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Advantages of Square-Root Extended Kalman Filter
for Sensorless Control of AC Drives
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Abstract—This paper is concerned with a fixed-point imple-
mentation of the extended Kalman filter (EKF) for applica-
tions in sensorless control of ac motor drives. The sensitivity
of the EKF to round-off errors is well known, and numeri-
cally advantageous implementations based on the square-root
decomposition of covariance matrices have been developed to
address this issue. However, these techniques have not been
applied in the EKF-based sensorless control of ac drives yet.
Specific properties of the fixed-point implementation of the
EKF for a permanent-magnet synchronous motor (PMSM) drive
are presented in this paper, and suitability of various square-
root algorithms for this case is discussed. Three square-root
algorithms—Bierman–Thorton, Carlson–Schmidt–Givens, and
Carlson–Schmidt–Householder—were implemented, and their
performances are compared to that of the standard implemen-
tation based on full covariance matrices. Results of both simu-
lation studies and experimental tests performed on a developed
sensorless PMSM drive prototype of rated power of 10.7 kW
are presented. It was confirmed that the square-root algorithms
improve the behavior of the sensorless control in critical operating
conditions such as low speeds and speed reversal. In particular, the
Carlson–Schmidt–Givens algorithm was found to be well suited
for the considered drive.

Index Terms—AC motors, Kalman filter, parameter estimation,
sensorless control, variable-speed drives.

I. INTRODUCTION

O PERATION of an ac drive without either rotor position
or speed sensor—the so-called sensorless control—is a

very popular topic in the literature. Many techniques allowing
sensorless estimation of the rotor speed and its position us-
ing anisotropy-based [1]–[8] or model-based methods [9]–[16]
have been published. However, robust sensorless control of the
drive under critical operating conditions such as standstill, low
speeds, and failure states is still a challenge. The most popular
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model-based estimator allowing sensorless drive control in a
wide speed range (including very low speeds) is the extended
Kalman filter (EKF) [17]–[25]. The EKF is widely understood
to be an algorithm requiring high computational performance
of a digital signal processor (DSP) and complicated tuning
[26]. Powerful floating-point DSPs or field-programmable gate
arrays are used in most of the applications of EKF; this is a
well-documented “conventional task” [24], [27], [28]. Imple-
mentation of the EKF in a fixed-point DSP with limited compu-
tational performance—which is, at present, used in ac electric
drives from simple consumer electronics up to either traction
or generally high-power drives—is much more demanding.
The fixed-point arithmetic implies limited dynamic range and
scales and, therefore, reduced calculation accuracy. A specific
issue of the EKF is overflowing of covariance matrices and the
necessity of their saturations. Reduced accuracy of the fixed-
point implementation severely affects the performance of the
EKF under critical operating conditions. Therefore, we seek an
implementation of the EKF offering higher numerical precision
without an excessive computational cost.

Calculation of the EKF equations with covariance matrices
in full representation is the most common and widely dissem-
inated approach [18], [29]. This approach is known to poten-
tially suffer from numerical instability due to round-off errors.
Better numerical stability can be achieved when the covariance
matrices are represented in their square-root decompositions
[30]. The two popular choices of the square-root form are the
Cholesky decomposition and the UD decomposition. Several
variants of algorithms evaluating the Kalman filter equations
using these decompositions are available in the literature (see
[30] for survey and [31] for the latest development). Each
variant has advantages and drawbacks that make each of them
suitable for different kinds of models and computational plat-
forms. The purpose of this paper is to investigate the suit-
ability of the square-root algorithms for ac motor drives and
16-/32-b fixed-point microcontrollers. The square-root EKF has
been implemented for sensorless drive control only in floating-
point arithmetic [22]. No publication on the fixed-point square-
root EKF sensorless drive control is known to us.

The presented square-root EKF is generally suitable for all
kinds of ac motor drives, such as permanent-magnet synchro-
nous motor (PMSM) or induction motor drive. Properties of
the investigated fixed-point square-root EKF and its application
benefits will be studied on a drive with surface-mounted PMSM
in this paper. Selection of the PMSM drive has been motivated
by our recent research of a new generation of trams with
gearless wheel drive with PMSMs [32]. The drive diagnostic
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requires the estimation of the rotor position without either rotor
position or speed sensor in a very wide speed range. The EKF
was selected for this task.

