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Abstract: The paper deals with a problem of fuel consumption optimization. Solutions existing
in this field are mainly based on the various conceptual approaches such as hybrid and electric
vehicles. However, it leads to high initial cost of a vehicle. The approach presented in this paper
aims at conventional vehicles and is based on recursive algorithms of system identification and
adaptive quadratic optimal control under Bayesian methodology. Experiments with real data
measured on a driven vehicle are provided.
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1. INTRODUCTION

Today’s automotive industry suffers from lack of solu-
tions to help a driver to optimize ride with regard to
reducing fuel consumption and minimizing environmental
pollution (CO2, noise, vibration). Existing solutions are
mainly based on the various conceptual approaches in the
form of hybrid vehicles, electromobiles, etc. It is quite
understandable: with increasing government regulations
for emissions and fuel quality the hybrid vehicles become
attractive. The increasing price of oil and the promise
of fuel savings through the use of an electric motor also
contribute to establishment of hybrid electric powertrains
in the marketplace. Due to their potential, the hybrid
electric vehicles and control strategy for them are recently
widely studied. Many efforts are focused on developing
novel concepts and low-cost systems for these eco-cars.
A detailed overview is nicely presented by Chan [2007].
Comparison of technologies for hybrid and telematics-
equipped vehicles (so called “intelligent”) from the point of
view of fuel economy improvement is described by Manzie
et al. [2007]. Problem of optimal control strategy for hybrid
vehicles is discussed in the paper of Chan-Chiao Lin et al.
[2004].

However, fuel savings associated with hybrid vehicles are
connected with a rather high initial cost of such a vehicle
due to the increased complexity of the powertrain. More-
over, it is typical for any novel technology that some time
is needed to refine it and make it reliable, get rid of the
errors and learn to repair it.

Recently electric vehicles (electromobiles) came to the
market. Their advantage from the environmental point
of view is surely significant. However, the initial cost of
? The research was supported by projects TAČR TA01030123 and
MŠMT 1M0572.

the electromobile is high again. Moreover, there still exist
problems with long out-of-town traveling and charging
stations.

Therefore, optimization of fuel consumption for con-
ventional vehicles is still strongly desired and it could
bring significant environmental and economic savings.
Many papers are devoted to this problem. For instance,
Raubitschek et al. [2011] deal with driving strategies based
on prediction of urban traffic situations. The main idea is
to reduce the dynamics in the velocity profiles of driving
situations and, respectively, the fuel consumption in urban
traffic. Reducing the velocity dynamics is proposed via
a situation-adaptive reaction to every predictively known
forthcoming traffic event. The proposed algorithm calcu-
lates a fuel consumption optimized driving trajectory at
each route section of the vehicle provided that predictive
information about the traffic events is available. Used
input parameters are temporal and spatial depending con-
straints of the driving situation as well as other restrictions
like a speed-limit.

The publication of Saboohi et al. [2009] is devoted to
modeling an eco-driving strategy of a vehicle based on
minimization of fuel consumption in a given route. Vehicle
speed and gear ratio are identified as control variables.
The effect of working load is considered according three
engine running processes of idle, part-load and wide open
throttle.

An approach proposed in the presented paper is oriented at
conventional vehicles. The paper deals with optimization
of fuel consumption based on data continuously measured
on a driven vehicle and on external observations. Dynamic
driving values are proposed to be treated via multivariate
autoregression model under Bayesian methodology, see
Kárný et al. [2005]. Algorithms of recursive (on-line) sys-
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tem identification and adaptive quadratic optimal control
are used for solution to the fuel consumption optimization
task. The algorithms used run in an on-line mode and are
based on explicit solutions avoiding numerical computa-
tions as far as possible.

The main features of the proposed approach are as follows.

• Driving data are divided among modeled output vari-
ables, input controlled ones and external measure-
ments.
• The control algorithm handles the input variables

(namely, pressing the gas and the brake pedal and
selected gear of transmission).
• Estimation of the modeled variables (fuel consump-

tion, average rear wheels speed, engine speed, engine
torque, etc.) runs in time with the currently given
input controlled variables and external measurements
(road altitude, etc.).
• The key estimated variables are the fuel consumption

and the average rear wheels speed. Minimization of
the fuel consumption under condition of the pre-
scribed speed is reached via setpoints and penaliza-
tions in criteria of the control algorithm.

