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ally motivated as-sumptions that 
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orporated into the model to yield better solutions. In this paper, wereview additional assumptions su
h as 
onvolution of time a
tivity, regions of interest sele
tion,and noise analysis. All these assumptions 
an be in
orporated into the FA model and theirparameters estimated by the Variation Bayes estimation pro
edure. We 
ompare these assump-tions and dis
uss their in�uen
e on the resulting de
omposition from diagnosti
 point of view.The algorithms are tested and demonstrated on real data from renal s
intigraphy; however, themethodology 
an be used in any other imaging modality.Keywords: Blind Sour
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eAbstrakt. V p°ísp¥vku je studován problém funk£ní analýzy obrazový
h sekven
í v medi
ín¥.Získaný obraz je tvo°en superpozi
í obrázk· jednotlivý
h orgán· ve snímané oblasti, 
oº je typ-i
ky modelováno jako model faktorové analýzy, který v²ak v základním tvaru dovoluje biolog-i
ky nesmysluplná °e²ení. Proto je studována moºnost zavést do modelu biologi
ky motivovanép°edpoklady. V tomto p°ísp¥vku je uveden p°ehled dosavadní
h p°edpoklad·, konkrétn¥ kon-volu£ního modelu £asový
h k°ivek, automati
ký výb¥r oblastí zájmu a analýza ²umu. Tytop°edpoklady jsou zabudovány do modelu faktorové analýzy, jehoº parametry jsou odhadoványpomo
í Varia£ní Bayesovy metody. Jednotlivé modely jsou porovnány a je diskutován vliv p°ed-poklad· z hlediska diagnostiky. Algoritmy jsou testovány na reálný
h s
intigra�
ký
h date
h,ni
mén¥ mohou být pouºity i v jiný
h zobrazova
í
h modalitá
h.Klí£ová slova: Slepá Separa
e, Faktorová Analýza, Konvolu
e, Oblasti Zájmu, Obrazová Sekven
e1 Introdu
tionIn many imaging modalities, the original organs are not observed dire
tly but only viaobserving the a
tivity of radioa
tive parti
les and s
an of their superposition. In thispaper, we are 
on
erned with modalities, where the images are superposed in all observed
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2pi
tures in the series. The task of sour
e separation is to re
over the original images ofthe biologi
al organs (sour
es) from the observed images.One of the �rst methods of sour
e separation is Fa
tor Analysis (FA). It has beenused in fun
tional medi
al imaging su
h as s
intigraphy, Positron Emission Tomography,or fun
tional Magneti
 Resonan
e Imaging [8℄. The fa
tor analysis model is based ona simple assumption that the observed image is a linear 
ombination of the underlyingfa
tor image weighted by its time-a
tivity 
urves. This model is also the basis of othermethods, su
h as the Independent Component Analysis (ICA). The FA and ICA asmethods have the same basi
 model but di�er in additional assumptions.The additional assumptions has potential to 
hange the results signi�
antly. If theyare justi�ed for the studied problem, they improve the results of separation. In medi
alimaging, the additional assumptions are needed to re
over biologi
ally meaningful solu-tions of the separation problem. One of the �rst additional assumptions was positivityof the images and the time-a
tivity 
urves [9℄. It 
omes from the physi
al meaning ofmeasurements of radioa
tive parti
les. However, even with this restri
tion, the model al-lows for biologi
ally impossible solutions. Therefore, we seek additional assumptions and
onstraints that restri
t the spa
e of possible solutions to those with biologi
al meaning.However, the assumption must be also very general to allow for a great variability thatis exhibited by a living body.All assumptions are translated into parameters of a mathemati
al model, whi
h needsto be estimated from the data. We are 
on
erned with Bayesian estimation, spe
i�
ally byan approximate solution provided by the Variational Bayes approximation [12℄. It o�ersa reasonable ratio between possibilities of mathemati
al modeling and 
omputationaldi�
ulties.2 Mathemati
al ModelsThe obje
tive is to analyze a sequen
e of n images obtained at time t = 1, . . . , n and storedin ve
tors dt with pixels sta
ked 
olumnwise. The number of pixels in ea
h image is p, thus
dt ∈ R

p. The important assumption is that every observed image is a linear 
ombinationof r fa
tor images, stored in ve
tors aj ∈ R
p, j = 1, . . . , r, using the same order of pixelsas in dt. The dimensions of the problem are typi
ally ordered as r < n ≪ p. Ea
hfa
tor image has its respe
tive time-a
tivity 
urve stored in ve
tor xj ∈ R

n, j = 1, . . . , r,
xj = [x1,j , . . . , xn,j]

