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ABSTRACT

Factor Analysis (FA) is a well established method for factors

separation in analysis of dynamic medical imaging. How-

ever, its assumptions are valid only in limited regions of in-

terest (ROI) in the images which must be selected manually

or using heuristics. The resulting quality of separation is sen-

sitive to the choice of these ROI. We propose a new prob-

abilistic model for functional analysis with inherent estima-

tion of probabilistic ROI. The model is solved using the Vari-

ational Bayes method which provides also automatic rele-

vance determination of the estimated factors. Performance of

the method is demonstrated on data from renal scintigraphy,

where a significant improvement is achieved. Since there are

no scintigraphy-related assumptions, the method can be used

in any other imaging modality.

Index Terms— Blind Source Separation, Dynamic Imag-

ing, Factor Analysis, Regions of Interest, Renal Scintigraphy

1. INTRODUCTION

Factor Analysis (FA) is a method of Blind Source Separa-

tion (BSS) that is widely used in analysis of dynamic med-

ical sequences where a superposition of biological factors is

observed. FA models the image sequence as a linear com-

bination of the factor images weighed by their time activity

curves. The factor is then composed from one factor im-

age and its time activity curve. The method has been used

in many modalities, such as functional Magnetic Resonance

Imaging (fMRI) [1], Positron Emission Tomography (PET)

[2], or Scintigraphy [3].

The assumptions of linear combinations are typically not

valid over the full size of the images but only in a limited area.

This problem is typically approached by defining regions of

interest (ROI) in the sequence where the assumptions are jus-

tified and the factor analysis yields much better results [4].

This can be done either manually, or using some existing seg-

mentation method, [5]. In clinical practice, the ROI selection

is almost exclusively done by specialists, since consequences

of the ROI for the subsequent factor analysis must be care-

fully examined. Often, the ROI must be selected iteratively

until an acceptable solution is found. This procedure is very

time consuming and strongly depends on the experience of

the specialists [3].

In many approaches, FA and ROI selection are viewed as

two independent steps, the role of the ROI selection is consid-

ered as a preprocessing step for the FA. In this contribution,

we propose to combine these two steps in a single probabilis-

tic model, where the factors and the ROI are parameters of

the model. Solution of this model is found using the Vari-

ational Bayes method [6] which results in an iterative algo-

rithm where FA and automatic ROI selection are iterated until

convergence.

As an example, we demonstrate the new model in planar

dynamic scintigraphy image sequence.

2. VARIATIONAL FACTOR ANALYSIS

The objective is to analyze a sequence of n images obtained at

time t = 1, . . . , n and stored in vectors dt with pixels stacked

columnwise. The number of pixels in each image is p, thus

dt ∈ Rp. The important assumption is that every observed

image is a linear combination of r factor images, stored in

vectors aj ∈ Rp, j ∈ 1, . . . , r, using the same order of pixels

as in dt. The dimensions of the problem are typically ordered

as r < n � p. Each factor image has its respective time-

activity curve stored in vector xj ∈ Rn, j ∈ 1, . . . , r, xj =
[x1,j , . . . , xn,j ]′, x′ denotes transpose of vector x. With these

assumptions, the model of Factor Analysis is:

dt =
r∑

j=1

ajxt,j + et, (1)

where vector et denotes the noise of the t-th observed im-

age. Note that all vectors aj∈1,...,r, xj∈1,...,r, et∈1,...,n are un-

known and must be estimated from measurements dt∈1,...,n.

Additional biologically-motivated assumptions are im-

posed on the elements of the probabilistic model of FA (1):

(i) all elements of the observed vectors dt∈1,...,n are positive,

(ii) all elements of the factor images aj∈1,...,r and the factor

curves xj∈1,...,r are also positive, and (iii) the number of rele-

vant factors, r, is unknown. These assumptions are translated
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into probabilistic model as follows [6]

f(dt|a,x, ω) =tNdt
(

r∑
j=1

ajxt,j , ω
−1Ip), (2)

f(ω) =Gω(ϑ0, ρ0), (3)

f(xj |υj) =tNxj
(0n, υ

−1
j In), (4)

f(υj) =Gυj (αj,0, βj,0), (5)

f(aj) =tNaj (0p, Ip), (6)

where f(.|.) denotes conditional probability density, tN(., .)
is the positive truncated normal distribution, In is an identity

matrix of size n, G(., .) is the gamma distribution, and 0n is

a vector of zeros of size n. Here, ω ∈ R is the parameter of

the inverse noise variance, and υ = [υ1, . . . , υr]′ ∈ Rr is a

vector with hyperparameters modeling prior variance of each

factor. This parameter is crucial in the Automatic Relevance

Determination (ARD) procedure [7]. Parameters ϑ0 ∈ R,

ρ0 ∈ R, α0 ∈ Rr, and β0 ∈ Rr are prior parameters of the

model that has to be selected.