This paper is organized as follows. The classical EKF al-
gorithm for the PMSM drive and its square-root variants are
introduced in Section II. Details of fixed-point implementation
of all considered algorithms are discussed in Section III. The
presented algorithms are compared in simulations and experi-
ments on a sensorless PMSM drive of rated power of 10.7 kW
in Section IV.

II. EKF DESIGN FOR INVESTIGATED PMSM DRIVE

A. Mathematical Model of PMSM

A commonly used model of a PMSM is the stationary
reference frame model discretized using the first-order Euler
formula for a time step Δt

isα,t+1 =
(

1 − Rs

Ls
Δt

)
isα,t +

Ψpm

Ls
Δtωme,t sin ϑe,t

+ usα,t
Δt

Ls
,

isβ,t+1 =
(

1 − Rs

Ls
Δt

)
isβ,t − Ψpm

Ls
Δtωme,t cos ϑe,t

+ usβ,t
Δt

Ls
,

ωme,t+1 =ωme,t,

ϑe,t+1 =ϑe,t + ωme,tΔt. (1)

Here, isα, isβ , usα, and usβ represent the components of the
stator current and voltage vector in the stationary reference
frame, respectively, ωme is the electrical rotor speed, and ϑe is
the electrical rotor position. Rs and Ls are the stator resistance
and inductance, respectively, Ψpm is the flux linkage excited by
permanent magnets on the rotor, and Δt is the sampling period.
The third equation of (1) is simplified; we assume that the speed
change within one sampling period is negligible.

The equations in (1) represent the nonlinear state-
space model of PMSM with state vector xt =
[isα,t, isβ,t, ωme,t, ϑe,t]. The equations are subject to errors
which may be caused by inaccurate linearization, uncertainties
in parameters (e.g., due to temperature changes and saturation),
unobserved physical effects (such as the unknown load,
dead-time effects, and nonlinear voltage drops on power
electronics devices), and others [33]. For consistency with
the EKF assumptions, all of these errors are assumed to
influence the state equations as an additive noise with Gaussian
distribution. Generally, it is assumed that the noise between
the state variables is uncorrelated and its variance is constant
Q = diag(qi, qi, qω, qϑ).

The variance of the observation error, R = [ri, ri], can be
derived from the properties of the data acquisition system [33].

B. Background of Extended Kalman Filtering

The EKF is a stochastic filter that recursively computes the
expected value of the state variable x̂t and its associated co-

variance matrix Pt. Recursive computation of these quantities
is often split into two steps.

1) Prediction: Compute the time evolution of the estimates
from time t to t + 1, x̂pred

t+1 = g(x̂t), where g() is given
in (1), and the covariance matrix of the predictions is

St+1 =AtPtA
T
t + Qt (2)

At =
∂xt+1(xt)

∂xt
. (3)

2) Correction: Compute the prediction of the observations
ŷt = [̂isα,t, îsβ,t], and adjust the estimates of the state and
its variance

Pt = (I − KtCt)St+1 (4)

Kt = St+1Ct

(
CtSt+1C

T
t + R

)−1
(5)

x̂t+1 =, x̂pred
t+1 + Kt(yt − ŷt),

C =
∂yt

∂xt
. (6)

For model (1), the matrix of derivatives At (3) is

A =

⎡
⎢⎣

a b sin ϑe,t c cos ϑe,t

a −b cos ϑe,t c sin ϑe,t

1
Δt 1

⎤
⎥⎦

where a = (1 − (Rs/Ls)Δt), b = (Ψpm/Ls)Δt, and
c = (Ψpm/Ls)Δtωme,t. The matrix C is

C =
[

1 0 0 0
0 1 0 0

]
.

C. Square-Root Kalman Filtering

The original filtering equations (2)–(6) are typically un-
suitable for numerical implementations due to propagation of
round-off errors. Alternative forms of (2)–(6) have been studied
for numerical stability, and extensive knowledge in this field has
been accumulated (see, e.g., [30] for detailed background).

