

(
qi

Dii − λ

)2

= 1 (29)

where ~q ≡ U~b and λ < mini(Dii). It can be shown that precisely one such λ
exists and it can be found by Newtons’ method, for instance, see Ref. [6].

Therefore, we introduce relaxation of the minimization subproblem (26)
matching the form of the trust region problem (27). We hold constraint E~z = ~ε
and search for relaxation of the other constraint ~z ∈ {0, 1}s. Not to violate the
first constraint, we project the minimized criteria in (26) onto the subspace
ortoghonal to E. The projection matrix reads

P = I− ET (EET)−1E (30)

where the involved inversion exist as EET is diagonal matrix with positive
diagonal. It appears here because we did not normalize vectors ~em in (23). We
denote ~c the center of minimization domain composed of subvectors ~cm

cmi ≡
1

|Xm|
(31)

and we decompose vector ~z into two parts,

~z = ~c+ ~u (32)

8

where P~u = ~u, P~c = 0 and E~c = ~ε by definition. Next, we substitute these
identites into (26) and omit terms constant in ~u as we are interested only in
the argument of minima. Thus, we obtain the following minimization problem

min
‖~u‖2=R2

{
1

2
~uTP TFP~u+ ~cTFP~u+ (G~y + ~p)TP~u

}
(33)

where the only question left is to adjust the diameter R properly. By the sym-
metry of our problem, we can simply choose any vector ~u ∈ {0, 1}s satisfying
E~u = ~ε, and prescribe

R2 = ‖~c− ~u‖2 =
∑
m∈Mc

(

1− 1

|Xm|

)2

+

|Xm|∑
i=2

1

|Xm|2

 =
∑
m∈Mc

(
1− 1

|Xm|

)
(34)

Owning to this choice of R, the optimization problem (33) is a proper relaxation
of our original problem (26). What is more, it is amenable to fast solution in
direct analogy to (27). In a detail, we diagonalize the involved symmetric
matrix P TFP , and for a particular choice of ~y we find exact minimizer ~u?

according to equations (28) and (29). Once solved, we have ~z? = ~c + P~u?

which implicitly satisfy the constraint E~z = ~ε.

In general, such ~z? does not correspond to any feasible solution of (26).
Nontheless, it is quite informative - the higher the value of ~z?,mi is, the lower
cirteria we should expect when adjusting m-th coordinate of z to Xm[i] ∈ Xm.
One can came up with many ways of ”rounding” of ~z? to some feasible solution
of unrelaxed problem, however, there is not any guarantee that a particular
heuristics is the best possible. Here, we reduce the size of minimization domain
in (14) using the following heuristics. At first, we find k highest elements of
each ~z?,m and denote their indices by nmi where i ∈ {1, . . . , k}. Then, we define

Zm ≡ {Xm[nmi]|i ∈ {1, . . . , k}} ⊂ Xm (35)

for each m ∈ M c, abbreviate Z⊥M ≡
∏

m∈Mc Zm and see that Z⊥M ⊂ X⊥M and
|Z⊥M | = k|M

c|. Next, we substitute Z⊥M into (14) instead of X⊥M and solve this
minimization directly by enumeration as the domain is much smaller then in
the original case. This way we obtain an upper bound on minima in (14) for
each particular choice of y ∈ X⊥Mc . We admit that we employed here the first
idea we had, we feel that wide spectra of better heuristics can by applied to
”round” ~z?. We postpone this question to future research.

4.3 Numerical Experiment

We prepared a numerical experiment with simulated data. At first, we solved
problem (26) exactly for 20 different values of parameter ~y with randomly gen-
erated matrices F , G of a proper structure and zero vector ~p = 0. Elements

9

of F , respective G, were chosen from a uniform distribution on the interval
[0, 100], respective [0, 1], and the dimensions of F and G correspond to mini-
mization of 6 dimensional function wy(z) over z ∈ X2 where |X| = 200 param-
eterized by y ∈ Y 4 where |Y | = 20. Then, we utilize the method introduced
in the previous subsection to find an estimate on minima. We examinated
the quality of estimates for four different choices of parameter k. The results
are summarized in Figure 1. They correspond to our expectation. The higher

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

exact minimum
average value
trust region (k = 2)
trust region (k = 4)
trust region (k = 8)
trust region (k = 16)

Figure 1: Upper bounds on minima obtained by approximative minimization
for 20 different values of y and various values of parameter k. They are com-
pared to the average values of the minimized functions and the values of their
exact minima.

the value of k is, the better approximation we observe. On the other hand, it
obviously takes more computational time to obtain these more accurate upper
estimates. To see this relationship more clearly, we propose Table 1 where the
average computational times of all these methods are compared to the average
computational time of the exact minimization.

10

average results
trust region

k=2 k=4 k=8 k=16
computational time (in %) 3.3% 3.3% 3.5% 4.0%

distance from minima 0.19 0.07 0.06 0.03

Table 1: The average computational times and average distances from the exact
minima for various values of k. Computational times are stated relatively to the
computational time of the exact minimization and the distances from minima
are also normalized. They are rescaled and shifted in such a way that exact
minima correspond to 0 whereas the avreage value of the minimized criteria
correspod to 1. The averages were taken over 20 different values of y.