This probabilistic model is solved using Variational Bayes

(VB) method [6] and the solution is found in the form of pos-

terior probability densities of the same type as in (3)–(6) but

with different shaping parameters. Equations for the poste-

rior shaping parameters form an implicit set which has to be

solved iteratively. The iterative algorithm is proven to con-

verge to a local minimum, see [6] for details. This approach

will be denoted as the FA algorithm.

Variational FA is closely related to the Independent Com-

ponent Analysis, the method for Blind Source Separation, see

[8].

An illustrative example of its results is in Fig. 2. The

results indicate incomplete separation of the factors due to

unrealistic assumptions. Note that the estimated factor im-

ages (left column of Fig. 2) affect only a small number of

pixels in the full image. However, the model (6) is based on

assumption that the jthe factor is active in all pixels of the ob-

served area. Therefore, we propose a new model of FA with

integrated probabilistic ROI estimation.

3. PROBABILISTIC REGION OF INTERESTS
INTEGRATION

The main idea is to decompose the factor image into pixels

that belong to the biological factor and those that are zero.

Each pixel ai,j in the factor image aj has an indicator variable

ii,j such that

ii,j =

{
1 i-th pixel belongs to the j-th factor

0 i-th pixel not belongs to the j-th factor
. (7)

These variables are stored in vector ij using the same order

as pixels in vector aj . Formally, we could form a model with

discrete variable ij , however, solution of such model would

be computationally very costly. Therefore, we relax the as-

sumption (7) using probabilities:

f(ai,j) =U(0, 1)ii,j tN(0, ξ−1
j )(1−ii,j), (8)

f(ξj) =Gξj
(φj , ψj). (9)

where ii,j is a continuous variable ii,j ∈ 〈0, 1〉. Note that

(8)-(9) is a soft version of model (7) since it has two extremes

f(ai,j) =

{
U(0, 1) ii,j = 1,
tN(0, ξ−1

j ) ii,j = 0,

where for ii,j = 0 the prior is uniform over the whole range of

possibilities, and for ii,j = 1 the prior is very narrow around

0. Strictness of the requirement of zero for ii,j is governed by

unknown parameter ξj .

Following the Variational Bayes methodology, we select

prior for the ii,j variable using the principle of VB conjugacy

[6]. The prior is then

f(ii,j)=tExp(λij,0, (0, 1]), (10)

where tExp(λ, (a, b]) is exponential distribution with param-

eter λ truncated between interval (a, b] and λij,0 a prior cho-

sen parameter. Hence, ij is the probabilistic ROI of the image

aj .

3.1. Variational Solution

The new model of FA is given by equations from Section 2,

(2)–(5), and new model of factor images, (8)–(10). We solve

this model using the VB method yielding the following pos-

terior densities:

f(xj |d, r) =tNxj
(μxj

,Σxj
), (11)

f(υj |d, r) =Gυj
(αj , βj), (12)

f(ω|d, r) =Gω(ϑ, ρ), (13)

f(ai|d, r) =tNai
(μai

,Σai
), (14)

f(ξj |d, r) =Gξj
(φj , ψj), (15)

f(ii,j |d, r) =tExpii,j
(λi,j , (0, 1]). (16)

Note that the vector ai is the vector with i-th pixel decom-

position, ai = [ai,1, . . . , ai,r]′. The shaping parameters

μxj
,Σxj

, αj , βj , ϑ, ρ, μai
,Σai

, φj , ψj , λi,j of distributions

(11)–(16) are given in Appendix A. The order of calculation

scheme is shown in Fig. 1. We call this algorithm as the FA

with probabilistic ROI (FAROI) algorithm.

In the following text, we denote the estimates of the pa-

rameter as 〈.〉, e.g. 〈aj〉 or 〈xj〉.

4. EXPERIMENT: RENAL SCINTIGRAPHY DATA

In this Section, we apply methodologies from Sections 2 and

3 to a clinical data set from renal scintigraphy. At first, we

briefly revise scintigraphy and biological assumptions on dy-

namics of kidneys.
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Fig. 2. Results from FA and FAROI algorithms. Left: results of the FA alg. left-to-right: factor images, 〈aj〉, and factor curves,

〈xj〉. Right: results of the FAROI alg. left-to-right: probabilistic ROI, 〈ij〉, factor images, 〈aj〉, and factor curves, 〈xj〉.

Factor Images
Estimation

Factor Curves
Estimation

Stoping Rule

Factor Relevance
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Results
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Fig. 1. The computation scheme of the FAROI algorithm.

4.1. Renal Scintigraphy

Scintigraphy is a well established and important diagnostic

method in nuclear medicine. We are concerned with planar

dynamic scintigraphy where the measurements are in the form

of a sequence of images of the same scanned region of a body.

Each pixel in the sequence is a summation of radioactive par-

ticles incoming from a volume of body under the detector.

Therefore, each pixel accumulates activity from potentially

many factors. The factors has to be separated using a source

separation method such as factor analysis.

