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If the constraints in an optimization problem are dependent on a random
parameter, we would like to ensure that they are fulfilled with a high level
of reliability. The most natural way is to employ chance constraints.
However, the resulting problem is very hard to solve. We propose an
alternative formulation of stochastic programs using penalty functions. The
expectations of penalties can be left as constraints leading to generalized
integrated chance constraints, or incorporated into the objective as a
penalty term. We show that the penalty problems are asymptotically
equivalent under quite mild conditions. We discuss applications of
sample-approximation techniques to the problems with generalized
integrated chance constraints and propose rates of convergence for the
set of feasible solutions. We will direct our attention to the case when the
set of feasible solutions is finite, which can appear in integer programming.
The results are then extended to the bounded sets with continuous
variables. Additional binary variables are necessary to solve
sample-approximated chance-constrained problems, leading to a large
mixed-integer non-linear program. On the other hand, the problems with
penalties can be solved without adding binary variables; just continuous
variables are necessary to model the penalties. The introduced approaches
are applied to the blending problem leading to comparably reliable
solutions.

Keywords: chance constraints; integrated chance constraints;
penalty functions; sample approximations; blending problem

AMS Subject Classification: 90C15

1. Introduction

In practical optimization problems, the constraints need not be known precisely but
can depend on a realization of a random vector. Our goal is then to ensure that the
constraints are fulfilled with a high level of reliability, i.e. for realizations of the
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random vector with at least a prescribed probability. The most natural way to deal

with this problem is to employ chance constraints. However, solving the resulting

chance-constrained problems is not easy. In general, the feasible region is not convex

even if the functions are convex, and in many cases it is not even easy to check

feasibility because it leads to computations of multivariate integrals. On the other

hand, there are some special conditions under which the convexity is preserved,

e.g. the log-concave distributions [19], or it is relatively easy to check the feasibility of

a point, e.g. for the normal distribution. Numerical methods for computation of

multivariate integrals can be helpful for verifying feasibility or solving the problems,

see [10] and the references therein. There are various methods for numerically solving

chance-constrained problems, as in [19,20]. For the problems with discretely

distributed random variables and separable random parts, p-efficient points can be

used, cf. [18]. For continuously distributed random variables, the methods based on

supporting hyperplanes and reduced gradients are available. In a case where the

underlying distribution is continuous or discrete with many realizations, the

sample-approximation techniques and the mixed-integer programming reformula-

tion can help us to solve the problem approximately, see [1,16,17]. With an increased

sample size we can even approximate the true solution of the chance-constrained

problem. However, the resulting problems are NP-hard in general because additional

binary variables are necessary to model the chance constraints leading to large

mixed-integer problems. A linear problem with random right-hand side is studied,

e.g. in [14], where valid inequalities are derived for the mixed-integer linear set of

feasible solutions, see also [9] for a review of various methods for solving general

mixed-integer linear problems.
We will study other possible formulations of stochastic programming problems

which are based on penalty functions. Their main advantage over the

chance-constrained problems is that they can be solved easier without any additional

binary variables just using continuous variables to model the penalties. On the other

hand, this approach does not address finding or approximating an optimal solution

of the chance constrained problem. The penalty functions help us to penalize possible

violations of the random constraints with respect to the decision vector and the

random parameter leading to a reliable solution.
We will direct our attention to the problems with integrated chance constraints

which were originally defined as expectation type constraints using maximal penalty

function, cf. [11], see also [12,19]. We will define generalized constraints using

arbitrary penalty functions. We will show that the resulting problem with several

integrated chance constraints is asymptotically equivalent to the problem with

penalties in the objective. In [8], the asymptotic equivalence between the problem

with one joint chance constraint and the problem with simple penalty function was

shown. The approach was recently extended to a whole class of penalty functions in

[5], and to the problems with several joint chance constraints in [3] which cover the

joint as well as the individual chance-constrained problems as special cases. Note

that no assumptions on convexity or linearity of underlying functions were necessary

in the proofs. This makes both alternative approaches based on penalty functions

more appropriate for stochastic integer and mixed-integer problems, where convexity

is usually not present. Stability of the resulting stochastic programming problems
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with respect to the changes of underlying probability measure can be studied using
contamination technique, cf. [5,7].

