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The existence of a common quadratic Lyapunov function (CQLF) for a switched linear system guarantees its
global asymptotic stability. Even if progress in finding the conditions for the existence/non-existence of a CQLF
is significant, especially in switched linear systems consisting of N second-order systems or two systems of order
n, the general case of N systems of order n still remains open. In this article, a sufficient condition for the non-
existence of a CQLF for N systems of order n is derived. Based on the condition, a new method for determining
the non-existence of a CQLF, using particle swarm optimisation, was designed and is described. Examples
illustrating the proposed method are introduced at the end of this article.
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1. Introduction

Linear dynamical systems that evolve by switching
among several matrices of evolution via a commuta-
tion rule are called switched linear systems (SLS’s).
Such systems can be defined, as in Shorten, Wirth,
Mason, Wulff, and King (2007), as follows:

_x tð Þ ¼ A& tð Þx tð Þ, A& tð Þ 2 A :¼ A1,A2, . . . ,ANf g, ð1Þ

where Ai2R
n�n, i¼ 1, 2, . . . ,N are constant and

Hurwitz matrices (eigenvalues in the open left half-
plane of the complex plane). The value of the A&(t)
matrix depends on the value of the function &(t):
[0,1)! {1, 2, . . . ,N}, called the switching signal,
which is a piecewise constant function with a finite
number of discontinuities (switching times) in any
bounded time interval. Thus, A&(t) takes constant
values from the set A on every interval defined between
two consecutive switching times (Shorten et al. 2007;
Lin and Antsaklis 2009).

It is known that the subsystems’ stability does not
guarantee the stability of the whole switched system
under arbitrary switching (Figure 1), and therefore it is
necessary to analyse the stability of the whole switched
system. In the case of SLS’s, an important stability
issue is related to the existence of common Lyapunov
functions. More particularly, the existence of a
common quadratic Lyapunov function (CQLF) for a
set of linear systems forming an SLS guarantees the

stability of the switched system under an arbitrary

switching rule (Liberzon 2003; Lin and Antsaklis
2009). Some application examples of the CQLF

approach may be found in Cheng and Zhang (2006)

for continuous time and Benzaouia, Akhrif, and Saydy

(2010) and Benzaouia, Hmamed, Tadeo, and Hajjaji
(2011) for discrete time.

There are several studies concerning the existence/

non-existence conditions of a CQLF (Lin and

Antsaklis 2009). However, as far as the problem of

determining general conditions for the existence/non-
existence of a CQLF, and their calculation by an

effective method are concerned, the problem has not

been solved completely to date.
In Narendra and Balakrishnan (1994) the general

case, when the Lie bracket is equal to zero, is studied
and it is shown that the commutativity of two matrices

is a sufficient condition for their sharing of a CQLF.

The analysis presented therein has resulted in an

algorithm (referred here to as the NB-Algorithm) for

finding such a CQLF. This algorithm has also been
successfully applied to (1) where the N matrices

commute pairwise. Later in Zhu, Cheng, and Qin

(2007), the scope of the NB-Algorithm is expanded to

the case in which the Lie brackets are represented by
linear combinations of their arguments, which of

course imposes certain conditions upon the combina-

tion coefficients.
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In general, establishing conditions for the existence/

non-existence of a CQLF usually begins with an

analysis of a pair of matrices and then tries to extend

the obtained results to a set of N matrices.

Approximately a decade ago, a promising conjecture

regarding the positive systems was presented in Mason

and Shorten (2003). Unfortunately, a recent work

(Gurvits, Shorten, and Mason 2007) shows that the

conjecture is not valid in the general case; it has been

verified as valid just in the case of N positive systems of

dimension 2� 2. The SLS’s formed by triangular or

simultaneously triangularisable subsystems (Mori,

Mori, and Kuroe 1997; Shorten and Narendra 1998;

Ibeas and De la Sen 2009) are examples of a sufficient

condition for the existence of a CQLF, which are non-

restrictive with respect to the order or the number of

systems to be analysed, but they form quite restrictive

conditions with respect to the systems’ structure, or

existence of a common transformation matrix,

respectively.
One of the most important results concerning the

CQLF problem is the general solution for N second-

order systems (Shorten and Narendra 2002), except for

the constraint a21i 6¼ 0 8i2 {1, . . . ,N}. In Shorten and

Narendra (2002) the two main authors’ results in the

area are shown. First, a general and elegant solution to

the case of pairs of matrices is shown; this first result is

based on the stability analysis of the convex linear

combination (CLC) of two systems. Second, the case of

N systems of second order is approached using Helly’s

theorem. Although both analyses are based on differ-

ent approaches, it can be said that the case of second-

order systems has complete analytical solution as far as

the existence problem of CQLF is concerned.
There are other types of analyses that can be

applied to pairs of matrices (see, for instance, Shorten

and Narendra 2003; King and Nathanson 2006; Laffey

and Smigoc 2009). In King and Nathanson (2006) and

Laffey and Smigoc (2009) the pairs of matrices whose

difference is of rank 1 are studied. The pairs of

matrices that are in the companion form (Shorten and

Narendra 2003) also belong to that class of matrices.

Nevertheless, in Shorten and Narendra (2003), King

and Nathanson (2006) and Laffey and Smigoc (2009) a

very simple algebraic sufficient condition ensuring the

existence of a pairwise CQLF is established. There are

even more restrictive cases, e.g. when the order and

number of matrices are fixed (King and Shorten 2006),

wherein a necessary and sufficient condition for the

non-existence of a CQLF for pairs of third-order

systems are obtained by analysing CLCs of their

evolution matrices and their inverses. Several other

approaches have been used to solve the CQLF problem

(Shorten, Narendra, and Mason 2003; Shorten,

Mason, Cairbre, and Curran 2004; Shorten et al.

2007; Moldovan and Seetharama 2009), and one can

observe that most of the approaches impose certain

constrains upon the order of the systems, the number

of subsystems or use some other special properties (e.g.

the rank of the difference, commutativity).
Under the scenario of numeric solutions, an inter-

esting solution to the general case of N system of order

n is presented in Cheng, Guo, and Huang (2003).