The key property that needs to be maintained is the symmetry
and positive definiteness of covariance matrices Pt and St at all
time steps. This requirement is hard to achieve when the matrix
is stored as a 4 × 4 array of numbers. More efficient repre-
sentation of the covariance matrices is based on the Cholesky
decomposition or the modified Cholesky decomposition. For
example, the Cholesky decomposition of the covariance matrix
of estimates Pt is

Pt = GtG
T
t (7)

where Gt is a lower triangular matrix. The modified Cholesky
decomposition (also known as the UD decomposition) is

Pt = UtDtU
T
t (8)

where Ut is the unit upper triangular (its diagonal is formed by
a unit vector) and D is diagonal. Decompositions (7) and (8)
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represent two basic choices in matrix representation. For each
of these choices, all covariance matrices (i.e., Q, R, and S) are
represented in the same form, and (2)–(4) are rederived in this
parametrization. Many variants of these square-root algorithms
are known; however, we will consider only the following three
of them.

1) Bierman–Thorton method based on representing the co-
variance matrices in UD form (8) and evaluation of (2)
using the modified Gramm-Schmidt orthogonalization
method. The method first computes matrix AtUt which is
passed to the Thorton algorithm evaluating (2) and then
to the Bierman algorithm evaluating (4).

2) Carlson–Schmidt–Givens algorithm representing the co-
variance matrices in the Cholesky decomposition (7) and
evaluating (2) using Givens rotations. The method first
computes matrix AtG

T
t , which is transformed into the

Cholesky decomposition of St (2). The result is updated
by the Carlson algorithm.

3) Carlson–Schmidt–Householder algorithm is computed in
the same way as the previous one with the exception
of computation of St via (2), which is computed using
Householder reflections.

In general, it is not possible to decide which algorithm will
work best for a given system. In this paper, we implement all of
them and compare them empirically.

III. FIXED-POINT IMPLEMENTATION

Floating-point implementations of all three considered
square-root algorithms are available in [30] and accompanied
with evaluation of their computational complexity. Fixed-point
implementations of these algorithms were reported to be ad-
vantageous in other domains, e.g., [34]. We present a detailed
analysis of their application to the ac motor drive (in our case,
PMSM) model and outline its specific features that were taken
into account.

A. Transformation to Scaled Variables

The challenge for any fixed-point implementation is to find
bounds on all involved quantities. It is easy for the state
variables which have physical meaning and known physi-
cal bounds. For example, the current isα is bounded by
〈−is,max, is,max〉 and can be represented by

isα =
isα

is,max
∈ 〈−1, 1〉 (9)

that can be trivially represented in any chosen precision. Ana-
logically, the state variables xt can be normalized to xt with
elements bounded by 〈−1, 1〉. Substituting (9) and xt into (1),
we can determine transformed variables At, Q, and R.

Establishing bounds on the variance P t of the transformed
estimate x̂t is harder. Note that, substituting (3) into (2) for
ωme = 0, the predictive variance of ϑe is

Sϑ,t+1 = Pϑ,t + 2ΔtPϑω,t + Δt2Pω,t + Qϑ. (10)

When the predicted output is close to the observations ŷt ≈ yt,
Pϑ,t+1 ≈ Sϑ,t+1 in the correction step (4) and thus growing

Fig. 1. Illustration of truncated normal density with zero mean and different
variance σ2.

linearly with time without any bounds. This corresponds to the
fact that the posterior density on ϑe is approaching uniform
density, which is approximated by a Gaussian truncated at inter-
val 〈−1, 1〉. The uniform density is obtained when Pϑ,t → ∞.
This is unacceptable for numerical representation, and an upper
bound on Pϑ,t must be set. Approximation of the uniform
density for various choices on the upper bound is shown
in Fig. 1.

The choice of the upper bound on diagonal elements of Pt is
then a tradeoff between the accuracy of approximation of Pϑ,t

and the accuracy of approximation of the other elements. After
this choice, the covariance matrix can be also transformed into

Pϑ,t =
Pϑ,t

Pϑ,max
∈ 〈0, 1〉. (11)

The scaling allows one to choose robust initial conditions

x̂0 = [0, 0, 0, 0] P0 = diag ([1, 1, 1, 1]) . (12)

Due to the restrictions of symmetry and positive defi-
niteness, all remaining elements of matrix Pt are guaran-
teed to be within 〈−Pϑ,max, Pϑ,max〉. This is also true for
the Cholesky decomposition, where all elements are within
〈−√

Pϑ,max,
√

Pϑ,max〉. However, the situation is more com-
plicated for the UD transformation, where the elements of Ut

are ratios of the elements of matrix Pt. Hence, the range of
all possible values is much higher. In our implementation, we
avoid this problem by choosing the bounds for all elements
of Ut, Ui,j,t ∈ 〈−Ut,max, Ut,max〉, and truncating all values
that are outside this interval. This, however, adds additional
computational complexity to the algorithm and further degrades
the accuracy of estimation.

