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Abstract. Optimization problems depending on a probability measure cor-
respond to many economic and financial applications. Complete knowledge of
this measure is necessary to solve exactly these problems. Since this condition
is fulfilled only seldom, the problem has to be usually solved on the data ba-
sis to obtain statistical estimates of an optimal value and optimal solutions.
Great effort has been paid to investigate properties of these estimates; first
under assumptions of distribution with thin tails and linear dependence on the
probability measure. Recently, it has appeared an investigation in the case of
nonlinear dependence on the probability measure and heavy tailed distribu-
tions with shape parameter greater two. We focus on the case of the stable
and Pareto distributions with shape parameter in the interval (1, 2).
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1 Introduction

Let ξ (:= ξ(ω) = [ξ1(ω), . . . , ξs(ω)]) be s–dimensional random vector defined on a probability space
(Ω, S, P ); F (:= F (z), z ∈ Rs) the distribution function of ξ; PF the probability measure correspond-
ing to F. Let, moreover, g0(:= g0(x, z)) be a real–valued function defined on Rn × Rs; X ⊂ Rn be a
nonempty set. If the symbol EF denotes the operator of mathematical expectation corresponding to F,
then a rather general “classical” one–stage stochastic programming problem can be introduced in the
form:

Find
ϕ(F ) = inf{EF g0(x, ξ)|x ∈ X}. (1)

In applications very often the “underlying” probability measure PF has to be replaced by empirical
one. Evidently, then the solution is sought w.r.t. the “empirical problem”:

Find
ϕ(FN ) = inf{EFN g0(x, ξ)|x ∈ X}, (2)

where FN denotes an empirical distribution function determined by a random sample {ξi}Ni=1 correspond-
ing to the distribution function F. If we denote the optimal solutions sets of (1) and (2) by X (F ), X (FN ),
then ϕ(FN ), X (FN ) are stochastic estimates of ϕ(F ), X (F ).

The investigation of these estimates started in 1974 by R. Wets (see [27]). In the same time consistency
has been investigated under ergodic assumption in [10]. These papers have been followed by many others
(see e.g. [3], [14], [20]). The investigation of the convergence rate started in [11], and followed e.g. by
[2], [9], [16], [23], [24],[26]. However these results have been obtained under the assumptions of an linear
dependence of objective functions on the probability measure and an “underlying” distribution with
“thin” tails. Later have appeared works with underlying distribution functions with heavy tails (see e.g.
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[7], [14] and [22]). In this paper we focus on the case of the stable and Pareto distributions with shape
parameter from the interval (1, 2).

2 Heavy Tails in Economic and Financial Applications

First, it has been assumed (in the stochastic optimization problems) that the “underlying” probabili-
ty measure corresponds to the class of distribution functions with thin tails. In particular, the “best”
convergence rate has been first proven for the case when an “underlying” objective function has been
bounded (see e.g. [11]), later for the case when a finite moment generating function (corresponding to an
“underlying” objective function) exits (see e.g. [24]). Consequently, the normal distribution has approxi-
mated often the real one. This assumption appeared in the Markowitz model of portfolio selection (see
e.g. [4]). However, relatively soon it has been recognized that many data correspond to the distributions
for which a finite moment generating function does not exist, it means to the distribution functions with
“heavy” tails. This case corresponds often to economic and financial applications.

A relatively good analysis of the “heavy” tailed distribution in economy and finance is presented
e.g. in [18]. There is mentioned e.g. the fact that some data about river flow, cotton, exchange rate,
returns and so on correspond just to different random parameters with heavy tails distributions. The
Weibull distribution corresponds often to lifetime value as well as to problems about wind speed and
power, rainfall intensity and so on. Furthermore, it was mentioned in [8] that some data about gold
prices, telecommunication, quality control, but also problems about incomes correspond to the lognormal
distribution. A relationship between heavy tailed distributions and the stable distributions can be found
e.g. in [15], between the stable heavy tailed distributions and the Pareto tails is known and can be found
e.g in [15] and [17]. The relationship between tails of stable distributions and Pareto tails distribution is
shown in [25].

According to the above recalled facts, it is easy to see that the distributions with “heavy” tails
correspond really to many economic and financial data. Consequently, a question arises: how good are
empirical estimates corresponding to them. Are these estimates consistent and what is valid about a
convergence rate and an asymptotic distribution? Some results about consistency are already known
as well as some results about convergence rate. It has been proven that a “best” convergence rate is
valid everywhere when all finite absolute moments exist. Weaker results have been obtained generally in
dependence on the finite absolute moments existence (for more details see [7]). In this paper we focus
on the case of heavy tailed distributions with a shape parameter α ∈ (1, 2). To this end we employ the
stability results obtained by the Wasserstein metric corresponding to L1 norm.