Therein, a method for determining the existence of a

CQLF, which is based on a necessary and sufficient

condition related to the positivity of a given integral, is

proposed. Even though the method is stated for the

general case, only the case of second-order systems is

developed and proved in detail. Methods based on

numeric optimisation have been designed for the

computation of a CQLF. The most relevant are: a

method for finding a CQLF based on the resolution of

LMI systems (Boyd, El Ghaoui, Feron, and

Balakrishnan 1994) by using, e.g., a Matlab toolbox

(LMI approach); a method for finding a CQLF based

on gradient (Liberzon and Tempo 2003) (L-T

approach) and a method for finding a CQLF based

on swarm intelligence (Ordóñez-Hurtado and Duarte-

Mermoud 2012) (O-D approach). Although the exis-

tence of a CQLF is a guarantee of asymptotic stability

for a given switched system, it is also important to

determine when a CQLF cannot exist. In this sense

(a) (b) (c) (d)

Figure 1. Example of phase diagrams of the switching between two stable second-order systems (Liberzon 2003): (a) first system;
(b) second system; (c) stable switching; (d) unstable switching.
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such approaches fail because a final non-feasible
solution does not imply that a feasible solution
cannot exist, since the successful of the searching
process depends on a good tuning of configuration
parameters. However, there exist some methods
focused to the numeric determination of the non-
existence of a CQLF, such as the work of Davis and
Eisenbarth (2011) based on linear programming for the
simultaneous solution of polynomial systems of
inequalities in second-order systems, and the work of
Ordóñez-Hurtado and Duarte-Mermoud (2011) based
on swarm intelligence to analyse linear combinations
of pairs of systems. These approaches are complemen-
tary to the computation methods since they give
conclusive information in the cases in which the
computation methods do not reach their goal.

In this article a new method for determining the
non-existence of a CQLF without any restriction upon
the order of the systems and the number of its
subsystems is proposed, which basically was obtained
by developing the two following stages. First, a
sufficient condition for the non-existence of a CQLF
is derived from a known necessary condition for the
existence of a CQLF for N systems. Then, based on the
derived condition, a pair of fitness functions is
designed, suitable to be optimised using particle
swarm optimisation (PSO). The performance of the
proposed method is validated through numerical tests.
This article is organised as follows: the statement of the
problem is done in Section 2, and a brief summary of
the PSO technique is given in Section 3. Section 4 is
devoted to explaining the technical details as to how
PSO can be applied to the problem under study.
Experimental results are presented in Section 5, and a
concluding section is presented in Section 6.

2. Problem statement and preliminaries

Henceforth we will denote V(x)> 0 and P> 0 as a
function or a matrix which is positive definite, and
V(x)� 0 and P� 0 as a function or a matrix which is
positive semidefinite. Similarly, the notation V(x)< 0
and P< 0 will be used for a function or a matrix which
is negative definite, and V(x)� 0 and P� 0 for a
function or a matrix which is negative semidefinite.

Consider the (continuous) SLS (1), and let V(x)> 0
be a quadratic Lyapunov function candidate of
the form

V xð Þ ¼ xTPx, P4 0, P 2 R
n�n

ð2Þ

with negative definite time derivative along any non-
zero system trajectory, i.e.

_V xð Þ ¼ xT PAi þ AT
i P

� �
x5 0: ð3Þ

or equivalently,

PAi þ AT
i P ¼ �Qi 5 0, 8Ai 2 A: ð4Þ

Then, if a matrix P> 0 satisfying (4) exists, the

function V(x) is a CQLF for all individual systems of

the form

�Ai
: _x tð Þ ¼ Aix tð Þ, i ¼ 1, 2, . . . ,N, 8Ai 2 A, ð5Þ

and its existence guarantees uniform asymptotic sta-

bility of the SLS (1) under arbitrary switching

(Liberzon 2003; Lin and Antsaklis 2009). Some

authors (Shorten et al. 2004) distinguish between the

existence of P for Qi> 0 (Qi� 0), which leads to

the concept of a strong (weak) CQLF. In this article,

the term CQLF will always mean strong CQLF.
In the control literature, the issue of determining

conditions for the existence/non-existence of a CQLF

has been studied quite extensively, and a complete

solution is known in the case of two matrices, say A1

and A2, of second order (Shorten and Narendra 2002).

The main vehicle to achieve that result is the stability

analysis of CLCs of A�11 and A2, i.e.

�� A1,A2½ � :¼ CLC A1,A2½ �

:¼ �A1 þ 1� �ð ÞA2, � 2 0, 1½ �, ð6Þ

�� A�11 ,A2

� �
:¼ CLC A�11 ,A2

� �
:¼ �A�11 þ 1� �ð ÞA2, � 2 0, 1½ �, ð7Þ

where ��[Ai,Aj] denotes the pencil of Ai and Aj

(Shorten and Narendra 2002), and is Hurwitz if its

eigenvalues lies in the open left half-plane of the

complex plane for all �2 [0, 1] (Shorten et al. 2003).

For the reader’s convenience, we list below the main

theorems, lemmas and propositions related to the

CQLF problem, which will be used in the sequel.

Lemma 2.1 (Shorten and Narendra 2002): Let us

consider the systems �A : _x ¼ Ax and �A�1 : _x ¼ A�1x

where A2R
n�n is Hurwitz. Then, any quadratic

Lyapunov function for �A is also a quadratic

Lyapunov function for �A�1 .

Theorem 2.2 (Shorten and Narendra 2002): Let the

system (1) with x2R
2 and N¼ 2 be given. Then the

following statements are equivalent:

(1) There exists a CQLF for (1) with A¼ {A1,A2}.
(2) The pencils ��[A1,A2] and �� A1,A

�1
2

� �
are

Hurwitz.
(3) The products A1A2 and A1A

�1
2 do not have

negative real eigenvalues.

Proposition 2.3 (Liberzon 2003): The linear systems
_x ¼ A1x and _x ¼ A2x, with A1,A22R

2�2, share a

International Journal of Systems Science 3
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CQLF if and only if all pairwise CLC in A ¼
A1,A2,A

�1
1 ,A�12

� �
are Hurwitz.

Lemma 2.4 (Shorten et al. 2004): If the stable LTI
systems _x ¼ A1x and _x ¼ A2x, with A1,A22R

n�n, have
a CQLF, then the pencils ��[A1, A2] and �� A�11 ,A2

� �
are

non-singular. Equivalently, the products A�11 A2 and
A1A2 do not have negative real eigenvalues.