5 Approximate DP based on HDMR

At the moment, we are prepared to apply both HDMR approximation devel-
oped in Section 3 and fast approximative minimization of HDMR function from
Section 4 to effectively approximate equation (6). The proposed algorithm is
recursive and runs in the backward manner as the evaluation of the exact Bell-
man equation. We denote the approximated function as Ẽt even though it is
not, in fact, the HDMR approximation of Et (with an exception of t = T).

For the first step, t = T , we have

ET (aT , yT−1) = E [zT (yT , aT) | aT , yT−1] (36)

To obtain all components ẼT,∅, ẼT,m, ẼT,mn of its HDMR approximation, we
take all pairs (aT , yT−1) ∈ AT × YT−1, evaluate ET (aT , yT−1) for each pair and
add the result to proper sums in (12). Next, supose we know all Ẽt+1,∅, Ẽt+1,m,
Ẽt+1,mn and we want to find the HDMR approximation of Et. Substituting
Ẽt+1 into (6) we have

Et(at, yt−1) ≈ E
[
zt(yt, at) + min

at+1∈At+1

Ẽt+1(at+1, yt))

∣∣∣∣ at, yt−1] (37)

and thus we define Ẽt+1 as the HDMR approximation of the expression on the
right-hand side.

To find it, we have to evaluate this function at all points again. If we denote

ht(yt) ≡ min
at+1∈At+1

Ẽt+1(at+1, yt) (38)

we can find its upper bound following the instructions of Section 4. Looking at
(13), we indentify g̃ = Ẽt+1 and X⊥M = At+1. Based on the knowledge of Ẽt+1,∅,
Ẽt+1,m and Ẽt+1,mn, we construct matrices Ft, Gt and vector ~pt according to

11

(16), (17) and (18). Now we have (38) in the form of (26) and we search for the
upper bound on minima according to Section 4.2. We relax the problem into
the form of (33) and find its exact minimizer ~h?t (yt) for all yt ∈ Yt in a direct
analogy to (28) and (29). We stress again that the involved diagonalization
of the matrix P T

t FtPt is carried out just once for each time step t and then

used for all yt ∈ Yt. Based on the knowledge of ~h?t (yt), we find an upper bound
ht(yt) on unrelaxed problem (38) following the last paragraph of Section 4.2.
Knowing ht(yt), we continue similarly to the procedure applied for t = T . We
sequentialy take all pairs (at, yt−1) ∈ AT × YT−1, evaluate function

E
[
zt(yt, at) + ht(yt)

∣∣ at, yt−1] (39)

for each pair and add the result to proper sums according to (12).

This way, we construct all components Ẽt,∅, Ẽt,m and Ẽt,mn in a point-wise
manner avoiding the full dimensional representation of Ẽt. We repeat this step
to recursively compute Ẽt for all t ∈ {1, . . . , T} and finally, we follow equation
(7) to derive the approximated optimal strategy.

6 Conclusion

The aim of this work was to cope with both computational and memory de-
mands necessary to find and represent the optimal decision making strategy.
The proposed variant of approximate dynamic programming based on HDMR
approximation is appealing for two reasons. At first, this approximation re-
duces memory demands considerably. There are, however, many other possible
approximations of the Bellman equation. Thus, the crucial advantage of this
particular one is that HDMR permits a fast approximative minimization, an in-
evitable ingredient of an algorithm attempting to well approximate the Bellman
equation over longer time horizon.

The bottle-neck of this approximation technique is the fact that it still
needs to pass through the whole decision tree. Either it can be parallelized
easily, or some reinforcement learnign algorithm that aims at this problem can
be included. The fact that HDMR approximation permits a fast approximative
minimization would still be worthwhile.

What is definitely missing in this article is an experimental verification of
the proposed algorithm. It is left to future research, however, the algorithm
should be more precise then the one developed in [3]. Therein, the average
value of an approximated function was used as an upper bound on minimum.
If we look at Figure 1, we see that the upper bound on minimum developed here
is more precise then the mere average of the criteria. Thus we may conclude
that this algorithm should do better even in a real-world application.

12

The author would like to express his acknowledgement to RNDr. Ondřej
Pangrác, Ph.D., for inspiring discussion about the link between HDMR mini-
mization and discrete optimization and also to the project GAČR P 102/11/0437
for support.

References

[1] Richard M. Karp. Reducibility among combinatorial problems. Miller, R.
E.; Thatcher, J. W., Complexity of Computer Computations, New York:
Plenum, 1972.

[2] H. Kushner. Introduction to Stochastic Control. Holt, Rinehart and Win-
ston, New York, 1970.

[3] Miroslav Pistek. On implicit approximation of the bellman equation. 15th
IFAC Symposium on System Identification, Saint-Malo, France, 2009.

[4] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley-Interscience, 2007.

[5] H.J. Rabitz and O.F. Alis. General foundations of high-dimensional model
representations. Journal of Mathematical Chemistry, 25:197–233, 1999.

[6] D. C. Sorensen. Newton’s method with a model trust region modification.
SIAM J. Numer. Anal., 19(2), 1982.

13