3 Some Definition and Auxiliary Assertions

Let Fi, i = 1, . . . , s denote one–dimensional marginal distribution functions corresponding to F ; P(Rs)
denote the set of Borel probability measures on Rs, s ≥ 1; M1(Rs) = {P ∈ P(Rs) :

∫
Rs
‖z‖1sP (dz) <∞},

‖ · ‖1s denote L1 norm in Rs.

We introduce a system of assumptions:

A.1 • g0(x, z) is a uniformly continuous function on X ×Rs,
• g0(x, z) is a Lipschitz function of z ∈ Rs with the Lipschitz constant L (corresponding to the
L1 norm) not depending on x,

A.2 • {ξi}∞i=1 is independent random sequence corresponding to F ,

• FN is an empirical distribution function determined by {ξi}Ni=1,

A.3 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on R1.

Proposition 1 ([13]). Let PF , PG ∈M1(Rs), X be a compact set. If A.1 is fulfilled, then

|ϕ(F )− ϕ(G)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi.
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Proposition 1 reduces (from the mathematical point of view) s–dimensional case to one–dimensional.
Of course, stochastic dependence between components of the random vector is there neglected.

Proposition 2 ([14]). Let s = 1, t > 0 and the assumptions A.2, A.3 be fulfilled. If there exists
β > 0, R := R(N) > 0 defined on N such that R(N) −−−−→

N→∞
∞ and, moreover,

Nβ
−R(N)∫
−∞

F (z)dz −−−−→
N→∞

0, Nβ
∞∫

R(N)

[1− F (z)]dz −−−−→
N→∞

0,

2NF (−R(N)) −−−−→
N→∞

0, 2N [1− F (R(N))] −−−−→
N→∞

0,

( 12NβR(N)
t + 1) exp{−2N( t

12R(N)Nβ
)2} −−−−−→

N−→∞
0,

(3)

then

P{ω : Nβ

∞∫
−∞

|F (z)− FN (z)|dz > t} −−−−→
N→∞

0. (4)

(N denotes the set of natural numbers.)

Setting R(N) = Nγ , β > 0, β + γ ∈ (0, 1
2 ), it follows (under A.2, A.3) from [6] that

(
12NβR(N)

t
+ 1) exp{−2N(

t

12R(N)Nβ
)2} −→N−→∞ 0.

Consequently the validity of the relation (4) depends on the tails behaviour.

Proposition 3 ([7]). Let s = 1, t > 0, r > 0, the assumptions A.2, A.3 be fulfilled. Let, moreover, ξ
be a random variable such that EF |ξ|r < ∞. If constants β, γ > 0 fulfil the inequalities 0 < β + γ <
1/2, γ > 1/r, β + (1− r)γ < 0, then

P{ω : Nβ

∞∫
−∞

|F (z)− FN (z)|dz > t} −→N−→∞ 0.

Analyzing the assertion of Proposition 3 we can obtain for β := β(r) fulfilling this assertion that

β −→r−→∞ 1/2.

However, when there exist only first two moments, then there does not exist β (determined by Propo-
sition 3) for which the relation (4) is fulfilled.

Proposition 4 ([1]). Let s = 1, {ξi}Ni=1, N = 1, 2, . . . be a sequence of independent random values
corresponding to a heavy tailed distribution F with the shape parameter α ∈ (1, 2). Then the sequence

N

N1/α

∞∫
−∞

|FN (z)− F (z)|dz, N = 1, . . . , (5)

is stochastically bounded if and only if

sup
t>0

tα P{ω : |ξ| > t} <∞. (6)

The assertion of Proposition 4 follows from Theorem 2.2 [1]. According to the definition of the
stochastically bounded random sequences it holds (under the relation (6)) that

lim
M−→∞

sup
N

P{ω :
N

N1/α

∞∫
−∞

|F (z)− FN (z)| > M} = 0. (7)
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4 Convergence Rate

Employing the auxiliary assertions of the former part we can obtain new results. However, first we recall
some already known assertions.

Theorem 5 ([7]). Let the assumptions A.1, A.2 and A.3 be fulfilled, PF ∈M1(Rs). Then

P{ω : |ϕ(FN )− ϕ(F )| −→N−→∞ 0} = 1.

Theorem 6 ([7]). Let the assumptions A.1, A.2 and A.3 be fulfilled, PF ∈M1(Rs), t > 0. If

1. for some r > 2 it holds that EFi |ξ|r <∞, i = 1, . . . , s,

2. constants β, γ > 0 fulfil the inequalities 0 < β + γ < 1/2, γ > 1/r, β + (1− r)γ < 0,

then
P{ω : Nβ |ϕ(FN − ϕ(F )| > t} −→N−→∞ 0.

The last theorem cannot be applied to the stable distributions with the shape parameter α ∈ (1, 2).
Namely, then there does not exist a finite second moment. The following weaker assertion can be proven.

