
Model Considerations for Blind Soure Separa-tion of Medial Image SequenesOnd°ej Tihý∗3rd year of PGS, email: otihy�utia.as.zDepartment of MathematisFaulty of Nulear Sienes and Physial Engineering, CTU in Pragueadvisor: Válav �mídl, Institute of Information Theory and Automation,Department of Adaptive Systems, AS CRAbstrat. The problem of funtional analysis of medial image sequenes is studied. Theobtained images are assumed to be a superposition of images of underlying biologial organs.This is ommonly modeled as a Fator Analysis (FA) model. However, this model alone allowsfor biologially impossible solutions. Therefore, we seek additional biologially motivated as-sumptions that an be inorporated into the model to yield better solutions. In this paper, wereview additional assumptions suh as onvolution of time ativity, regions of interest seletion,and noise analysis. All these assumptions an be inorporated into the FA model and theirparameters estimated by the Variation Bayes estimation proedure. We ompare these assump-tions and disuss their in�uene on the resulting deomposition from diagnosti point of view.The algorithms are tested and demonstrated on real data from renal sintigraphy; however, themethodology an be used in any other imaging modality.Keywords: Blind Soure Separation, Fator Analysis, Convolution, Regions of Interest, ImageSequeneAbstrakt. V p°ísp¥vku je studován problém funk£ní analýzy obrazovýh sekvení v mediín¥.Získaný obraz je tvo°en superpozií obrázk· jednotlivýh orgán· ve snímané oblasti, oº je typ-iky modelováno jako model faktorové analýzy, který v²ak v základním tvaru dovoluje biolog-iky nesmysluplná °e²ení. Proto je studována moºnost zavést do modelu biologiky motivovanép°edpoklady. V tomto p°ísp¥vku je uveden p°ehled dosavadníh p°edpoklad·, konkrétn¥ kon-volu£ního modelu £asovýh k°ivek, automatiký výb¥r oblastí zájmu a analýza ²umu. Tytop°edpoklady jsou zabudovány do modelu faktorové analýzy, jehoº parametry jsou odhadoványpomoí Varia£ní Bayesovy metody. Jednotlivé modely jsou porovnány a je diskutován vliv p°ed-poklad· z hlediska diagnostiky. Algoritmy jsou testovány na reálnýh sintigra�kýh dateh,nimén¥ mohou být pouºity i v jinýh zobrazovaíh modalitáh.Klí£ová slova: Slepá Separae, Faktorová Analýza, Konvolue, Oblasti Zájmu, Obrazová Sekvene1 IntrodutionIn many imaging modalities, the original organs are not observed diretly but only viaobserving the ativity of radioative partiles and san of their superposition. In thispaper, we are onerned with modalities, where the images are superposed in all observed
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2pitures in the series. The task of soure separation is to reover the original images ofthe biologial organs (soures) from the observed images.One of the �rst methods of soure separation is Fator Analysis (FA). It has beenused in funtional medial imaging suh as sintigraphy, Positron Emission Tomography,or funtional Magneti Resonane Imaging [8℄. The fator analysis model is based ona simple assumption that the observed image is a linear ombination of the underlyingfator image weighted by its time-ativity urves. This model is also the basis of othermethods, suh as the Independent Component Analysis (ICA). The FA and ICA asmethods have the same basi model but di�er in additional assumptions.The additional assumptions has potential to hange the results signi�antly. If theyare justi�ed for the studied problem, they improve the results of separation. In medialimaging, the additional assumptions are needed to reover biologially meaningful solu-tions of the separation problem. One of the �rst additional assumptions was positivityof the images and the time-ativity urves [9℄. It omes from the physial meaning ofmeasurements of radioative partiles. However, even with this restrition, the model al-lows for biologially impossible solutions. Therefore, we seek additional assumptions andonstraints that restrit the spae of possible solutions to those with biologial meaning.However, the assumption must be also very general to allow for a great variability thatis exhibited by a living body.All assumptions are translated into parameters of a mathematial model, whih needsto be estimated from the data. We are onerned with Bayesian estimation, spei�ally byan approximate solution provided by the Variational Bayes approximation [12℄. It o�ersa reasonable ratio between possibilities of mathematial modeling and omputationaldi�ulties.2 Mathematial ModelsThe objetive is to analyze a sequene of n images obtained at time t = 1, . . . , n and storedin vetors dt with pixels staked olumnwise. The number of pixels in eah image is p, thus
dt ∈ R