B. Algorithmic Changes

The algorithms presented in [30] are optimized for floating-
point implementations. Some of these optimizations cannot
be used in the fixed-point implementation since temporary
variables would have poorly defined ranges. This problem is
illustrated in the algorithms in Fig. 2. Note that the temporary
variable gamma in the floating-point implementation is avoided
since its dynamic range is high and its representation in a fixed-
point would be inaccurate. Therefore, division by alpha that is
done only once in the floating-point implementation (line 6) is
performed j times in the fixed-point (line 12). Other routinely
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Fig. 2. Comparison of (left) floating-point and (right) fixed-point implementations of a part of the Bierman–Thorton algorithm. Optimized access to indexed
array elements that are used in the actual implementation is avoided for clarity.

used ways of computing algebraic expressions in fixed-point
arithmetic also increase the numbers of multiplications and
additions over the number of operations in the floating-point
implementation.

C. Tuning of Covariance Matrices

It is well known that tuning of the covariance matrices of
the EKF is a serious problem. Up to now, there does not
exist any generally accepted automatic tuning procedure for
sensorless controlled ac motor drives. This problem is even
more demanding in fixed-point arithmetics, where even well-
known facts—such as the dependence of the Kalman gain only
on the ratio of matrices Q and R—have to be questioned.
Specifically, choosing greater values of R implies greater values
of Q, which will cause faster saturation in (10). This can be
compensated either by an increase of the upper bound on Sϑ,t or
by choosing very small values of both Q and R. Since it is hard
to analyze the consequences exactly, we have tuned the values
of R and Q, as well as their fixed-point ranges, experimentally.

D. Special Features of PMSM Drive

The considered model of the PMSM drive has the following
special features.

1) Matrix At is rather sparse. This property could be used
in computation of products AtUt and AtGt; however, the
savings are so small that we do not implement it. The
sparsity is advantageous for the Givens algorithm since it
reduces the number of necessary rotations.

2) Matrix C is the identity matrix complemented by zeros.
This property is equally advantageous for all algorithms,
since multiplication CPtC

T is replaced by a selection of
the relevant part of matrix Pt.

3) Matrices Q and R are diagonal. This simplifies the com-
putation of all algorithms since addition of zeros can be
skipped.

4) Matrix Pt should be artificially truncated. The advantage
in this case is with the algorithms based on the Cholesky
decomposition, since its upper bound is a square root of
the maximum, allowing one to represent higher dynamic
range.

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY OF ALL CONSIDERED

VARIANTS OF THE EKF FILTER IN FIXED-POINT IMPLEMENTATION

All of these simplifications were taken into account, and
the number of operations required for each algorithm is now
summarized in Table I.

Exact comparison of these algorithms would require one to
know the relative cost of all operations and to determine the
number of rotations in the Givens algorithm. In our imple-
mentation, this is checked online in DSP, and it may slightly
differ for each computational cycle. The maximum number of
rotations for system (1) was 15, which implies relatively low
numbers of multiplications and additions but higher number
of sqrt() operations than that of the Householder variant. The
price of the sqrt() operation is often the reason why variants
based on the Cholesky decompositions are avoided.

However, the number of numerical operations is only a
part of the algorithm where copy operations, comparisons, and
function calls are also performed. Therefore, the total time of
execution for each algorithm will be measured in Section IV.

IV. TESTS OF PROPOSED SQUARE-ROOT EKF ON

PMSM DRIVE PROTOTYPE

The configuration of the investigated sensorless drive control
is shown in Fig. 3. The drive control is based on the conven-
tional vector control in Cartesian coordinates in the rotating
reference frame (d, q) linked to a rotor flux linkage vector.
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Fig. 3. Investigated sensorless control of a PMSM drive with the EKF.