Lemma 2.5 (Horn and Johnson 1985): Let us consider
C, D2R

n�n, C, D> 0 and �2R
þ. Then (i) CþD> 0

and (ii) �C> 0.

3. Particle swarm optimisation

PSO (Eberhart and Kennedy 1995a,b; Del Valle,
Venayagamoorthy, Mohagheghi, Hernandez, and
Harley 2008; Kameyama 2009) is a global optimisation
method that computationally emulates the social
behaviour of a community such as a school of fish, a
flock of birds or even a crowd of people. PSO belongs
to the class of modern heuristic techniques based on
population, where each potential solution is called a
particle. Establishing itself as an important technique
in evolutionary computation (EC), PSO is responsible
for making a population of particles evolve through
several iterations (as time elapses), with the aim of
finding the best possible overall solution (or at least the
best approximation to it). Unlike other EC techniques,
such as genetic algorithms (GA), PSO does not
implement mutation or crossover operators, since its
basic model always keeps the best of its evolutionary
experience. The particles have the peculiarity of being
able to ‘fly’ (move) in the multidimensional search
space, without forgetting their best found positions,
and being influenced by the particle that has found the
best overall position. By analogy with social commu-
nities, each particle looks for the best source of profit,
taking advantage of its own experience from the
individual pursuit, and the collective experience result-
ing from the advancement of the entire swarm.

As the idea of PSO is to simulate particle motion in
an d-dimensional space, where d is given by the number
of unknowns of the function to be optimised, a set of
basic formulas for updating both the speed and
position within the search space is required. In the
basic PSO (Eberhart and Kennedy 1995b), the particles
evolve by means of equations

vi,d kþ 1ð Þ ¼ vi,d kð Þ þ r1 kð Þc1 pi,d kð Þ � xi,d kð Þ
� �

þ r2 kð Þc2 gd kð Þ � xi,d kð Þ
� �

ð8aÞ

xi,d kþ 1ð Þ ¼ xi,d kð Þ þ vi,d kþ 1ð Þ, ð8bÞ

where vi,d(k) and xi,d(k) represent, respectively, the
velocity and position of the component

d2 {1, 2, . . . ,M} of the particle i2 {1, 2, . . . ,S}, at the

iteration k2 {1, 2, . . . , itermax}. Constants c1 and c2 are

the coefficients of cognitive and social acceleration,

and determine the influence of individual and group

experience on the performance of each particle. Terms

r1(k) and r2(k) are a pair of uniformly distributed

random numbers in the range [0, 1] (i.e. r1,2�U[0, 1]),

used to represent the stochastic nature of any social

swarm. The variable pi,d(k) is the d-th component of

the best position of particle i, and gd(k) is the d-th

component of the best global position, at iteration k.
The algorithm for basic PSO can be summarised in

the following steps, in which the fitness function to be

optimised is denoted by f:

(1) Initialising: set the vector of particles’ positions

xi and the vector of particles’ velocities vi with

uniformly random distribution; set the vector

of individual best positions pi and the global

best position g as fpi ¼ xig
S
i¼1 and

g ¼ argmin f pi
� �� �S

i¼1
: ð9Þ

(2) Searching: set k¼ kþ 1 and

. pick r1,2�U[0, 1], and update the par-

ticles’ velocities by using (8a),
. update the particles’ positions by

using (8b),
. update pi as follows

pi ¼ argmin f xið Þ, f pi
� �� �� �S

i¼1
, ð10Þ

. update g by using (9).

(3) Ending: Go to Step 2 until the termination

criterion is met.

A later version of PSO most commonly used is the

PSOiw (PSO inertia weighted) (Shi and Eberhart

1998), which incorporates the parameter ! as the

inertia weight in (8a) of the form

vi,d kþ 1ð Þ ¼ !vi,d kð Þ þ c1r1 kð Þ pi,d kð Þ � xi,d kð Þ
� �

þ c2r2 kð Þ gd kð Þ � xi,d kð Þ
� �

ð11Þ

where !2 [0, 1] basically contributes to the conver-

gence of the particles and the stability analysis.
As important as the proper tuning of PSO para-

meters is the definition of a suitable fitness function.

PSO has the inherent advantage over heuristic methods

such that its fitness functions are not too restrictive as in

the case of deterministic techniques, making it able to

manage non-differentiable functions as well, including

nonlinearities and discontinuities. However, it is known

that by incorporating a non-suitable fitness function to

measure the goodness of the particles evaluated a

poor performance can be obtained, not directly related

4 M.A. Duarte-Mermoud et al.
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to the method itself or to the choice of its parameters,
but rather by the unsuitable design of the fitness
function.

Finally, since evolutionary algorithms (EA) are a
very good alternative for solving global optimisation
problems with multiple maximums and minimums,
discontinuities and deterministic solutions in non-
polynomial time, it is clear that PSO (including their
different versions and/or variants) often turns out to be
a good alternative to Genetic Algorithms (GA)
(Rahmat-Samii 2003; Boeringer and Werner 2004),
which can also be reflected in the increasing number
(close to exponential) of successful applications sup-
ported by PSO (Poli 2008; Chen and Dye 2012).
Nevertheless, in spite of the all practical advantages
offered by PSO in its successful applications, it is
interesting to highlight the fact that convergence to the
global optimum for standard PSO is not assured, even
to a local optimum one, as shown in Jiang, Luo, and
Yang (2007).

4. Determining the non-existence of a CQLF

using PSO

In order to design a method for determining the non-
existence of a CQLF using PSO, the development of
two main steps is neccessary: (i) to explore the
feasibility of interpreting such determination as an
optimisation problem and (ii) to design a suitable
fitness function to be optimised by using PSO.

By analysing the problem, it is concluded that we
are not looking for an optimal solution as such, we just
need to verify the crossing of a threshold defined by the
non-compliance of a necessary (or necessary and
sufficient) condition for the existence of a CQLF, or
equivalently, the compliance of a sufficient (or neces-
sary and sufficient) condition for the non-existence.
Thus, by optimising, the goal is to prove the non-
existence of a CQLF by finding a counterexample of
existence. This conclusion provides the basis for
designing an appropriate fitness function, and thus
the construction of a method for resolving the problem
of non-existence of a CQLF.