Layout of the paper is as follows. Section 2 provides basic
facts about a model used and Bayesian estimation and
control algorithm. Section 3 describes application of the
mentioned approach to a problem of fuel consumption
optimization. Section 4 provides experiments with real
data samples and discussion. Conclusion in Section 5 closes
the paper.

2. PRELIMINARIES

2.1 Model

Let us consider a system, which produces observable out-
put variables yt and zt influenced by input controlled vari-
able ut and external variable vt at discrete time moments
t ∈ {1, . . . , T} ≡ t∗. In general, all the variables are
multivariate. A relation among the variables is modeled
via the conditional probability density function (pdf)

f (yt, zt|ut, vt, φt−1,Θ) , (1)

where φt−1 = [ut−1, vt−1, . . . , ut−n, vt−n, 1] is a regression
vector, Θ is a vector of model parameters. Throughout
the paper this pdf is treated as a static linear multivariate
regression model with normal noise, i.e.,

[yt, zt]′ = [ut, vt, φt−1]′Θ + et, (2)

where et is normal noise with zero mean and covariance
matrix R.

The main tasks addressed in this paper are: (i) to estimate
model parameters and predict output variables; (ii) to
propose the control inputs so that to keep values of chosen
outputs near the desired values.

2.2 Estimation and output prediction

To estimate parameters Θ of model (1), a well-known
Bayesian approach presented, for example, in Peterka
[1981] is used in the following way.
f(Θ|D(t)) ∝ f (yt, zt|ut, vt, φt−1,Θ) f(Θ|D(t− 1)), (3)

where D(t) = (d1, . . . , dt) with dt ≡ (yt, zt, ut, vt),
∝ means proportionality and f(Θ|D(t−1)) denotes a prior
pdf. In case of normal noise in model (2) the parameter
estimation algorithm is a straightforward recursive com-
putation of statistics with a chosen prior Gauss-inverse-
Wishart pdf that can be found in many sources, e.g.
Peterka [1981], Kárný et al. [2005].

Prediction of output variables yt and zt is performed in
the following way:

f (yt, zt|ut, vt, D(t− 1))

=
∫

Θ∗

f (yt, zt|ut, vt, φt−1,Θ) f(Θ|D(t− 1))dΘ. (4)

2.3 Control

To control the considered system, an approach called the
fully probabilistic design (FPD) described in Kárný, Guy
[2006] is used. The mentioned algorithm works with the
model of the closed-loop of the controlled system and a
feedback controller. The closed-loop model of the system
and its controller are given by the joint pdf

f (yt, zt, ut, vt|φt−1)

= f (yt, zt|ut, vt, φt−1) f (ut, vt|φt−1) , (5)

which is factorized according to the chain rule, see e.g.
Kárný et al. [2005]. Here the output variable yt stands
for outputs to be optimized, while zt denotes the non-
optimized part of the output vector.

The exploited FPD algorithm requires to define the so
called ideal model of the introduced closed-loop (5) with
the same structure, i.e.,

f̃ (yt, zt, ut, vt|φt−1)

= f̃ (yt, zt|ut, vt, φt−1) f̃ (ut, vt|φt−1) (6)

which represents wishes of a decision-maker about behav-
ior of the original closed-loop.

The key idea of FPD is to design the controller so that
the closed-loop model (5) would be as close as possible
to its ideal description (6) in the sense of minimizing the
Kullback-Leibler divergence (KLD)

K(f ||f̃) =
∫

[y,z,u]∗

f ln
f

f̃
d[yt, zt]dut, (7)

with f = f (yt, zt, ut, vt|φt−1) and f̃ = f̃ (yt, zt, ut, vt|φt−1).
KLD is presented in Kullback and Leibler [1951] and
adopted as a theoretically justified proximity measure.
This divergence is known to be an optimal tool within
the adopted Bayesian approach.