′, x′ denotes transpose of ve
tor x. With these assumptions, the modelof Fa
tor Analysis is:
dt =

r
∑

j=1

ajxt,j + et, (1)where ve
tor et denotes the noise of the t-th observed image. Note that ve
tors aj and
xj , are unknown and must be estimated from measurements dt so as the varian
e of anoise, ω.For the purpose of medi
al image analysis we already imposed restri
tions on theelements of the probabilisti
 model of FA (1): (i) all elements of the observed ve
tors
dt∈1,...,n are positive, (ii) all elements of the fa
tor images aj∈1,...,r and the fa
tor 
urves
xj∈1,...,r are also positive, and (iii) the number of relevant fa
tors, r, is unknown. These



3assumptions are translated into probabilisti
 model as follows [12℄: the positivity in (i)and (ii) is imposed using trun
ation of priors of the parameters, i.e. d, a, and x, to thepositive numbers; and (iii) the number of fa
tors is estimated using Automati
 Relevan
eDete
tion (ARD) pro
edure via hyper-parameters, see [2℄.Additional assumptions that are known about the problem are: (i) The time a
tivity
urves represent �ow of �uids in the human body. The �ow is a result of di�erentpressures on the input and output of a biologi
al organ. The output �ow is then modeledas 
onvolution of the input �ow and 
onvolution kernel of the biologi
al organ. (ii)The biologi
al organ is 
overs only an area in the full image. When sele
ted manually,these areas are 
alled regions-of-interest. (iii) The noise within the observed image is notisotropi
. Good model of the noise properties is required.These assumptions will be now des
ribed as parameters of mathemati
al models.Dis
ussion of 
lassi
al methods for their estimation is also provided.2.1 Regions of InterestThe FA assumption of linear 
ombination (1) are typi
ally not valid over the full sizeof the images but only in a limited area. This 
an be modeled by an indi
ator variablefor ea
h pixel of the fa
tor image. Spe
i�
ally, ea
h pixel of the jth fa
tor, ai,j , has itsindi
ator variable ii,j whi
h is 1 if the ith pixel belongs to the jth fa
tor and 0 if the ithpixel does not belong to the jth fa
tor. On
e again, the indi
ator variable is unknownand must be estimated from the data.This task is also standard and the estimation of the indi
ator variable is known assele
tion of Regions of Interest (ROI). This is often done manually and it is 
onsideredto be a ne
essary prepro
essing step of fa
tor analysis after whi
h it yields mu
h betterresults [7℄. Several automati
 and semi-automati
 methods were proposed, however, theROI sele
tion is almost ex
lusively done by spe
ialists in 
lini
al pra
ti
e. The in
orre
tsele
tion of the ROI has signi�
ant impa
t on the following fa
tor analysis. Often, theROI must be sele
ted iteratively until an a

eptable solution is found. This pro
edureis very time 
onsuming and strongly depends on the experien
e of spe
ialists and 
hosenmethod [4℄.2.2 Convolution ModelThe assumption that fa
tor 
urve is a result of 
onvolution of an input fun
tion and akernel is well established [6℄. The kernels are organ-spe
i�
 and are useful in diagnosti
parameters estimation [5℄. Illustration of the assumption is displayed in Fig. 1.Mathemati
ally formulated, the time-a
tivity 
urve of the fth fa
tor, xf , is modeledas
xt,f =

t
∑

m=1

bt−m+1um,f , (2)where b is the input a
tivity, 
ommon to all fa
tors, and uf is the 
onvolution kernel ofthe fa
tor. Following [6℄, we 
onsider the kernel elements um,t to be de
reasing, hen
ethey are modeled by a sum of non-negative in
rements.
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Figure 1: Illustration of assumed shapes of 
urves in 
onvolution.Parameters of the model uj∈1,...,r and input 
urve b are unknown and must be esti-mated.Traditional methods of de
onvolution are well established method in analysis of dy-nami
 medi
al image sequen
es analysis [6℄. However, these methods require to know theinput 
urve b whi
h must be done manually.2.3 Noise ModelProperties of the noise et in (1) determine the quality of separation of the signal. Esti-mation of the noise properties and its elimination is a 
ru
ial step in medi
al imaging,[3℄. The noise may vary a
ross pixels, as well as in time. The noise et is assumed tobe generated from a Gaussian distribution with zero mean and varian
e σi,t whi
h maybe di�erent for ea
h pixel i and time t. The typi
al assumption of isotropi
 noise is
σi,t = ω−1, where ω is known as pre
ision. However, it is unrealisti
 in many modalities.In general, the noise varian
e is also unknown and should be estimated from the observeddata.Classi
al methods estimate the noise properties using asymptoti
 analysis. An exam-ple is the 
orresponden
e analysis approa
h [1℄, where