TABLE II
MEASURED EXECUTION TIME OF VARIANTS OF THE EKF ON DSP

(TEXAS INSTRUMENTS, TMS320F2812) WITH A

CLOCK FREQUENCY OF 150 MHz

An input to the drive controller is the commanded electrical
rotor speed ωmew which is controlled by a proportional–integral
(PI) controller Rω. The output of Rω is the demanded torque
component Isqw of the stator current vector. The torque (Isqw)
and flux (Isdw) currents are controlled by PI controllers RIsq

and RIsd, respectively. Flux weakening is secured by PI con-
troller RUrm which controls the modulation depth (signal Urm)
of pulsewidth modulation (PWM) and commands the flux
current Isdw. The current controllers are supported by block
“voltage calculation” (often referred to as “decoupling”) which
computes the components of the required stator voltage vector
in the (d, q) frame using a simplified model of the PMSM
in steady state. The components of the stator current vector
(isα, isβ) and the reconstructed stator voltage vector uekv in
the stationary reference frame are the inputs to the EKF. The
stator voltage vector is reconstructed from the measured dc-link
voltage and the known switching combination of the voltage-
source converter. The EKF output is the estimated electrical
rotor speed ω̂me and the electrical rotor position ϑ̂e. The
voltage-source converter employs a third-harmonic injected
PWM with a carrier frequency of 4 kHz. The sampling period
of the EKF, as well as that of the drive control, has been set to
125 μs.

The proposed sensorless drive control with all studied
algorithms of the square-root EKF has been tested on a
laboratory PMSM drive of rated power of 10.7 kW with
parameters of the PMSM equivalent circuit: Rs = 0.28 Ω,
Ls = 3.465 mH, Ψpm = 0.1989 Wb, and four pole pairs. The
proposed control and the EKF algorithms presented in Fig. 2
have been implemented in a fixed-point DSP (Texas Instru-
ments, TMS320F2812). Execution times of all variants of the

Fig. 4. Comparison of investigated EKF algorithms: Speed reversal, triangu-
lar speed profile, and commanded electrical rotor speed of fmew = ±50 Hz.

EKF measured with a DSP clock frequency of 150 MHz are
displayed in Table II. Since the sampling period of the vector
control, as well as that of the EKF, has been selected as 125 μs,
the Householder algorithm was excluded from all other tests,
because it was unable to provide the estimates within the
required time.
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Fig. 5. Error of electrical rotor speed estimation for all investigated EKF
algorithms: simulation scenario shown in Fig. 4.

A. Simulation Results

A simulation model of the PMSM drive has been designed
and implemented in the C language. The “physical” model of a
surface-mounted PMSM is represented by a state-space model
in the stationary reference frame which has been solved using
Adams–Bashforth difference formula of fourth order with a
sampling period of 1 μs. The voltage-source inverter model
respects as close as possible dead-time effects (the dead times
have been set to 3 μs, which corresponds to those of the
laboratory prototype) and nonlinear voltage drops on the power
electronics devices (the power devices are modeled using ap-
proximations of their V −A characteristics). The implemented
control strategy and the EKF algorithms respect the behavior of
a real microcontroller-based control system including realistic
sampling, known transport delays, and finite calculation times.
The sampling period of the control and EKF has been, as
defined earlier, set to 125 μs.

Fig. 4 shows the behavior of all investigated EKF algorithms
under the speed reversal effect. The drive was operated in
the sensored mode, i.e., the control employed rotor speed and
position feedback from the rotor position sensor. All EKF algo-
rithms were computed during the simulation test in parallel. Er-
rors of estimation of the electrical rotor speed by particular EKF

Fig. 6. Speed reversal: Triangular speed profile and commanded electrical
rotor speed fmew = ±50 Hz. ch1: Electrical rotor speed (sensor) [40 Hz/div].
ch2: Estimated electrical rotor speed (EKF) [40 Hz/div]. ch3: Electrical rotor
position (sensor) [144◦/div]. ch4: Estimated electrical rotor position (EKF)
[144◦/div]. Time scale: 400 ms/div. (a) Carlson–Schmidt–Givens implemen-
tation of EKF. (b) Bierman–Thorton implementation of EKF. (c) Full matrix
implementation of EKF.