Now, it is neccessary finding a suitable condition.
Due to the generality sought for the proposed solution,
the evaluation of conditions for the case of N systems
of order n is required. A first condition to be analysed
is the one presented in Kamenetski and Pyatnitski
(1987), it is based on the work of King and Shorten
(2006).

Theorem 4.1: Let A¼ {A1, . . . ,AN} be a set of n� n
Hurwitz matrices. Then A does NOT have a CQLF if
and only if there are positive semidefinite matrices

X1, . . . ,XN, not all zero, such thatXN
i¼1

AiXi þ XiA
T
i ¼ 0: ð12Þ

Despite Theorem 4.1 representing a necessary and
sufficient condition for the non-existence of a CQLF in
the general case of N matrices of order n, there are two
critical issues from the optimisation point of view: (i)
the necessary precision to reach the equality (12), and
(ii) the dimensionality of the potential solutions.
Regarding the first issue, the limited precision for all
computational numeric formats does not assure that it
is always possible for all arbitrary set of matrices under
analysis to find experimentally a set of matrices
Xi, . . . ,XM, in spite of the existence of this last set. In
relation to the second issue, the dimensionality is given
by the amount of different elements which must be
found (each entry of the matrices to be computed), i.e.
N� (n� n), or at least N� n nþ1ð Þ

2 if the matrices
Xi, . . . ,XN are symmetric, which implies a high com-
putational cost.

As a second choice, a condition presented in
Shorten and Cairbre (2001) (Theorem 2.1,
Corollary 2.1b) can be used, which is summarised in
the next theorem.

Theorem 4.2: A necessary condition for a CQLF to
exist for the system (1) is that the matrix pencil

XN
i¼1

�iAi þ �iA
�1
i , 8�i,�i � 0,

XN
i¼1

�i þ �i, ð13Þ

is Hurwitz.

Theorem 4.2, which states the verification of the
Hurwitz property for the polytopes of vertex matrices
fA�1i g

N
i¼1, represents a less general condition than (12)

since it is only a necessary condition (not necessary and
sufficient). However, Theorem 4.2 has a pair of
significant advantages: (i) the numeric precision is
not a critical issue, because is the compliance of an
inequality instead of an equality what is required here
(the Hurwitz condition is satisfied if the real part of all
its eigenvalues is less than zero) and (ii) the dimen-
sionality of the potential solutions is only 2N, that
corresponds to the 2N different coefficients of each
linear combination to be evaluated, which is much less
than in the case of the Theorem 4.1.

From the above result, Proposition 4.3, which is the
basis of the proposed method in this article, is
stated next.

Proposition 4.3: Let us consider the SLS (1) with
x2R

n, Ai2R
n�n Hurwitz 8i2 {1, 2, . . . ,N} and

A ¼ A�11 , . . . ,A�1N

� �
. A sufficient condition for the
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non-existence of a CQLF for (1) is that at least one non-

Hurwitz CLC in fA,Ag exists.

Proof: Let us assume that there is a CQLF of the

form V(x)¼ xTPx, P> 0 for (1), or equivalently set in

A. From Lemma 2.1, P is also a CQLF for set A.

Let us consider an arbitrary CLC in A,A
� �

defined as

W ¼ CLC Ai,A
�1
i

� �
i¼1,::,N

¼
XN
i¼1

�iAi þ �NþiA
�1
i

� �
, �j � 0,

X2N
j¼1

�j ¼ 1:

ð14Þ

P is also a CQLF for W since it is verified that

PWþWTP ¼ �X, ð15Þ

with X ¼
P2N

j¼1 �jQj

� �
4 0 (Lemma 2.5). Since P satis-

fying (15) exists, every W must be Hurwitz

(Theorem 4.2). Therefore, the existence of some W

non-Hurwitz contradicts the existence of a CQLF, and

this proves Proposition 4.3. œ

Remark 1: The justification that Proposition (4.3) is

only a sufficient condition is based on the necessary

and sufficient condition for the non-existence of a

CQLF in pair of matrices of third order presented in

King and Shorten (2006) (Theorem 5). Such condition

states the evaluation of the singularity of eW ¼
CLC A1,A2,A

�1
1 ,A�12 , �� A1,A2½ �

� �
(among others),

and since W 	 eW, then the evaluation of the non-

singularity of W is only the verification of a part of the

whole condition. It can be observed that the complex-

ity of a necessary and sufficient condition for the non-

existence of a CQLF in a pair of systems dramatically

increases with the order of the matrices to be analysed,

since in the case of 2� 2 matrices it is only necessary to

evaluate the singularity of ��[A1, A2] and �� A�11 ,A2

� �
.

This shows that for systems of order greater than 3

the sufficient condition will be further from being

a necessary and sufficient condition. However, a

particular case in which Proposition 4.3 becomes

a necessary and sufficient condition for the non-

existence of a CQLF is when a pair of n� n matrices

which difference is of rank 1 is analysed (King and

Nathanson 2006), but this strongly limits the generality

of the method.

Even though a numerical method based on a

sufficient condition for the non-existence of a CQLF

(Proposition 4.3) seems to be weak, it is interesting to

analyse first the following situation before assuming

such weakness. From the numerical point of view,

determining the existence of a CQLF has already been

faced by authors like Liberzon and Tempo (2003) and

Ordóñez-Hurtado and Duarte-Mermoud (2012), and

nevertheless none of these works yield conclusive
results with respect to the assurance of the non-
existence of a CQLF. This becomes clear in the case of
finding a final solution that is not feasible (no CQLF),
because this may be the consequence that such CQLF
does not exist, or exists but cannot be computed due to
an unsuitable tuning of the configuration parameters
or a limited numeric precision. Therefore, a method
like the one proposed in this article is complementary
to the computation methods LMI/L-T/O-D, and
constitutes a progress in the search of a complete
solution to the CQLF problem from the experimental
point of view.

A direct consequence of Proposition 4.3 is the
generalisation of Lemma 2.4 in Shorten et al. (2004) to
the case of N matrices in R

n�n, as stated in the
following lemma.

Lemma 4.4: If the SLS (1) has a CQLF, then every
W ¼ CLC Ai,A

�1
i

� �
i¼1,...,N

is non-singular. Equivalently,
none of the products of matrices AjW, 8Aj2A, have
negative real eigenvalues.