In the case of linear normal autoregression models, the
FPD coincides with a widely spread quadratically optimal
control, where penalizations in the squares of variables
in the optimality criteria are the main control options,
see Kárný et al. [1985]. In the FPD, these penalizations
are taken as the inversions of the noise variances of the
corresponding factors of the joint pdf describing the closed-
loop.
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According to Feldbaum [1961], the dual control is not
practically applicable. Therefore, a separate model esti-
mation should be used with a subsequent substitution of
the point parameter estimates during the control synthesis.
It means, the control synthesis is considered with known
model parameters. For minimization of (7) the dynamic
programming is used. The detailed derivation of the con-
trol algorithm can be found in Kárný et al. [2005].

3. FUEL CONSUMPTION OPTIMIZATION

Let us apply the above approach to a problem of fuel
consumption optimization. The main obvious aim here is
to design values of the control variables so that to minimize
the fuel consumption. A simple intuitive solution of this
task causes a reducing the speed until full stop. Therefore,
a speed of a vehicle should follow the recommended values
and, at the same time, not exceed the existing limits. These
demands are generally in contradiction and their balance
makes the optimum of the solved task.

Experts in this field summarize general rules for driving
with a lower fuel consumption as follows.

• When approaching a turn of the road, a vehicle should
slow down gradually. At the beginning of the turn
maneuver the vehicle should have just the proper
speed for driving through it.
• After finishing the turn maneuver, the vehicle should

increase speed slowly.
• When approaching an uphill road, it is necessary to

increase the engine rotation speed in advance so that
the vehicle’s speed does not fall on the slope.
• On downhill road the vehicle must be driven either

without pressing the gas pedal or with a minimum of
it.

Other constraints as traffic rules and a smooth reducing of
the speed in case of unexpected pedestrian in a road must
be also satisfied.

It is obvious that there is a lot of aspects that can influence
the actual fuel consumption. However, they can be divided
among three groups of variables. The first group includes
modeled variables related to a vehicle itself. The second
one involves variables which can control the modeled
ones. The third group of variables comprises the so called
external ones which express influence of the outer world
like approaching road turn, road downhill or uphill, etc.

For model (1), or precisely, closed-loop (5) the mentioned
groups of variables can be treated in the following way.
The first group of variables is entering (5) via notations
yt, zt. Here vector of modeled output variables yt includes
the fuel consumption and the vehicle speed which are the
key values to be optimized. Vector zt contains the modeled
quantities that are connected to yt (i.e., engine speed,
engine torque, lateral acceleration, etc.). However, they
must be only properly constrained but not optimized.

The second group of variables in (5) is expressed by control
input variable ut. Here the entries that can directly influ-
ence the driving are taken, namely, pressing the gas pedal,
pressing the brake pedal, selected gear of transmission,
rotating steering wheel.

Vector of external variables vt creates the third mentioned
group used in (5). The considered entries of vt include
road altitude, distance travelled, time travelled, UTM
information for vehicle position, etc. It should be noted
that selection of measured variables that influence the fuel
consumption is a separate complicated task (details about
selection of variables are described in Section 4).

With selected yt, zt, ut and vt, the ideal pdf (6) can
be defined. However, the optimization task (7) is now
decomposed into two subtasks: (i) modeling of the rec-
ommended speed under current conditions, (ii) given the
recommended speed, design the control variables keeping
this speed and minimizing the fuel consumption.

For a known route the recommended speed can be defined
“manually”. It means, a sufficient way how to determine
the recommended speed is to go through this route or to
investigate a detailed map of the region and to assign the
speed according to an expert from the transportation area.
For an unknown road, one has to rely on the information
from a navigation. It means that recommended speed must
be estimated at each time instant. At the current stage of
the project, the task is solved for the case with known
route and the prescribed speed is given.

However, all the modeled variables are recursively esti-
mated via the approach described in Section 2 in order to
compare their course with the real one. It means that ideal
values are also taken from the real data course. The upper
constraints are also chosen for the inputs. The deviations
from desired values of the key outputs yt are penalized
in the control step. The more important the value, the
higher penalty. The rest of the modeled outputs are only
estimated to ensure their adequate course.