We will also discuss applications of sample-approximation techniques to the
problems with generalized integrated chance constraints. We will direct our attention
to the case with a finite set of feasible solutions, which can appear in bounded integer
programming, and with an infinite bounded set with continuous variables. We will
extend the result to the rates of convergence for a set of feasible solutions defined by
sample average approximations of generalized integrated chance constraints to the
true set of feasible solutions. First results for expectation-type constraints were
proposed in [23].

The introduced approaches will be applied to a particular blending problem,
which was formulated for instance in [17] as a joint chance-constrained problem.
We will show that the penalty-function approaches and the sample-approximation
technique can be helpful in numerical solution of this stochastic optimization
problem. We explore how to try to ensure that the chance constraints are fulfilled
with a high level of reliability. We compare the ability to generate a feasible solution
of the original joint chance-constrained problem using the sample approximations of
the chance constraint directly or via sample approximation of the penalty function
objective or general integrated chance constraint.

This article is organized as follows. In Section 2, we formulate the
chance-constrained problem and propose a possible formulation using the penalty
functions. The expectations of the penalized constraints are left in the constraints
with prescribed levels or incorporated into the objective as a penalty term. We show
that the problems with penalties are asymptotically equivalent with the decreasing
levels and the increasing penalty parameter. In Section 3, sample-approximation
techniques for solving the problems are discussed and result on rates of convergence
for the generalized integrated chance constraint are derived. Numerical comparison
of the proposed approaches on a blending problem is included in Section 4.
In Section 5, we summarize our results.

2. Relation between chance-constrained and penalty function problems

Let f (x) be a real function on R
n, gji(x, �), i¼ 0, . . . , kj, j¼ 1, . . . ,m, be real functions

on R
n
�R

n0 measurable in � for all x2X, and � be a random vector on (�,A,P) with
values in R

n0. The problem with uncertain constraints which depend on a random
factor � can be formulated as

minx2X f ðxÞ
s:t:

g11ðx, �Þ � 0, . . . , g1k1 ðx, �Þ � 0,

..

. ..
.

gm1ðx, �Þ � 0, . . . , gmkm ðx, �Þ � 0:

ð1Þ

In this form, it is not obvious as to how to solve the problem. As we claim in
Section 1, we would like to ensure that the constraints are fulfilled with a high
level of reliability. Hence, if the distribution P of the random vector is known,

Optimization 951
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we can formulate the general chance-constrained problem as follows:

’CCP� ¼ min
x2X

f ðxÞ

s:t:

P
�
g11ðx, �Þ � 0, . . . , g1k1ðx, �Þ � 0

�
� 1� "1,

..

.

P
�
gm1ðx, �Þ � 0, . . . , gmkmðx, �Þ � 0

�
� 1� "m,

ð2Þ

with an optimal solution x�, where �¼ ("1, . . . , "m), with given levels "j2 (0, 1). The
formulation covers the joint (k141 and m¼ 1) as well as the separate (kj¼ 1 and

m41) chance-constrained problems as special cases.
Below, we will consider the penalty functions #j : R

kj ! Rþ, j ¼ 1, . . . ,m, which

are continuous nondecreasing in their components, equal to 0 on R
kj
� and

positive otherwise. Two special penalty functions are readily available: #1,oðuÞ ¼Pk
i¼1ð½ui�

þ
Þ
o, o4 0, usually o¼ 1 or o¼ 2, and #2(u)¼max1�i�k[ui]

þ. Both penalty

functions preserve convexity of the random constraints in the decision vector.

We denote the penalized constraints

pjðx, �Þ ¼ #jð gj1ðx, �Þ, . . . , gjkjðx, �ÞÞ : R
n
� R

n0
! R:

Our choice is appropriate, because it holds that

P
�
gjiðx, �Þ � 0, i ¼ 1, . . . , kj

�
� 1� "j () P

�
pjðx, �Þ4 0

�
� "j: ð3Þ

There are two possible stochastic programming formulations of the problem with a

random factor using the penalty functions. We can define the problem with

generalized integrated chance constraints as follows

’ICCL ¼ min
x2X

n
f ðxÞ : s:t: E½ pjðx, �Þ� � Lj, j ¼ 1, . . . ,m

o
ð4Þ

for some prescribed bounds Lj� 0, L¼ (L1, . . . ,Lm)
0. with an optimal solution xICCL .