Proof: The necessary condition of non-singularity of
every W is directly derived as a corollary from
Proposition 4.3.

Now, with

�� Aj,W
� �

¼ �Aj þ 1� �ð ÞCLC Ai,A
�1
i

� �
i¼1,::,N

h i

W

and in the same way ��
�
A�1j ,W

�

W, for all Aj2A,

by using Lemma 2.4 it follows that AjW and A�1j W
have no negative real eigenvalues. Finally, without loss
of generality since ��

�
Aj,W

�

 ��

�
A�1j ,W

�
, it follows

that AjW has no negative real eigenvalues. œ

Remark 2: It is interesting to observe from Lemma 4.4
that for the case of n¼ 2 the non-singularity of W
ensures the existence of a pairwise CQLF in A, this
being a consequence of Proposition 2.3 and the fact that
��[Ai, Aj]	W and �� A�1i ,Aj

� �
	W for all Ai, Aj2A.

However, by applying Theorem 2.2, checking the
eigenvalues of AiAj and A�1i Aj it is sufficient to assess
non-singularity of the two pencils. The usefulness of
Lemma 4.4 is revealed for n> 2, because in this situation
the algebraic condition on the eigenvalues of AiAj and
A�1i Aj is only necessary for the existence of a pairwise
CQLF in A (and therefore for the whole A), but not
sufficient. Therefore, an interesting fact for A1,
A22R

n�n and n¼ 2 is that the non-singularity of
�� A�11 ,A2

� �
implies the non-singularity of �� A1,A

�1
2

� �
and vice versa, but this is not generally true for the case
of n> 2.

In the method being proposed here, we define

� ¼ �1, . . . ,�2N½ � ð16Þ

6 M.A. Duarte-Mermoud et al.
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as an arbitrary set of coefficients in the CLC (14),
satisfying X2N

j¼1

�j ¼ 1, �j � 0 8k, ð17Þ

where N is the number of matrices to be analysed. This
suggests that we can define the fitness function f(�) as
follows

f �ð Þ ¼ min Re eig �W �ð Þð Þ½ �½ �, ð18Þ

wheres eig(�) denotes the function that calculates the
eigenvalues of a matrix. The rationale of the above
fitness function is that if there is a W(�) that is non-
Hurwitz, i.e. if a �W(�) has at least one eigenvalue
with a negative real part, then there is no CQLF for A
(see Proposition 4.3). Thus, the fitness function only
delivers useful results by obtaining f(�)< 0, i.e. when
crossing a threshold around zero that allows deducing
the non-existence of a CQLF by a counter example of
its existence.

By analysing (14), it is seen that its fit to PSO is
straightforward, by relating � with the particles to
evolve. Let us define

Particlei ¼ C
ið Þ
d

h i
, i ¼ 1, . . . ,S, d ¼ 1, . . . ,M, ð19Þ

and then finding a function �(Particlei)¼�i it is
desired, such that �: RM

!R2N relates ½� ið Þ
j � to ½C

ið Þ
d �,

also satisfying (17). Moreover, since ½� ið Þ
j � and ½C

ið Þ
d �

represent the same element, then f(Particlei) ¼
4
f(�i).

So, the fitness function is defined by using

f Particleið Þ ¼ min Re eig �W � Particleið Þð Þð Þ½ �½ �: ð20Þ

Now, the construction of a specific fitness function
is determined depending on how the function � is
defined. For the definition of �, two alternatives are
proposed satisfying constraint (17). The first option for
� is obtained through the following steps:

(1) Let us consider M¼ 2N� 1, and each compo-
nent of the particle as if it was an angle, i.e.

C
ið Þ
d 2 0, 2�½ �, 8d 2 1, . . . , 2N� 1f g: ð21Þ

(2) To calculate the elements of �i as follows:

� ið Þ
j ¼

sin C
ið Þ
1

� 	� 	2
, j¼ 1:

sin C
ið Þ
j

� 	Yj�1
h¼1

cos C
ið Þ
h

� 	 !2

, j¼ 2,3, . . . , 2N� 1:

Y2N�1
h¼1

cos C
ið Þ
h

� 	 !2

, j¼ 2N:

8>>>>>>>>><>>>>>>>>>:
ð22Þ

By using simple trigonometric identities it follows

that, with the previous representation (22), relationship

(17) is satisfied. The set formed by Equations (19)–(22)

will be referred to from hereon as Fitness 1 ( f1).
A second option for defining � is given as follows:

(1) Let us consider M¼ 2N� 1, and each compo-

nent of the particle as a number in [0, 1], i.e.

C
ið Þ
d 2 0, 1½ �, 8d 2 1, . . . , 2N� 1f g: ð23Þ

(2) To calculate e�j of the form:

e� ið Þ
j ¼

C
ið Þ
j , j ¼ 1, 2, . . . , 2N� 1,

1�mod
X2N�1
h¼1

~� ið Þ
h , 1

 !
, j ¼ 2N,

8>><>>:
ð24Þ

where mod(a, b) is the modulus after a
b division.

(3) Let us define K ¼
P2N

j¼1 ~� ið Þ
j , and calculate the

elements of �i in the following fashion:

� ið Þ
j ¼

~� ið Þ
j

K
, j ¼ 1, 2, . . . , 2N: ð25Þ

It can be seen that these � ið Þ
j ’s satisfy Equation (17).

The set formed by Equations (19)–(20) and (23)–(25)

will be referred to as Fitness 2 ( f2).

5. Experimental results

In this section, the results of tests used to evaluate the

performance of the proposed method are shown. The

implementation of this method involved the develop-

ment of two main programs in Matlab, one for Fitness

1 and the other for Fitness 2. The PSO ToolBox of

Matlab is used as the fundamental tool, which is a set

of Matlab files (.m) developed by Singh (2003) that

implements the PSO algorithm for systems optimisa-

tion. For the programs developed, the definition of an

auxiliary file was required, which defines the corre-

sponding fitness function, and a modification of the

PSO Toolbox main file (PSO.m) was made to suitably

define the initial position of the particles. In order to

compare the performance of the proposed method,

comparisons with the methods presented in Shorten

and Narendra (2002) and Cheng et al. (2003), and with

the LMI, L-T and O-D approaches will be performed

in the cases where they are applicable.
The content of this section includes the configura-

tion of PSOiw, and a set of experimental results. As

initial examples, sets of stable matrices that do not

share a CQLF will be analysed, the fact that can be

analytically deduced. Then we analyse the case in
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which no analytical support for the existence/non-
existence of a CQLF can be given.