p. The important assumption is that every observed image is a linear ombinationof r fator images, stored in vetors aj ∈ R
p, j = 1, . . . , r, using the same order of pixelsas in dt. The dimensions of the problem are typially ordered as r < n ≪ p. Eahfator image has its respetive time-ativity urve stored in vetor xj ∈ R

n, j = 1, . . . , r,
xj = [x1,j , . . . , xn,j]

′, x′ denotes transpose of vetor x. With these assumptions, the modelof Fator Analysis is:
dt =

r
∑

j=1

ajxt,j + et, (1)where vetor et denotes the noise of the t-th observed image. Note that vetors aj and
xj , are unknown and must be estimated from measurements dt so as the variane of anoise, ω.For the purpose of medial image analysis we already imposed restritions on theelements of the probabilisti model of FA (1): (i) all elements of the observed vetors
dt∈1,...,n are positive, (ii) all elements of the fator images aj∈1,...,r and the fator urves
xj∈1,...,r are also positive, and (iii) the number of relevant fators, r, is unknown. These



3assumptions are translated into probabilisti model as follows [12℄: the positivity in (i)and (ii) is imposed using trunation of priors of the parameters, i.e. d, a, and x, to thepositive numbers; and (iii) the number of fators is estimated using Automati RelevaneDetetion (ARD) proedure via hyper-parameters, see [2℄.Additional assumptions that are known about the problem are: (i) The time ativityurves represent �ow of �uids in the human body. The �ow is a result of di�erentpressures on the input and output of a biologial organ. The output �ow is then modeledas onvolution of the input �ow and onvolution kernel of the biologial organ. (ii)The biologial organ is overs only an area in the full image. When seleted manually,these areas are alled regions-of-interest. (iii) The noise within the observed image is notisotropi. Good model of the noise properties is required.These assumptions will be now desribed as parameters of mathematial models.Disussion of lassial methods for their estimation is also provided.2.1 Regions of InterestThe FA assumption of linear ombination (1) are typially not valid over the full sizeof the images but only in a limited area. This an be modeled by an indiator variablefor eah pixel of the fator image. Spei�ally, eah pixel of the jth fator, ai,j , has itsindiator variable ii,j whih is 1 if the ith pixel belongs to the jth fator and 0 if the ithpixel does not belong to the jth fator. One again, the indiator variable is unknownand must be estimated from the data.This task is also standard and the estimation of the indiator variable is known asseletion of Regions of Interest (ROI). This is often done manually and it is onsideredto be a neessary preproessing step of fator analysis after whih it yields muh betterresults [7℄. Several automati and semi-automati methods were proposed, however, theROI seletion is almost exlusively done by speialists in linial pratie. The inorretseletion of the ROI has signi�ant impat on the following fator analysis. Often, theROI must be seleted iteratively until an aeptable solution is found. This proedureis very time onsuming and strongly depends on the experiene of speialists and hosenmethod [4℄.2.2 Convolution ModelThe assumption that fator urve is a result of onvolution of an input funtion and akernel is well established [6℄. The kernels are organ-spei� and are useful in diagnostiparameters estimation [5℄. Illustration of the assumption is displayed in Fig. 1.Mathematially formulated, the time-ativity urve of the fth fator, xf , is modeledas
xt,f =