The integrated chance constraints were originally defined using the penalty function

#2, cf. [11,12], but any penalty function can be used in their definition.
The expectations of the penalized constraints can also be incorporated into the

objective function as a penalty term leading to the problem:

’N ¼ min
x2X

f ðxÞ þN �
Xm
j¼1

E½ pjðx, �Þ�

" #
ð5Þ

with N being a positive parameter. We denote xN an optimal solution of (5). The

approach for solving non-linear deterministic programs with several constraints

using the penalty functions is well studied in literature. Algorithms and basic theory

based on continuity and Karush–Kuhn–Tucker conditions are explained in [2,15].
A rigorous proof of the relationship between the optimal values of (2) and those

of (5) for a special additive penalty function and one chance constraint was given

by [8]. The approach was recently extended to a whole class of penalty functions with

desirable properties and to the problems with several joint chance constraints, which

was done in [3,5]. The reformulation of chance-constrained problems using the
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penalties has been applied in water management, insurance and engineering,

cf. [6,8,24].
We can compare the formulation (4) with the following alternative expression of

the penalty function problem

min
ðx,uÞ2X�R

m
f ðxÞ þN

Xm
j¼1

uj : s:t: E½ pjðx, �Þ� � uj, uj � 0, j ¼ 1, . . . ,m

( )
:

The problems differ by incorporating the upper bounds uj into the penalty term of

the objective function. However, this term converges to zero as N goes to infinity

under quite mild conditions. We can conclude that both problems are equivalent as

Lj goes to zero and the penalty parameter N to infinity. We will prove this in the

following theorem, including explicit bounds on the optimal values.

THEOREM 2.1 Consider the two problems (4) and (5), and assume that X 6¼ ; is a

compact set, f (x) is a continuous function, #j : R
kj ! Rþ, j¼ 1, . . . ,m, are continuous

functions, nondecreasing in their components, which are equal to 0 on R
kj
� and positive

otherwize, denote

pjðx, �Þ ¼ #jð gj1ðx, �Þ, . . . , gjkjðx, �ÞÞ, j ¼ 1, . . . ,m,

and assume that

(i) gji(�, �), i¼ 1, . . . , kj, j¼ 1, . . . ,m, are almost surely continuous;
(ii) there exists a nonnegative random variable C(�) with E[C(�)]51, such that

jpj (x, �)j �C(�), j¼ 1, . . . ,m for all x2X;
(iii) E[pj (x

0, �)]¼ 0, j¼ 1, . . . ,m for some x0 2X.

For arbitrary � 2 (0, 1), N40 and Lj� 0 put

Lj ðxÞ ¼ E½ pjðx, �Þ�, j ¼ 1, . . . ,m,

�NðxÞ ¼ N �
Xm
j¼1

E½ pjðx, �Þ�,

�LðxÞ ¼
Xm
j¼1

Lj

 !��1Xm
j¼1

E½ pjðx, �Þ�,

and let [N1/(��1)/m]¼ (N1/(��1)/m, . . . ,N1/(��1)/m)0 be the vector of length m.
Then for any prescribed Lj� 0 there always exists N large enough so that

minimization (5) generates the optimal solutions xN, which also satisfy the integrated

chance constraints (4) with the given L¼ (L1, . . . ,Lm)
0.

Moreover, bounds on the optimal value ’ICCL of (4) based on the optimal value ’N of

(5) and vice versa can be constructed

’�Pm

j¼1
LjðxNÞ

���1 � �LðxNÞðxLðxNÞÞ � ’ICCLðxNÞ
� ’N � �NðxNÞ,

’ICCLðxNÞ
þ �NðxNÞ � ’N � ’

ICC
½N1=ð��1Þ=m� þ �½N1=ð��1Þ=m�ðx

ICC
½N1=ð��1Þ=m�Þ,

Optimization 953
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with

lim
N!þ1

�NðxNÞ ¼ lim
N!þ1

Lj ðxNÞ ¼ lim
Lmax!0þ

�Lðx
ICC
L Þ ¼ 0

for any sequences of the optimal solutions xN and xICCL where Lmax denotes the maximal

component of the vector L.