σi,t = ω−1

√

√

√

√

n
∑

τ=1

di,τ

p
∑

j=1

dj,t (3)with unknown pre
ision ω. Corresponden
e analysis 
an be interpreted as prepro
essingof the data before the fa
tor analysis algorithm.3 Variational Sour
e SeparationEstimation of parameters of the models des
ribed above 
an be a
hieved using Bayesianapproa
h. The main advantage of this approa
h is its ability to determine also thenumber of relevant fa
tors, r. In su
h a 
ase, probabilisti
 formulation of the measurementmodel (1) must be 
omplemented by prior probabilities of all model parameters. Theestimates are obtained by appli
ation of the Bayes rule. Exa
t evaluation of the posteriordistribution is however intra
table. Therefore, we use an approximate te
hnique knownas the Variational Bayes method [12℄.



5We will illustrate the method on the basi
 model of the fa
tor analysis (1). This model
an be written in matrix form D = AX ′ + E, where D = [d1, . . . ,dn], A = [a1, . . . , ar],and X = [x1, . . . ,xr]. The unknown parameters are matri
es A, X and s
alar ω. Theintra
table posterior distribution is
f(A, X, ω|D) =

f(D|A, X, ω)f(A, X, ω)

f(D)
. (4)where f(A, X, ω) is the prior distribution.The Variational Bayes approximation is based on restri
tion of the posterior densityto the 
lass of 
onditionally independent distributions:

f(A, X, ω|D) ≡ f(A|D)f(X|D)f(ω|D). (5)Under this assumption, ne
essary 
onditions for approximate posterior distributions f(A|D),
f(X|D), and f(ω|D) minimizing Kullba
k-Leibler divergen
e to the true posterior 
anbe found analyti
ally [12℄. The posterior distributions are solutions of a set of impli
itequations, typi
ally obtained by an iterative algorithm.The Variational Bayes method has been applied to the FA model with positivityrestri
tions in [12℄, and also extended for unknown noise properties. Extension of themethod using the 
onvolution kernels is published in [11℄. The Variational solution forthe FA model with unknown ROI is presented in [10℄. These methods will be now
ompared on real data and their results will be dis
ussed from diagnosti
 point of view.4 ResultsThe methods will be tested on representative 
lini
al data sets from renal s
intigraphy.At �rst, we brie�y des
ribe s
intigraphy and biologi
al aspe
ts of dynami
s of kidneys.Then, we will dis
uss the results of the proposed models.4.1 Renal S
intigraphyS
intigraphy is a well established and important diagnosti
 method in nu
lear medi
ine.We are 
on
erned with planar dynami
 s
intigraphy where the measurements are in theform of a sequen
e of images of the same s
anned region of a body. Ea
h pixel in thesequen
e is a summation of radioa
tive parti
les 
oming from a whole part of the bodyunder the dete
tor. Therefore, ea
h pixel a

umulates a
tivity from potentially manyfa
tors. The fa
tors has to be separated using a sour
e separation method su
h as fa
toranalysis.A healthy kidney is 
omposed of two main stru
tures, paren
hyma and pelvis. Thereare two important spe
i�
 properties of a stru
ture and dynami
 of these stru
tures: (i)the paren
hyma is typi
ally surrounding the whole kidney in
luding the pelvis, and (ii)only the paren
hyma is a
tive at the �rst 100− 180 se
onds (depending on the patient'sstate) [5℄; this time is 
alled uptake. After the uptake time, the a
tivity passes fromparen
hyma through pelvis to urinary bladder. Diagnosti
 parameters related to theuptake time are:



6PTT Paren
hymal Transit Time (PTT) is the time from the beginning of the sequen
eto that when pelves are a
tivated.RRF Relative Renal Fun
tion (RRF) 
an be estimated from an a
tivity in the left (L)and in the right (R) paren
hyma as relL = L
R+L