t
∑

m=1

bt−m+1um,f , (2)where b is the input ativity, ommon to all fators, and uf is the onvolution kernel ofthe fator. Following [6℄, we onsider the kernel elements um,t to be dereasing, henethey are modeled by a sum of non-negative inrements.
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Figure 1: Illustration of assumed shapes of urves in onvolution.Parameters of the model uj∈1,...,r and input urve b are unknown and must be esti-mated.Traditional methods of deonvolution are well established method in analysis of dy-nami medial image sequenes analysis [6℄. However, these methods require to know theinput urve b whih must be done manually.2.3 Noise ModelProperties of the noise et in (1) determine the quality of separation of the signal. Esti-mation of the noise properties and its elimination is a ruial step in medial imaging,[3℄. The noise may vary aross pixels, as well as in time. The noise et is assumed tobe generated from a Gaussian distribution with zero mean and variane σi,t whih maybe di�erent for eah pixel i and time t. The typial assumption of isotropi noise is
σi,t = ω−1, where ω is known as preision. However, it is unrealisti in many modalities.In general, the noise variane is also unknown and should be estimated from the observeddata.Classial methods estimate the noise properties using asymptoti analysis. An exam-ple is the orrespondene analysis approah [1℄, where

σi,t = ω−1

√

√

√

√

n
∑

τ=1

di,τ

p
∑

j=1

dj,t (3)with unknown preision ω. Correspondene analysis an be interpreted as preproessingof the data before the fator analysis algorithm.3 Variational Soure SeparationEstimation of parameters of the models desribed above an be ahieved using Bayesianapproah. The main advantage of this approah is its ability to determine also thenumber of relevant fators, r. In suh a ase, probabilisti formulation of the measurementmodel (1) must be omplemented by prior probabilities of all model parameters. Theestimates are obtained by appliation of the Bayes rule. Exat evaluation of the posteriordistribution is however intratable. Therefore, we use an approximate tehnique knownas the Variational Bayes method [12℄.



5We will illustrate the method on the basi model of the fator analysis (1). This modelan be written in matrix form D = AX ′ + E, where D = [d1, . . . ,dn], A = [a1, . . . , ar],and X = [x1, . . . ,xr]. The unknown parameters are matries A, X and salar ω. Theintratable posterior distribution is
f(A, X, ω|D) =

f(D|A, X, ω)f(A, X, ω)

f(D)
. (4)where f(A, X, ω) is the prior distribution.The Variational Bayes approximation is based on restrition of the posterior densityto the lass of onditionally independent distributions:

f(A, X, ω|D) ≡ f(A|D)f(X|D)f(ω|D). (5)Under this assumption, neessary onditions for approximate posterior distributions f(A|D),
f(X|D), and f(ω|D) minimizing Kullbak-Leibler divergene to the true posterior anbe found analytially [12℄. The posterior distributions are solutions of a set of impliitequations, typially obtained by an iterative algorithm.The Variational Bayes method has been applied to the FA model with positivityrestritions in [12℄, and also extended for unknown noise properties. Extension of themethod using the onvolution kernels is published in [11℄. The Variational solution forthe FA model with unknown ROI is presented in [10℄. These methods will be nowompared on real data and their results will be disussed from diagnosti point of view.4 ResultsThe methods will be tested on representative linial data sets from renal sintigraphy.At �rst, we brie�y desribe sintigraphy and biologial aspets of dynamis of kidneys.Then, we will disuss the results of the proposed models.4.1 Renal SintigraphySintigraphy is a well established and important diagnosti method in nulear mediine.We are onerned with planar dynami sintigraphy where the measurements are in theform of a sequene of images of the same sanned region of a body. Eah pixel in thesequene is a summation of radioative partiles oming from a whole part of the bodyunder the detetor. Therefore, eah pixel aumulates ativity from potentially manyfators. The fators has to be separated using a soure separation method suh as fatoranalysis.A healthy kidney is omposed of two main strutures, parenhyma and pelvis. Thereare two important spei� properties of a struture and dynami of these strutures: (i)the parenhyma is typially surrounding the whole kidney inluding the pelvis, and (ii)only the parenhyma is ative at the �rst 100− 180 seonds (depending on the patient'sstate) [5℄; this time is alled uptake. After the uptake time, the ativity passes fromparenhyma through pelvis to urinary bladder. Diagnosti parameters related to theuptake time are:



6PTT Parenhymal Transit Time (PTT) is the time from the beginning of the sequeneto that when pelves are ativated.RRF Relative Renal Funtion (RRF) an be estimated from an ativity in the left (L)and in the right (R) parenhyma as relL = L
R+L

× 100. Historially, the ativity istaken only from the uptake time.If the assumptions (i) and (ii) are not satis�ed, the fator separation is inompleteand ould ause signi�ant error in diagnostis. There ould be some exeptions in aseof abnormal or harmed kidney, this ase must be arefully onsidered by physiians.4.2 Fator AnalysisThe basi model of fator analysis from setion 2 was applied to a seleted linial dataset from dynami renal sintigraphy. The sequene is omposed of 180 images taken aftereah 10 seonds. The size of eah image is 128 × 128 pixels.Four fators were found to be relevant using ARD; however, we shown six fators forfollowing omparison. The results are shown in Fig. 2, on the left side.The estimates of blood and tissue bakground, the �rst and the third fators, are rea-sonable. The main issue of these results is in a bad separation of parenhyma and pelves,the seond fator. There are pelves, dark strutures in the inner bound of parenhyma,mixed with the whole parenhyma overing the whole kidneys. Consequently, fatorurves of parenhyma and pelves are superposed in this fator too.Due to the bad separation of the most important strutures in our task, we are notable to estimate the PTT.4.3 Fator Analysis with Regions of InterestThe fator analysis with integrated estimation of regions of interest (FAROI), setion 2.1,is applied to the same sequene as in the previous setion. The results are shown in Fig.2, right. The fators are displayed in the same order as in ase of the FA.The main di�erene between the FA and FAROI algorithms is in separation of parenhymaand pelves. In ontrast to the FA algorithm, the FAROI algorithm separated pelves asan independent fator. The assumption of the zero plateau in the beginning of the urveis well satis�ed; hene, the diagnosti oe�ient PTT ould be easily estimated from thisresult. In this ase, PTT = 130 seonds.The seond fator, parenhyma, is well separated from pelves; however, the resultingfator image su�er from bad separation from the tissue bakground. This fat is due tothe similar shape of ativities of the strutures. The sixth fator seems to be an artifat,a residual ativity of the urinal proess.We stress that FAROI algorithm, in general, provides omparable or better resultthen the basi FA algorithm without additional assumptions.4.4 Fator Analysis with ConvolutionThe assumption of the onvolution model from setion 2.2 is not valid for the whole se-quene but well satis�ed for the uptake part of a sequene, where only blood, parenhyma,
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Figure 2: Results from the FA (left) and FAROI (right) models. In the ase of FAmodel, there are (from the top): heart, parenhyma mixed with pelves, lungs and tissuebakground, dummy fator, urinary bladder, and dummy fator. Estimated fator imagesare in the �rst olumn and estimated fator urves are in the seond olumn. Results fromthe FAROI algorithm, setion II.A., are in the right. There are (from the top): heart,parenhyma, lungs and tissue bakground, pelves, urinary bladder, and tissue artifat.Estimated parameters are: ROI in the left olumn, fator images in the middle olumn,and fator urves in the right olumn.and tissue bakground are ativated. This limitation is due to the assumed shape of theonvolution kernel of biologial strutures. The shape in Fig. 1, right, is valid onlyfor strutures ativated from the beginning of the sequene, e.g. not for the pelves andurinary bladder. Hene, we applied the FA ombined with onvolution model of fatorurves (CFA) only on uptake part of the sequene. The number of images in the up-take part an be estimated using FA or FAROI algorithms automatially. This task isvery important part of diagnosis. Here, the parenhyma should be separated from theblood and the tissue bakgrounds. After that, the Relative Renal Funtion (RRF) anbe estimated, see setion 4.1.
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Figure 3: Results from the FA (left), CFA (middle), and FAROI (left) models are shownon the uptake part of the sequene (data set IM3). Estimative proedures estimated ineah ase three fators (from the top): blood bakground, parenhyma, and tissue bak-ground. In olumns are shown (from the left to the right): FA: fator images and fatorurves; CFA: fator images, fator urves, and estimated onvolution kernels; FAROI:estimated ROI, fator images, and fator urves.Table 1: Comparison of estimates of RRF oe�ient of the left kidney obtained by expert,FA, CFA and FAROI algorithms.data expert FA CFA FAROIIM1 28%-31% 34% 29% 30%IM2 69%-76% 93% 75% 81%IM3 48%-51% 48% 49% 49%The RRF determination is typially performed by an expert using various sets of toolsinluding manually ROI seletion, deonvolution, or FA. For our experiment, we roughlyseleted retangular ROI around the kidneys and then ran the FA, CFA, and FAROIalgorithms on this narrow sequenes.We applied the CFA model on three seleted linial data sets from renal sintigraphy:one set with healthy kidneys (IM3) and two data sets with pathologial kidneys (IM1 andIM2). The sequenes are omposed of images taken after every 10 seonds. Here, the sizeof eah image is 64 × 64 pixels.Results of the methods are shown in Tab. 1. For the healthy kidneys (data set IM3),all methods provide omparable estimates orresponding to expert values. Results aredi�erent in the ase of pathologial kidneys (data sets IM1 and IM2). Here, the CFAalgorithm provides more reasonable results then the FA and FAROI algorithms due tobetter bakground separation from parenhyma, espeially for very harmed kidneys (e.g.data set IM2).An example of results of the algorithms is shown in Fig. 3. For illustration, thereare shown results from the whole images, not only for retangular parts. The ARDproedures estimated in eah ase three fators. Fator urves are slightly di�erent and