5.1. PSO configuration

When using PSOiw, the choice of inertia weight implies
a trade-off between commitment of exploration and
exploitation (Del Valle et al. 2008). One of the typical
configurations achieving this trade-off involves the use
of an inertia weight !(k) decreasing linearly with
respect to k, with !(0)¼!max¼ 0.9 and !(itermax)¼
!min¼ 0.4, together with c1¼ c2¼ 2. Usually, the
population size S (total number of particles) depends
on the application; between 10 and 50 for simple
problems, and up to 100 or more for complex problems
(Del Valle et al. 2008). On this basis, in the subsequent
experiments we used a population size that is equal to
or greater than twice the particles’ dimension,
defined as

S ¼ 4N � 2M ¼ 2 2N� 1ð Þ ¼ 4N� 2,

where N is the number of matrices to be analysed. As
termination criteria, two were chosen to work simul-
taneously: (i) crossing the threshold f(Particle)< 0 and
(ii) achieving the maximum number of iterations
(k> itermax). Two types of initialisation for the posi-
tions of the particles are chosen: (i) random initialisa-
tion and (ii) predefined initialisation. For the random
case a random uniform distribution is used, while for
the predefined case the swarm has initial positions that
allow to start the optimisation process by analysing
only CLCs between pairs of elements (with equal
weighting).

Finally, we present the progress of the optimisation
process for every 0.1 * itermax iterations, where fGBest
is the best fitness value found.

5.2. Example 1: three matrices in R
2\2 (no CQLF)

We first choose A1, A2 and A3 defined as three stable
matrices, the same was used in Shorten and Narendra
(2003) in Example 5.4:

A1 ¼
0 5

�30 �1


 �
, A2 ¼

0 5

�26 �1


 �
,

A3 ¼
�6 27

�150 �1


 �
:

By using the LMI, L-T and O-D approaches, no
conclusive information is obtained (it is not possible to
find a feasible solution), raising the fact whether a
CQLF does not exist or it exists but an unsuitable
tuning of the configuration parameters has been used.

By applying the Cheng approach (Cheng et al. 2003),

the following results are obtained:

�A1
¼ 0, 0:04ð Þ, �A2

¼ 0, 0:0476ð Þ, �A3
¼ 0, 0:0081ð Þ,

� ¼ �A1
\�A2

\�A3
¼ 0, 0:0081ð Þ,

Z
t2�

V tð Þ � L tð Þð Þdt ¼ 0, ð26Þ

and since the value of the integral (26) is not positive,

the fact that the 3-tuple of systems does not share a

CQLF it is shown with this approach. However, by

applying the proposed method we obtain non-con-

clusive results having a positive value as a final output

independently of the fitness functions or position

initialisations used, as shown in Table 1.
It is interesting to highlight the fact that in this

example it is possible to analytically assure that every

pair of systems shares a CQLF (Theorem 2.2), and

however this is not enough for the three systems to

share a CQLF because there is an empty intersection of

the three associated ellipses (Figure 2). It is clear with

this that by using the proposed method it is not

possible to obtain conclusive results, since what is done

is only the experimental verification of a necessary

condition for the non-existence of a CQLF in pairs of

systems (Lemma 4.4), in an aggregated form on the

same functional.

5.3. Example 2: five matrices in R
3\3 (no CQLF)

Now we choose A1, A2, A3 and A4 as four stable upper

triangular matrices, randomly obtained as

A1 ¼

�1:1764 �2:2016 �30:4614

0 �28:6391 1:8565

0 0 �0:8325

264
375,

A2 ¼

�21:2914 1:8888 8:2560

0 �11:2562 3:4612

0 0 �6:3290

264
375,

A3 ¼

�1:3489 0:7536 8:8639

0 �5:3062 6:0803

0 0 �25:3543

264
375,

A4 ¼

�10:9267 5:1315 �11:2256

0 �10:4192 �13:8875

0 0 �0:8438

264
375,

which have a CQLF (Shorten and Narendra 1998).

Additionally, we choose a generic Hurwitz matrix A5,

8 M.A. Duarte-Mermoud et al.
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also randomly obtained as

A5 ¼

�14:7578 6:3562 �15:4226

�9:9717 1:0197 �4:2403

5:1944 5:5201 �9:9615

264
375

such that A¼ {Ai}i¼1,. . .,5 satisfies the conditions of

Lemma 2.4 on the eigenvalues of AiAj and AiA
�1
j for all

Ai,Aj2A. By applying the LMI, L-T and O-D

approaches no conclusive results are obtained (final

unfeasible solution is found), and since in this example

it cannot be used the Cheng approach (Cheng et al.

2003) (only developed for second order systems),

question of whether the proposed method is able to

give conclusive results remains unanswered.

Table 2 shows the results of applying the method
proposed, which confirm experimentally the non-
existence of a CQLF (i.e. a negative final output is
obtained). By exhaustive search and graphical methods
it was found that �� A�15 ,A�12

� �
, �� A�15 ,A�13

� �
,

�� A�15 ,A�14

� �
and �� A�15 ,A1

1

� �
are Hurwitz, but

�� A�15 ,A�11

� �
are non-Hurwitz although A5A

�1
1 and

A�15 A�11 contain non-negative real eigenvalues, analyt-

ically showing that the set of systems does not share a
CQLF (Proposition 4.3).

It is interesting to note that the particular results
for this case show that Fitness 2 presents faster
convergence compared to Fitness 1. In this case, the
initialisation of the swarm plays a central role depend-
ing on which fitness function is used. Predefined
initialisation is shown to be beneficial for Fitness 1,
while a random initialisation is shown to be beneficial
for Fitness 2.

5.4. Example 3: five matrices in R
4\4 (no CQLF)

In this case the set of matrices to be analysed
consists of

A1 ¼

�10:68 20:44 �1:34 �4:68

�15:72 �6:74 �7:78 �6:97

�5:47 12:22 �12:89 �1:58

2:75 �6:74 �4:29 0:74

26664
37775,

A2 ¼

�20:55 �23:93 �3:83 9:85

20:12 2:30 �7:64 4:24

�12:88 23:25 0:99 �15:16

�11:78 �12:68 �5:12 �3:69

26664
37775,

Table 1. Sample of the PSO-based method applied to Example 1, with different particle position initialisation (PPI).