Proof We denote

�N ¼
Xm
j¼1

E½ pj ðxN, �Þ�

for a sequence xN of the optimal solutions of the problem (5). Our assumptions and

general properties of the penalty function method [2, Theorem 9.2.2] ensure that, for

any sequence xN of the optimal solutions, �N! 0þ and also �N(xN)¼N�N! 0 as

N!1. Then

E½ pjðxN, �Þ� ! 0, as N!1, j ¼ 1, . . . ,m:

Based on this result, it is obvious that for N large enough the terms E[ pj (xN, �)] are
arbitrarily small, which implies that the optimal solution xN is feasible for the

integrated chance-constrained problem with Lj equal or greater than E[ pj (xN, �)].
The following trivial convergence holds

E½ pjðx
ICC
L , �Þ� ! 0, as Lj ! 0þ, j ¼ 1, . . . ,m:

Accordingly, for any � 2 (0, 1)

�Lðx
ICC
L Þ ¼

Xm
j¼1

Lj

 !��1Xm
j¼1

E½ pjðx
ICC
L , �Þ�

�
Xm
j¼1

Lj

 !�
! 0, as Lmax ! 0þ:

If we set

Lj ðxNÞ ¼ E½ pjðxN, �Þ�, j ¼ 1, . . . ,m,

then the optimal solution xN of the expected value problem is feasible for the

integrated chance-constrained program with L(xN)¼ (L1(xN), . . . ,Lm(xN)).
Hence, we obtain the inequality

’N ¼ f ðxNÞ þN �
Xm
j¼1

E½ pjðxN, �Þ�

� f ðxLðxNÞÞ þN �
Xm
j¼1

E½ pjðxN, �Þ�

¼ ’ICCLðxNÞ
þ �NðxNÞ:
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Finally,

’ICCL ¼

�
’ICCL þ

�Xm
j¼1

Lj

���1Xm
j¼1

E
�
pjðx

ICC
L , �Þ

��
�

Xm
j¼1

Lj

 !��1Xm
j¼1

E½ pjðx
ICC
L , �Þ�

� ’
ð�m

j¼1
LjÞ

��1 � �Lðx
ICC
L Þ:

Using the previous inequalities we can obtain the bounds on the optimal values.

This completes the proof. g

Note that the theorem does not make any statement on the convergence of the

optimal solutions, but it relates the optimal values for certain values of the levels and

the penalty parameter. We will investigate the behaviour of the optimal solutions in

the numerical study in Section 4.

Remark 1 No assumptions on convexity of underlying functions and sets were

necessary in the proof. Hence, the approach can be used for mixed-integer stochastic

programs where convexity is not usually present [4].

Remark 2 Assumption (iii) may be very strong because it requires existence of a

point for which the random constraints are fulfilled for almost all realizations of the

random vector �.

3. Sample approximations using Monte-Carlo techniques

In this section, we will address the sample-approximation technique and derive rates

of convergence for the problems with generalized integrated chance constraints. The

sample-average approximations were applied to the expected value constrained

problems in [23]. We will extend this result to the case with several generalized
integrated chance constraints.

Usually, the sample approximation of the chance-constrained problems leads

only to a feasible solution of the original problem. Using the results of [21], the

problem can be formulated as a large mixed-integer non-linear program. However,

due to the increasing number of binary variables, it may be very difficult to solve the

resulting problem, even using special solvers for the mixed-integer problems. Hence,

it may be interesting to investigate the ability to generate a feasible solution of the

chance-constrained problem, i.e. a highly reliable solution, using the penalty function

problems where no additional integer variables are necessary. Our approach is
summarized in Table 1.