A healthy kidney is composed of two main structures,

parenchyma and pelvis. There are two important specific

properties of these data: (i) the parenchyma is typically sur-

rounding the whole pelvis, and (ii) at the first 100 − 180 sec-

onds (depending on the patient’s state) only the parenchyma is

active [9]; after this time, the activity passes from parenchyma

through pelvis to urinary bladder. This time-parameter is im-

portant diagnostical coefficient and will be denoted as the

Parenchymal Transit Time (PTT). If this assumptions are not

satisfied, the factor separation is incomplete and could cause

significant error in diagnostics. There could be some excep-

tions in case of abnormal or harmed kidney, this case must be

carefully considered by the physicians.

4.2. Experiment

Algorithms derived in Sections 2 and 3 were applied on a rep-

resentative clinical set of dynamic renal scintigraphy. The se-

quence contains 180 images taken after each 10 seconds. The

size of each image is 128 × 128 pixels. The scanned region

contains heart, lungs, kidneys, and other organs in the back-

ground.

In both algorithms, only four factors were found to be rel-

evant by the ARD, section 2. These are shown in Fig. 2, for

the FA algorithm (left) and for the FAROI algorithm (right).

Both algorithms estimate the same biological organs (from

the top): blood background, parenchyma, pelves, and tissue

background mixed with some blockage in the right kidney.

The main differences between the results of the algo-

rithms are in the second and the third factors, parenchyma

and pelves. Parenchyma obtained from the FA algorithm has

abnormally over-subtracted areas where the pelves are active;

as a result, the time activity curve does not have the shape

typical for a parenchyma. The estimates of the parenchyma
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factor image and its time activity curve from FAROI algo-

rithm do not suffer from such degradation and are biologically

correct.

The estimate of the pelves image obtained from the

FA algorithm is corrupted by addition of pixels from the

parenchyma. Therefore, its time activity curve starts imme-

diately and not after at least 100 seconds. The estimates

provided by the FAROI algorithm much better localize the

pelves and exhibit zero time activity in the first 120 seconds

from which it is easy to estimate the corresponding PPT.

Due to increase in complexity, the FAROI algorithm is

approximately 3 times more time-consuming then the FA al-

gorithm. However, evaluation of both algorithms is in order

of minutes on a contemporary PC.

5. CONCLUSION AND DISCUSSION

A new probabilistic model for analysis of dynamic image se-

quence is proposed. The main extension of the factor analy-

sis model is a parameter representing regions of interest for

each factor. This encodes the elementary knowledge that the

factors do not cover full area of the picture. The Variational

Bayes method was applied to obtain estimates of all unknown

model parameters.

Preliminary experiments with the FAROI algorithm indi-

cate that the extension is well justified and has significant im-

pact on realistic estimates of the biological factors. Specif-

ically, the new model is capable of better separation of the

factors which leads to easier evaluation of diagnostic coef-

ficients. For example, the coefficient of parenchymal tran-

sit time can be now easily recognized in the resulting factor

curve which was not possible with the factor analysis model.

However, an extensive comparative study will be necessary

for clinical verification of the algorithm.

The assumptions of the new model are not unique to

scintigraphy, hence the resulting algorithm can be applied in

any modality.
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A. SHAPING PARAMETERS OF POSTERIORS
DENSITIES

Note that the results are in matrix form, e.g. A = [a1, . . . , ar],
in the appendix. Shaping parameters of posteriors densities

(11) - (16) are given as Σ−1
X = 〈ω〉〈A′A〉+ diag(〈υ〉), μX =

〈ω〉D′〈A〉ΣX , α = α0 + n
2 1r,1, β = β0 + 1

2diag(〈X ′X〉),
ϑ = ϑ0 + pn

2 , ρ = ρ0 + 1
2 tr(DD′ − 〈A〉〈X ′〉D′ −

D〈X〉〈A′〉 + 〈A′A〉〈X ′X〉), Σ−1
ai

= 〈ω〉∑n
k=1〈x′kxk〉 +

〈ξ〉(Ir − diag(ii)), μ′
ai

= Σai(〈ω〉
∑n

k=1(〈xk〉Di,k)′),
φj = φj,0 + 1

2

∑p
i=1(1 − 〈ii,j〉), ψj = ψj,0 + 1

2

∑p
i=1(1 −

〈ii,j〉)〈a2
i,j〉, λi,j = λi,j,0 − 1

2 〈ln ξj〉 + 1
2 〈ai,jξjai,j〉, where

tr(.) is a trace of the argument, diag(.) denotes (i) a square

matrix with argument vector on diagonal and zeros otherwise

or (ii) a vector composed from diagonal element of argu-

ment matrix, and 1r,1 denotes vectors of ones of respective

size. The required moments are given as 〈υi〉 = αiβ
−1
i ,

〈ξi〉 = φiψ
−1
i , 〈ω〉 = ϑρ−1, 〈ii,j〉 = λ−1

i,j and moments of

truncated normal distribution are given e.g. in [6].
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