× 100. Histori
ally, the a
tivity istaken only from the uptake time.If the assumptions (i) and (ii) are not satis�ed, the fa
tor separation is in
ompleteand 
ould 
ause signi�
ant error in diagnosti
s. There 
ould be some ex
eptions in 
aseof abnormal or harmed kidney, this 
ase must be 
arefully 
onsidered by physi
ians.4.2 Fa
tor AnalysisThe basi
 model of fa
tor analysis from se
tion 2 was applied to a sele
ted 
lini
al dataset from dynami
 renal s
intigraphy. The sequen
e is 
omposed of 180 images taken afterea
h 10 se
onds. The size of ea
h image is 128 × 128 pixels.Four fa
tors were found to be relevant using ARD; however, we shown six fa
tors forfollowing 
omparison. The results are shown in Fig. 2, on the left side.The estimates of blood and tissue ba
kground, the �rst and the third fa
tors, are rea-sonable. The main issue of these results is in a bad separation of paren
hyma and pelves,the se
ond fa
tor. There are pelves, dark stru
tures in the inner bound of paren
hyma,mixed with the whole paren
hyma 
overing the whole kidneys. Consequently, fa
tor
urves of paren
hyma and pelves are superposed in this fa
tor too.Due to the bad separation of the most important stru
tures in our task, we are notable to estimate the PTT.4.3 Fa
tor Analysis with Regions of InterestThe fa
tor analysis with integrated estimation of regions of interest (FAROI), se
tion 2.1,is applied to the same sequen
e as in the previous se
tion. The results are shown in Fig.2, right. The fa
tors are displayed in the same order as in 
ase of the FA.The main di�eren
e between the FA and FAROI algorithms is in separation of paren
hymaand pelves. In 
ontrast to the FA algorithm, the FAROI algorithm separated pelves asan independent fa
tor. The assumption of the zero plateau in the beginning of the 
urveis well satis�ed; hen
e, the diagnosti
 
oe�
ient PTT 
ould be easily estimated from thisresult. In this 
ase, PTT = 130 se
onds.The se
ond fa
tor, paren
hyma, is well separated from pelves; however, the resultingfa
tor image su�er from bad separation from the tissue ba
kground. This fa
t is due tothe similar shape of a
tivities of the stru
tures. The sixth fa
tor seems to be an artifa
t,a residual a
tivity of the urinal pro
ess.We stress that FAROI algorithm, in general, provides 
omparable or better resultthen the basi
 FA algorithm without additional assumptions.4.4 Fa
tor Analysis with ConvolutionThe assumption of the 
onvolution model from se
tion 2.2 is not valid for the whole se-quen
e but well satis�ed for the uptake part of a sequen
e, where only blood, paren
hyma,
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Figure 2: Results from the FA (left) and FAROI (right) models. In the 
ase of FAmodel, there are (from the top): heart, paren
hyma mixed with pelves, lungs and tissueba
kground, dummy fa
tor, urinary bladder, and dummy fa
tor. Estimated fa
tor imagesare in the �rst 
olumn and estimated fa
tor 
urves are in the se
ond 
olumn. Results fromthe FAROI algorithm, se
tion II.A., are in the right. There are (from the top): heart,paren
hyma, lungs and tissue ba
kground, pelves, urinary bladder, and tissue artifa
t.Estimated parameters are: ROI in the left 
olumn, fa
tor images in the middle 
olumn,and fa
tor 
urves in the right 
olumn.and tissue ba
kground are a
tivated. This limitation is due to the assumed shape of the
onvolution kernel of biologi
al stru
tures. The shape in Fig. 1, right, is valid onlyfor stru
tures a
tivated from the beginning of the sequen
e, e.g. not for the pelves andurinary bladder. Hen
e, we applied the FA 
ombined with 
onvolution model of fa
tor
urves (CFA) only on uptake part of the sequen
e. The number of images in the up-take part 
an be estimated using FA or FAROI algorithms automati
ally. This task isvery important part of diagnosis. Here, the paren
hyma should be separated from theblood and the tissue ba
kgrounds. After that, the Relative Renal Fun
tion (RRF) 
anbe estimated, see se
tion 4.1.
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Figure 3: Results from the FA (left), CFA (middle), and FAROI (left) models are shownon the uptake part of the sequen
e (data set IM3). Estimative pro
edures estimated inea
h 
ase three fa
tors (from the top): blood ba
kground, paren
hyma, and tissue ba
k-ground. In 
olumns are shown (from the left to the right): FA: fa
tor images and fa
tor
urves; CFA: fa
tor images, fa
tor 
urves, and estimated 
onvolution kernels; FAROI:estimated ROI, fa
tor images, and fa
tor 
urves.Table 1: Comparison of estimates of RRF 
oe�
ient of the left kidney obtained by expert,FA, CFA and FAROI algorithms.data expert FA CFA FAROIIM1 28%-31% 34% 29% 30%IM2 69%-76% 93% 75% 81%IM3 48%-51% 48% 49% 49%The RRF determination is typi
ally performed by an expert using various sets of toolsin
luding manually ROI sele
tion, de
onvolution, or FA. For our experiment, we roughlysele
ted re
tangular ROI around the kidneys and then ran the FA, CFA, and FAROIalgorithms on this narrow sequen
es.We applied the CFA model on three sele
ted 
lini
al data sets from renal s
intigraphy:one set with healthy kidneys (IM3) and two data sets with pathologi
al kidneys (IM1 andIM2). The sequen
es are 
omposed of images taken after every 10 se
onds. Here, the sizeof ea
h image is 64 × 64 pixels.Results of the methods are shown in Tab. 1. For the healthy kidneys (data set IM3),all methods provide 
omparable estimates 
orresponding to expert values. Results aredi�erent in the 
ase of pathologi
al kidneys (data sets IM1 and IM2). Here, the CFAalgorithm provides more reasonable results then the FA and FAROI algorithms due tobetter ba
kground separation from paren
hyma, espe
ially for very harmed kidneys (e.g.data set IM2).An example of results of the algorithms is shown in Fig. 3. For illustration, thereare shown results from the whole images, not only for re
tangular parts. The ARDpro
edures estimated in ea
h 
ase three fa
tors. Fa
tor 
urves are slightly di�erent and