Theorem 7. Let the assumptions A.1, A.2 and A.3 be fulfilled, PF ∈M1(Rs),M > 0. If one dimensional
components ξi, i = 1, . . . , s of the random vector ξ have the distribution functions Fi with tails parameters
αi ∈ (1, 2) fulfilling the relations

sup
t>0

tα P{ω : |ξi| > t} <∞, i = 1, 2, . . . , s,

then

lim
M−→∞

sup
N

P{ω :
N

N1/α
|ϕ(FN ) − ϕ(F )| > M} = 0 with α = min(α1, . . . , αs). (8)

Proof. Let M > 0, α ∈ (1, 2). First, it follows from Proposition 1 successively that

sup
N

P{ω : N
N1/α |ϕ(FN ) − ϕ(F )| > M} ≤

sup
N

P{ω : N
N1/αL

s∑
i=1

∞∫
−∞
|FN (z)− F (z)|dz > M} ≤

s∑
i=1

sup
N

P{ω : N
N1/αi

∞∫
−∞
|FN (z)− F (z)|dz > M/Ls}.

Consequently, according to Proposition 4 we can obtain

lim
M−→∞

sup
N

P{ω : N
N1/α |ϕ(FN ) − ϕ(F )| > M} ≤

s∑
i=1

lim
M ′−→∞

sup
N

P{ω : N
N1/αi

∞∫
−∞
|FN (z)− F (z)|dz > M

′}, M
′

= M/Ls.

Now already we can see that the assertion of Theorem 7 holds.

Remark 1. Let us assume that the assumptions of Theorem 7 are fulfilled and β̄ ∈ (0, 1− 1/α), then

lim
M−→∞

sup
N

P{ω : N β̄ |ϕ(FN ) − ϕ(F )| > M} = 0. (9)

Setting β̄ := β̄(α) = 1− 1
α , we can see that β̄(α) is an increasing function of α. Moreover, it holds that

lim
α−→1+

β̄(α) = 0, lim
α−→2−

β̄(α) =
1

2
.
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5 Special Cases

In this section, first, we recall the definitions of the stable and Pareto univariate distributions.

Definition 1 ([15]). Suppose that ξ̄1, ξ̄2 are i.i.d. non–degenerate random variables. We shall say that
ξ̄1 has stable distribution if for any b1, b2 > 0 there exists b > 0 and a ∈ R1 such that

bξ̄1 + a =d b1ξ̄
1 + b2ξ̄

2 (=d denotes the equality in distribution).

Definition 2 ([8]). A random variable ξ has a Pareto distribution if

P{ω : ξ > z} = (Cz )α, f(z) = αCαz−α−1 for z ≥ C,

f(z) = 0 for z < C, C > 0, α > 0 constants.

Let us now analyze these two special cases.

1. If s = 1 and ξ has a stable distribution with 1 < α < 2 (shape parameter), |β| ≤ 1 (skewness
parameter) , σ > 0 (scale parameter) and µ ∈ R (location parameter), then according to the fact
published e.g. in [25] (page 191) we have

lim
t−→∞

tαP{ξ > t]} = Cα
1 + β

2
σα, lim

t−→∞
tαP{ξ < −t} = Cα

1 + β

2
σα, (10)

where Cα fulfils for 1 < α < 2 the relation Cα = 1−α
Γ(2−α) cos πα2

. According to the relations (10) and

to the fact that the corresponding distribution function belonging to ξ is continuous one we can see
that the relation (6) is fulfilled.

2. If s = 1 and ξ has a Pareto distribution with a shape parameter α, then

tα P{ω : |ξ| > t} = Cα, Cα constant. (11)

Evidently, the relation (6) is fulfilled in the case of Pareto distribution with α ∈ (1, 2) too.

Consequently the results of Theorem 7 can be applied to the above mentioned.

Theorem 8. Let the assumptions A.1, A.2 and A.3 be fulfilled, PF ∈M1(Rs),M > 0. If one dimensional
components ξi, i = 1, . . . , s of the random vector ξ have either Pareto or stable distributions with tails
parameters αi ∈ (1, 2), i = 1, . . . , s, then

lim
M−→∞

sup
N

P{ω :
N

N1/α
|ϕ(FN ) − ϕ(F )| > M} = 0, α = min(α1, . . . , αs). (12)

6 Conclusion

The paper deals with the investigation of the empirical estimates of the optimal value in the case of one–
stage stochastic programming problems with the “underlying” heavy tailed one dimensional marginal
distributions and a shape parameters in the interval (1, 2). To this end the results on the stability
corresponding to the Wasserstein metric (determined by L1 norm) have been employed. Evidently, while
the “classical” results on the convergence rate have been achieved in the case of finite moments existence,
in this case we have proven only that the sequence of difference between “theoretical” optimal value and
its empirical approximation corresponds to stochastically bounded random sequence with a convergence
rate parameter defined by the value of the shape parameter. However, surely, this assertion generalizes
known results.
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