9as we an see on omparison of the seond fator, the ativity of parenhyma by the CFAalgorithm su�er from the non-zero start. It is aused by inaurate parametrization ofthe onvolution kernels, Fig. 1. Fator images are omparable; however, a di�erene isin separation of parenhyma from tissue bakgrounds. The bakground ativity is wellestimated by the CFA algorithm in ontrast to the FA or FAROI algorithms where theativity is slightly oversubstrated.A omparison of the FA and CFA algorithms was given in [11℄. Generaly, the CFAalgorithm provides more relevant estimations of the RRF oe�ient then the FA algo-rithm due to the better separation of parenhyma and blood bakground. The FAROIalgorithm gives promising results, the estimates of the RRF is lose to that from an ex-pert; however, the issue with bakground separation is still not orreted. Note that thedi�erene between the algorithms is more signi�ant espeially by harmed kidneys.4.5 Notes on Noise EstimationCorrespondene analysis from setion 2.3 is used in presented algorithms as a preproess-ing step. Without this step, there are inorretness of the bakground separation.Various method for online noise-parameters estimation were studied [12℄; however, theresults are not so di�erent from the used orrespondene analysis on typial data sets.Hene, we reommend it for its reasonable results and omputational low ost.5 ConlusionIn this ontribution, we summarize various extensions of the model of the fator analysis(FA) for medial image sequenes analysis. The extensions of noise, the onvolutionassumption, and the regions of interest estimation were studied. It is shown that fatoranalysis provides more physiologially reasonable results with additional, biologially-motivated, extensions.We disussed the estimation of two diagnosti parameters: parenhymal transit time(PTT) and relative renal funtion (RRF). For the purpose of PTT estimation, we om-pared the basi model of FA and the model of FA with regions of interest estimation(FAROI). The FAROI algorithm provides more biologially reasonable results then theFA algorithm. The main di�erene an be seen on separation of parenhyma and pelveswhere the FAROI outperforms the FA algorithm. In the ase of RRF estimation, we om-pared FA, FA with onvolution (CFA), and FAROI algorithms with estimates providedby an expert. It is shown that the results are similar for healthy kidneys; however, theCFA algorithm provides better results then the other methods on harmed kidneys. Notethat all proposed algorithms exploit orrespondene analysis as a preproessing step andautomati relevane determination for signi�ant fators seletion. Moreover, we stressthat all proposed proedures provide results automatially, without exessive interventionof an expert.The models were tested on the data from renal sintigraphy; however, the resultingalgorithms an be applied in other imaging modalities.
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