9as we 
an see on 
omparison of the se
ond fa
tor, the a
tivity of paren
hyma by the CFAalgorithm su�er from the non-zero start. It is 
aused by ina

urate parametrization ofthe 
onvolution kernels, Fig. 1. Fa
tor images are 
omparable; however, a di�eren
e isin separation of paren
hyma from tissue ba
kgrounds. The ba
kground a
tivity is wellestimated by the CFA algorithm in 
ontrast to the FA or FAROI algorithms where thea
tivity is slightly oversubstra
ted.A 
omparison of the FA and CFA algorithms was given in [11℄. Generaly, the CFAalgorithm provides more relevant estimations of the RRF 
oe�
ient then the FA algo-rithm due to the better separation of paren
hyma and blood ba
kground. The FAROIalgorithm gives promising results, the estimates of the RRF is 
lose to that from an ex-pert; however, the issue with ba
kground separation is still not 
orre
ted. Note that thedi�eren
e between the algorithms is more signi�
ant espe
ially by harmed kidneys.4.5 Notes on Noise EstimationCorresponden
e analysis from se
tion 2.3 is used in presented algorithms as a prepro
ess-ing step. Without this step, there are in
orre
tness of the ba
kground separation.Various method for online noise-parameters estimation were studied [12℄; however, theresults are not so di�erent from the used 
orresponden
e analysis on typi
al data sets.Hen
e, we re
ommend it for its reasonable results and 
omputational low 
ost.5 Con
lusionIn this 
ontribution, we summarize various extensions of the model of the fa
tor analysis(FA) for medi
al image sequen
es analysis. The extensions of noise, the 
onvolutionassumption, and the regions of interest estimation were studied. It is shown that fa
toranalysis provides more physiologi
ally reasonable results with additional, biologi
ally-motivated, extensions.We dis
ussed the estimation of two diagnosti
 parameters: paren
hymal transit time(PTT) and relative renal fun
tion (RRF). For the purpose of PTT estimation, we 
om-pared the basi
 model of FA and the model of FA with regions of interest estimation(FAROI). The FAROI algorithm provides more biologi
ally reasonable results then theFA algorithm. The main di�eren
e 
an be seen on separation of paren
hyma and pelveswhere the FAROI outperforms the FA algorithm. In the 
ase of RRF estimation, we 
om-pared FA, FA with 
onvolution (CFA), and FAROI algorithms with estimates providedby an expert. It is shown that the results are similar for healthy kidneys; however, theCFA algorithm provides better results then the other methods on harmed kidneys. Notethat all proposed algorithms exploit 
orresponden
e analysis as a prepro
essing step andautomati
 relevan
e determination for signi�
ant fa
tors sele
tion. Moreover, we stressthat all proposed pro
edures provide results automati
ally, without ex
essive interventionof an expert.The models were tested on the data from renal s
intigraphy; however, the resultingalgorithms 
an be applied in other imaging modalities.
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