The approach applied to these specific data has been im-
plemented as a software EcoJob created in Matlab, see The
Matlab Inc. [2000]. EcoJob is mainly based on functions
of toolbox MixTools developed in authors’ department by
Nedoma et al. [2003] under project ProDaCTool [2003].
Results of experiments are provided below.

4. EXPERIMENTS

The experimental part of the work is carried out in collab-
oration with Škoda Auto a.s. (see www.skoda-auto.com)
which provided real observations. To ensure necessary dy-
namic, data were measured for driving both with a lower
and a usual fuel consumption.

Originally, the available measurements contained signif-
icant number of variables measured for a selected out-
of-town route. A basic data sample including 16 most
important variables influencing the driving was selected
to be used for experiments. These variables are as follows:

(1) fuel consumption [µl],
(2) average rear wheels speed [km/h],
(3) angle of rotating steering wheel [degrees],
(4) pressing the gas pedal [%],
(5) pressing the brake pedal [%],
(6) selected gear of transmission,
(7) engine torque [Nm],
(8) engine speed [rpm],
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(9) lateral acceleration in multiples of gravimetric accel-
eration,

(10) yaw rate [degrees],
(11) distance travelled [m],
(12) time travelled [s],
(13) UTM-X coordinate for vehicle position [m],
(14) UTM-Y coordinate for vehicle position [m],
(15) road altitude [m],
(16) vehicle course [degrees].

After the data preprocessing the whole available number of
data items was about 20 thousands with a sampling period
equal to 1 second. Various sequence and count of the
above variables entering the modeled vectors were tested
in order to find those which have more influence on fuel
consumption under existing constraints. Configuration of
the input vector remained the same for all the experiments
as follows: ut = [u1;t, u2;t, u3;t]′, where u1;t – pressing the
gas pedal, u2;t – pressing the brake pedal, u3;t – selected
gear of transmission. Upper constraints 100, 25, 6 were
chosen for every input respectively. The optimized output
yt was always the same, i.e., yt = [y1;t, y2;t]′, where y1;t

is the fuel consumption, y2;t – average rear wheels speed
(identified with the vehicle’s speed). Vectors zt and vt were
changing for different experiments. The obtained results
were compared with real data courses.

Two types of experiments were performed. For the first
one, EcoJob constructed the closed-loop model with the
help of functions of toolbox Mixtools only. This con-
structed and estimated model was used during the control
steps.

For the second type of experiments, an external specific
software for vehicle simulation was exploited in addition
to EcoJob and Mixtools functions. This vehicle simulator
including cruise control function was implemented in Mat-
lab by experts from Škoda Auto a.s. It was used to test
reactions of a vehicle for the given FPD-based inputs from
the fuel saving point of view and to check a correct work
of the closed-loop.

Both the types of experiments are described below.

4.1 Experiments with the Mixtools functions

Currently the best results were reached with the following
configuration: zt = [z1;t, z2;t, z3;t, z4;t]′, where z1;t – engine
torque, z2;t – engine speed, z3;t – lateral acceleration, z4;t

– yaw rate. External variables exploited were contained
in vector vt = [v1;t, v2;t, v3;t, v4;t, v5;t]′, where v1;t – time
travelled, v2;t – UTM-X coordinate for vehicle position,
v3;t – UTM-Y coordinate for vehicle position, v4;t – road
altitude, v5;t – vehicle course. Bigger penalization values
5 and 30 were used for optimized outputs y1;t and y2;t.
For the rest of the outputs and for inputs the penalization
values were rather small (about 0.1). The number of data
used for the control time cycle during this experiment was
3450.

The fuel savings with the control inputs obtained during
this experiment was about 19% in comparison with the
real measurements.

The results presented in Figure 1 demonstrate comparison
of the FPD-computed input variables, i.e., pressing the gas
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Fig. 1. Control inputs obtained with Mixtools: pressing the
gas pedal (top), pressing the brake pedal (middle) and
gear (bottom).
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Fig. 2. Optimized outputs obtained with Mixtools: fuel
consumption (top) and the average rear wheel speed
(bottom).

pedal (top), pressing the brake pedal (middle) and selected
gear (bottom), with the real ones. For better illustration
a fragment of results for 1000 data items already after
estimation is shown. At the beginning of the estimation the
results of the on-line algorithm were worse. However, after
learning the computed inputs correspond to the real values
with a bit lower pressing both the gas and the brake pedals
that is in accordance with general rules of fuel economy
from Section 3. A sensitive point for the used configuration
was computation of gear. This is planned to be improved
in the next version of EcoJob.