Using f1 Using f2

Randomised PPI Predefined PPI Randomised PPI Predefined PPI

Iteration fGBest Iteration fGBest Iteration fGBest Iteration fGBest

20 0.0006977 20 0.003882 20 0.075553 20 0.046997
40 0.00050502 40 0.0014851 40 0.046589 40 0.03228
60 0.00036326 60 0.0011693 60 0.013142 60 0.025
80 0.00035951 80 0.0011693 80 0.0020465 80 0.012635
100 0.00027751 100 0.0011693 100 0.0017759 100 0.0060399
120 0.0001687 120 0.0011612 120 0.0015656 120 0.0039067
140 0.000132 140 0.0011612 140 0.0010153 140 0.0034564
160 0.00011075 160 0.0011268 160 0.00086993 160 0.0029783
180 0.00011075 180 0.0011268 180 0.00016213 180 0.0018561
200 0.00011075 200 0.0011268 200 0.00015034 200 0.0018558

Final eigenvalues Final eigenvalues Final eigenvalues Final eigenvalues
�0.000111 �0.01422 �0.00015 �0.01093
�0.002897 �0.00113 �0.02947 �0.00185

Figure 2. Sets of Lyapunov functions P ¼
�
1 P12

P12 P22

�
for A1,

A2 and A3 (Shorten and Narendra 2003) from Example 1.
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A3 ¼

�9:05 �0:68 0:35 �3:65

�22:45 �9:43 6:64 �7:88

1:63 �11:13 �13:10 �7:73

�8:86 2:51 �4:56 �7:59

266664
377775,

A4 ¼

�6:34 �5:83 2:80 �9:74

7:04 �16:54 �5:36 �5:74

�8:39 16:87 0:40 2:23

23:75 20:73 �11:64 2:81

266664
377775,

A5 ¼

�17:92 �7:37 �6:62 2:41

0:43 �13:17 �0:29 �22:42

7:09 13:22 4:98 6:64

4:80 8:95 6:10 2:47

266664
377775,

which were also randomly obtained.
Here again the Cheng approach cannot be used,

and by using the LMI, L-T and O-D approaches it is

not possible to find a CQLF for the analysed system.

However, Table 3 shows the results of applying the

proposed method, corroborating the non-existence of a

CQLF by obtaining a negative value for the output of

the optimisation process.

It is seen that in this case the results are not
sensitive to the fitness function chosen or the swarm
initialisation employed, but this fact is not surprising
because of the compliance of many analytic conditions
for the non-existence of a CQLF that can be verified
for this example, e.g.

. A1A
�1
2 , A2A

�1
4 and A�14 A5 contain negative

real eigenvalues,
. A2 þ A�13 is unstable.

Based on this information, it follows analytically
(Proposition 4.3, Lemma 4.4) that several pairs of the
proposed set of matrices do not share a CQLF, and
therefore the whole set cannot share a CQLF.

Having checked three successful cases for which
there is an analytical guarantee of the non-existence of a
CQLF, we explored the case of sets of matrices for
which there is no a priori information about the non-
existence of a CQLF, except that they are Hurwitz
matrices.

5.5. Example 4: ten matrices in R
5\5 (undetermined

existence of CQLF)

Unlike in the previous examples, a set of 10 stable
matrices in R

5�5 were chosen for which it is unknown

Table 2. Sample of the PSO-based method applied to Example 2, with different particle position initialisation (PPI).

Using f1 Using f2

Randomised PPI Predefined PPI Randomised PPI Predefined PPI

Iteration fGBest Iteration fGBest Iteration fGBest Iteration fGBest

20 0.60993 1 �1.2552 8 �0.3206 20 0.51751
40 0.60993 24 �0.40567
45 �0.21958

Final eigenvalues Final eigenvalues Final eigenvalues Final eigenvalues
�3.9829 �6.1156 0.3206 �4.6153
0.2196 1.2552 �4.7074 0.4057
�1.9150 0.0429 �4.3139 �1.4826

Table 3. Sample of PSO-based method applied to Example 3, with different particles position initialisation (PPI).

Using f1 Using f2

Randomised PPI Predefined PPI Randomised PPI Predefined PPI

Iteration fGBest Iteration fGBest Iteration fGBest Iteration fGBest

1 �2.7342 1 �1.4437 1 �3.2387 1 �2.7042

Final eigenvalues Final eigenvalues Final eigenvalues Final eigenvalues
�9.4955 �4.3755þ 9.7904i �4.7457þ 8.7296i 2.7042
�5.8707þ 7.5219i �4.3755� 9.7904i �4.7457� 8.7296i �9.1585
�5.8707� 7.5219i �4.9084 �7.7287 �5.7044þ 6.5177i
2.7342 1.4437 3.2387 �5.7044� 6.5177i

10 M.A. Duarte-Mermoud et al.

D
ow

nl
oa

de
d 

by
 [

Pe
tr

 Z
ag

al
ak

] 
at

 1
1:

14
 2

1 
M

ay
 2

01
2 



a priori whether or not a CQLF exists. These matrices

are generated from a stable matrix and a stochastic

disturbance of the type Ai¼AþRi, i2 {1, 2, . . . , 10},

where Ri are 5th order matrices whose components are

pseudo random numbers with normal distribution, of

mean 0 and variance 1. Matrix A is defined as

A¼

�5:6255 �3:6453 4:0045 �26:1274 �5:2049

�1:3169 �2:5247 1:8567 �17:9511 �4:1578

3:5778 �2:6112 �0:7498 �2:3677 5:6897

10:8137 6:6703 �0:970 �0:4835 11:4901

�30806 5:2276 �7:6581 14:9509 �9:0751

26666664

37777775,

which was also chosen randomly. This example may

represent the case where parametric variations on a

nominal matrix produce a family of matrices, in which

it is unknown whether or not that family shares a

CQLF. The use of the Cheng approach is again

discarded, and the LMI, L-T and O-D approaches

are not able of finding a CQLF for the set of

systems. Table 4 shows the results of applying the

proposed method for the set of matrices obtained with

the explained procedure. Once again, convergence to a

negative number ensures that the set of matrices

that was analysed does not share a CQLF. In this

case it is observed that Fitness 1 has a tendency to
outperform Fitness 2, but the benefits of a random or
predefined initialisation of the population are not very
significant.