algorithms are shown in Fig. 5. From the presented simulation
results, it can be concluded that the Carlson–Schmidt–Givens
algorithm achieved the best result. The speed estimation error is
below five electrical degrees in the entire speed range, including
critical low speeds. The conventional EKF with full covariance
matrices had the biggest speed estimation error; the simulation
presents peaks typical for this algorithm in estimation around
zero speed.
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Fig. 7. Step change of electrical rotor speed fmew: Initial rotor position is
different from the EKF initial condition (12). ch1: Electrical rotor speed (sen-
sor) [0.625 Hz/div]. ch2: Estimated electrical rotor speed (EKF) [0.625 Hz/div].
ch3: Electrical rotor position (sensor) [144◦/div]. ch4: Estimated electrical rotor
position (EKF) [144◦/div]. Time scale: 1 s/div. (a) Carlson–Schmidt–Givens
implementation of EKF; commanded electrical rotor speed of fmew = 0 →
1 Hz. (b) Bierman–Thorton implementation of EKF; commanded electrical
rotor speed of fmew = 0 → 1.8 Hz. (c) Full matrix implementation of EKF;
commanded electrical rotor speed of fmew = 0 → 1.5 Hz.

B. Experimental Results

The behavior of the investigated drive control under the speed
reversal effect for all three variants of the EKF is documented
in Fig. 6. The drive was operated in the sensorless mode under
a triangular speed profile with the commanded electrical rotor
speed of fmew = ±50 Hz. We have employed quite slow speed
ramp to verify the properties of the analyzed EKF algorithms

in the critical low-speed region. It can be concluded that the
Carlson–Schmidt–Givens and the Bierman–Thorton algorithm
achieved better results than the conventional EKF with full
covariance matrices. Both square-root algorithms achieved very
good steady-state precision and cultivated transitions through
the low-speed region with only a small peak on the estimated
electrical rotor speed around zero. In the next test (Fig. 7), we
have tested the capabilities of the investigated EKF algorithms
in the low-speed region. The drive was operated again in the
sensorless mode, and the PMSM was not mechanically loaded.
The Carlson–Schmidt–Givens algorithm was able to secure
stable drive operation at an electrical rotor speed of 1 Hz (i.e.,
a mechanical rotor speed of 15 r/min). The conventional EKF
algorithm with full covariance matrices was able to secure
stable drive operation around an electrical rotor speed of 1.5 Hz
but introduced a steady-state error in the rotor speed estima-
tion. The worst result was achieved by the Bierman–Thorton
algorithm, which started its stable operation around 1.8 Hz.
However, the steady-state error in the rotor speed estimation
was, in contrast to the conventional EKF, equal to zero.

V. CONCLUSION

Three variants of square-root implementations of the EKF
equations were compared with the standard implementation
with full matrix representation in sensorless control of an ac
motor drive. We found that the Carlson–Schmidt–Householder
has to be excluded from tests on a laboratory prototype be-
cause it was too computationally expensive to run in the
chosen sampling period. Hence, only Bierman–Thorton and
Carlson–Schmidt–Givens variants were tested for numeri-
cal accuracy and robustness in critical operating regimes
of the drive. Under speed reversal, both square-root algo-
rithms significantly improve the accuracy of estimation over
the standard implementation. In low-speed operation, the
Carlson–Schmidt–Givens algorithm was capable of reliable
operation from an electrical rotor speed of 1 Hz, while the
standard implementation and Bierman–Thorton algorithms op-
erated above 1.5 and 1.8 Hz, respectively. For the particular
PMSM drive, the Carlson–Schmidt–Givens algorithm offers
the best overall performance. The computational cost of the
square-root EKF is slightly higher than that of the conventional
algorithm. This conclusion is in agreement with the findings for
square-root methods in other applications. However, the main
benefits of the square-root EKF are improved accuracy and
robustness in critical operating conditions of the drive. Since
other types of ac motor drives have similar model structure,
the methods can improve the quality of fixed-point implemen-
tations of all EKF-based sensorless drive control.
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Zdeněk Peroutka (S’01–M’04) received the M.S.
and Ph.D. degrees in electrical engineering from the
University of West Bohemia (UWB), Plzeň, Czech
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