The fuel consumption reduced about 19% and the recom-
mended speed are shown in Figure 2. The estimated non-
optimized outputs, i.e., engine torque, engine speed, lateral
acceleration, yaw rate are provided in Figure 3. Their
courses are only followed to be properly constrained.
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Fig. 3. Non-optimized outputs obtained with Mixtools:
engine torque, engine speed, lateral acceleration and
yaw rate.

4.2 Experiments with the external vehicle simulator

For this experiment the best results were achieved with
the following variables chosen: zt = [z1;t, z2;t]′, where z1;t

was engine torque, z2;t was engine speed. External variable
vt considered was road altitude. Penalization values were
5 and 20 for optimized outputs y1;t and y2;t respectively.
The number of data used for the control time cycle was
3650.

Comparison of the FPD-based input variables with the real
measurements is demonstrated in Figure 4. Similarly as in
the previous experiment, it can be seen that the obtained
values of pressing the gas pedal are, in general, lower than
the real ones. The minimized fuel consumption and the
average rear wheel speed are shown in Figure 5 (top)
and (bottom) respectively. The fuel consumption is re-
duced about 30% against the real data. The recommended
speed obtained via FPD is also lower than the original
one. The estimated engine torque and engine speed are
demonstrated in Figure 6 (top) and (bottom) respectively.
Fragments with their lower values in Figure 6 correspond
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Fig. 4. Control inputs obtained with the external simula-
tor: pressing the gas pedal (top), pressing the brake
pedal (middle) and selected gear (bottom).
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Fig. 5. Optimized outputs obtained with the external
simulator: fuel consumption (top) and the average
rear wheel speed (bottom).

to the lower speed and the reduced fuel consumption in
Figure 5.

During this experiment, simulation of real-time data bus
connection between a computer with running FPD al-
gorithm and an electronic control unit (ECU) was also
successfully tested.

4.3 Discussion

The described experiments are the “early” ones at the
initial phase of the project. To summarize this part of
the work, one can say that the results concerning the
fuel savings look promising. The considered closed-loop is
influenced by the used control inputs as expected.

In these early experiments, the resulting fuel economy
may seem to be obtained partially due to the lower
speed of the vehicle. It indicates that a problem of more
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Fig. 6. Non-optimized outputs obtained with the exter-
nal simulator: engine torque (top) and engine speed
(bottom).

precise tracking the recommended speed and “dragging”
the values up to the desired ones is still not solved
completely.

An adequate choice of the recommended speed is a sep-
arate complicated task. This speed should be neither too
fast nor too slow in order to ensure safe driving according
to traffic rules and, simultaneously, reaching the desti-
nation on time. Usage of the recommended speed as a
setpoint to be tracked using restrictions in the form of
maximal allowed speed is expected to contribute to im-
proving the control quality. It provides a chance that a
driving without any sharp changes of the speed, but with
slight modifications in pressing the gas pedal, can bring
fuel savings. This improvement will be published soon.

5. CONCLUSION

The paper is devoted to a problem of fuel consumption
optimization for conventional vehicles. Optimization of
fuel consumption based on data continuously measured on
a driven vehicle and on external observations is proposed.
The proposed approach is based on recursive algorithms
of estimation and control under Bayesian approach. Il-
lustrative results of experiments with real measurements
including tests of adaptive control loop are presented.

Generally this research project aims at optimization of
fuel consumption both from the economical and ecological
points of view. It means ecological criteria are planned to
be introduced.

Future working plans of the project also includes exploita-
tion of setpoints for the recommended speed based on a
route identification. Approaching route elements (turns,
hills, speed-restricting road signs, crossings, etc.) are to
be identified in order to have time to change a speed
gradually. In this case, angle of rotating steering wheel
will be probably included in the control input vector.
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