Although both fitness functions achieved the opti-
misation goal, non-conclusive results could be
obtained by using itermax< 100 with Fitness 2, since
the final value would be a positive number even though
it is now known that the set of matrices under analysis
does not share a CQLF.

5.6. Example 5: twenty matrices in R
6\6 (undeter-

mined existence of CQLF)

Finally, a set of 20 Hurwitz matrices in R
6�6 was used,

which consists of 19 arbitrary upper triangular
matrices (i.e. share a CQLF as may be seen in
Shorten and Narendra (1998)) and the arbitrary
Hurwitz matrix in companion form:

Analytically it is known that a CQLF can be found

for Aif g
19
i¼1, but this is not enough to assure

the existence of a CQLF for A ¼ Aif g
20
i¼1. By applying

the LMI, L-T and O-D approaches it is not possible to

find a CQLF for A, and discarding the use of the

Cheng approach we are again in a situation of

uncertainty.

A20 ¼

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�0:0642 �0:9107 �4:5204 �9:8177 �10:3470 �5:2047

266666666664

377777777775
:

Table 4. Sample of PSO-based method applied to Example 4, with different particles position initialisation (PPI).

Using f1 Using f2

Randomised PPI Predefined PPI Randomised PPI Predefined PPI

Iteration fGBest Iteration fGBest Iteration fGBest Iteration fGBest

40 0.0018 1 0.0023 40 0.0736 40 0.0015
73 �0.0032 62 �0.0066 80 0.0588 80 0.0015

120 0.0435 120 0.0015
160 0.0206 160 0.0007
200 0.0075 174 �0.0005
225 �0.0007

Final eigenvalues Final eigenvalues Final eigenvalues Final eigenvalues
�0.2259 �0.2279 �0.5896 �0.7579
�0.1201þ 0.0573i �0.1184þ 0.0631i �0.2882 �0.2447
�0.1201� 0.0573i �0.1184� 0.0631i �0.1256 �0.1144
0.0032 0.0066 0.0007 0.0005
�0.0104 �0.0130 �0.0140 �0.0115
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Experimental results presented in Table 5 show that
the optimisation process involving Fitness 1 with
random initial positions converges in this particular
case to a positive value. Again this information is not
useful because, on one hand, it is the verification of a
sufficient condition and, on the other hand, PSO does
not perform a full search, even in their latest versions
(Del Valle et al. 2008, and later) since this is an infinite
dimension problem. However, when using Fitness 1
with a predefined initialisation, convergence to a
negative number is obtained. In contrast, when using
Fitness 2, the convergence to a negative value is
achieved regardless of the initialisation procedure, and
faster than Fitness 1.

6. Conclusions

This article reports the development of a method for
determining the non-existence of a CQLF for an SLS
based on PSO. The designed method was tested for
cases of different dimensionality (order and number of
matrices), exhibiting, in general, good performance
that tends to worsen when increasing the dimension-
ality of the problem, affecting the convergence speed
and the convergence itself.

When the output of the optimisation process is a
non-positive number, the method is able to assure with
certainty equal to 1 that the set of matrices under
analysis do not share a CQLF. But, since we are
verifying a sufficient condition for the non-existence of

a CQLF, when the output of the optimisation process

is a positive number the proposed method is not able to

guarantee conclusively whether or not a CQLF exists

for the set of matrices under analysis. Nevertheless, the

proposed method constitutes an important progress in

the way of solving numerically the CQLF problem,

especially considering that the complexity of the

problem increases in higher order systems, in which

the proposed solution proved to be able of giving

conclusive information where other reported

approaches did not succeed.
PSOiw exhibited good results in this particular

study such as the ability to find a feasible solution with

fast convergence (depending on the fitness used).

However, it may be beneficial from the technical

point of view to use a newer version of PSO (e.g. Del

Valle et al. 2008; Kameyama 2009) and from the

analytical point of view to use another scheme of

inertia weight variation, or to employ another swarm

initialisation in order to improve convergence. Since

the advantages of the initialisations used are not so

clear (showed to be highly dependent on systems and/

or fitness function used), it could be interesting to

explore the potential benefits of using the presented

ones in Clerc (2008).
Given the nature of the proposed method, the

comparison with traditional techniques such as LMI or

gradient was performed in the context of a comple-

mentary method. However, GA and differential

evolution (DE) could be directly used instead of PSO

Table 5. Sample of PSO-based method applied to Example 5, with different particles position initialisation (PPI).

Using f1 Using f2

Randomised PPI Predefined PPI Randomised PPI Predefined PPI

Iteration fGBest Iteration fGBest Iteration fGBest Iteration fGBest

80 0.1882 80 0.0801 6 �0.2297 10 �0.0005
160 0.0504 160 0.0801
240 0.0196 240 0.0552
320 0.0181 320 0.0547
400 0.0181 400 0.0546
480 0.0181 480 0.0546
560 0.0181 505 �0.4997
640 0.0181
720 0.0181
800 0.0181

Final eigenvalues Final eigenvalues Final eigenvalues Final eigenvalues
�1.8715 �6.1034 0.2296 0.0005
�0.3121 �1.7480þ 1.7841i �1.0298 �1.0048
�0.0181 �1.7480� 1.7841i �1.6637 �1.6142
�0.8687 0.4997 �3.2947þ 0.1456i �3.2188þ 1.1629i
�1.1835 �0.2952þ 1.3676i �3.2947� 0.1456i �3.2188� 1.1629i
�0.8282 �0.2952� 1.3676i �4.8349 �4.6435
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as optimisation tool, but this falls outside the scope of
this article.

Finally, it is noted that other necessary and/or
sufficient conditions for the existence/non-existence of
a CQLF could be analysed in order to extend the
results obtained in this study, by using the proposed
method but considering the particularities of the new
conditions. Along the same line, a method based on
PSO to determine the existence of a CQLF can be
designed as was done in Ordóñez-Hurtado and
Duarte-Mermoud (2012). Investigations on these
topics are currently underway.
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