Sample-approximation techniques for chance-constrained problems were inves-

tigated in [1,13,17] and were generalized for the case with several joint chance

constraints in [3]. We can also refer to [22] for the main results on the sample average

approximation techniques for the stochastic programs with expectation type

objective, which cover the problems with penalties in the objective.
In all of the problems, it is, in general, not clear as to how to choose the

parameters ensuring the reliability levels of the original chance-constrained problem.

It is unclear even when solving the sample-approximated chance-constrained
problem. We will show that by solving all the problems, we are able to obtain

highly reliable solutions of the original problem. It is obvious that the necessary

sample size and values of the parameters depend on the particular problem.

Optimization 955
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First results on parameter settings can be found in [24] where an engineering problem
of beam design was solved using chance constraints and penalties in the objective.

Now, we turn our attention to the sample-approximation technique applied to
the generalized integrated chance constraints. Let �1, . . . , �S be an independent
Monte-Carlo sample of the underlying distribution of the random vector �. We will
denote the sets of feasible solutions of the original and the sample-approximated
problem as

XL ¼ x2X : pjðxÞ :¼ E½ pjðx, �Þ� � Lj, j ¼ 1, . . . ,m
� 	

,

XS
L ¼ x2X : pSj ðxÞ :¼

1

S

XS
s¼1

pjðx, �
sÞ � Lj, j ¼ 1, . . . ,m

( )
:

In [23] the set of feasible solutions of the original problem was relaxed. We will
consider the case when the approximated constraints are relaxed and the original
constraints remain unchanged. Hence we deal with the probability PðXL � XS

Lþ�Þ

that the original set of feasible solutions is contained in the relaxed
sample-approximated set and we will show that it increases exponentially with
increasing sample size. The same results are valid for the probability PðXS

L�� � XLÞ.
Using the rate of convergence, we are able to estimate sample size necessary to ensure
that the feasible solutions of the original problem are feasible for the relaxed
sample-approximated problems with a high probability and vice versa. We will direct
our attention to the case when the set of feasible solutions is finite or bounded
infinite, where additional assumptions are necessary. We will denote by jX j the
cardinality of the set X.

3.1. Finite jX j

THEOREM 3.1 Let

(i) the set of feasible solutions be finite, i.e. jX j51,
(ii) the moment generating function of the difference pj (x, �)� pj (x) be finite.

Table 1. Formulation and approximation schema..

1. Stochastic
programming
formulation

2. Sample
approximation
(SA)

3.
Solution
validation

Integrated
chance
constrained
problem (ICC)

! SA ICC ! Reliability

Program
with a
random
factor

%
!

&
"

Chance
constrained
problem (CCP)
#

! SA CCP ! Reliability

Problem
with penalty
objective (PPO)

! SA PPO ! Reliability
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Then for small �j40, �¼ (�1, . . . , �m),

(a) the probability that the set of feasible solutions is contained in the relaxed

sample-approximated set of feasible solutions increases exponentially fast with

increasing sample size, and it holds that

PðXL � XS
Lþ�Þ � 1�mjXj exp



� Smin

j,x

�2j
2	2jx

�
,

where 	2jx ¼ Var½ pj ðx, �Þ � pj ðxÞ� and the minimum is taken over x2X and

j2 {1, . . . ,m}.
(b) it is possible to estimate the sample size S such that the feasible solutions of the

original problem are feasible for the relaxed sample-approximated problems

with a high probability 1� �, i.e.

S �
1

minj,x �2j =2	
2
jx

ln
mjXj

�
:

Proof For �j40, �¼ (�1, . . . , �m), it holds that

1� PðXL � XS
Lþ�Þ ¼ P

�
9~j2 f1,...,mg9x2X : p~jðxÞ � L~j

�
Xm
j¼1

X
x2X

Pð pSj ðxÞ � pjðxÞ4 �j Þ

�
Xm
j¼1

X
x2X

exp
�
�SIjxð�j Þ

	
,

where Ijx denotes the large deviations rate function, which is the Fenchel dual to the

logarithm of the moment generating function of the difference pj (x, �)� pj (x), which

is assumed to be finite, i.e.

Ijxð�j Þ ¼ sup
t2R

n
t�j � lnE

�
etð pjðx, �Þ�pjðxÞÞ

�o
:

For a small �j we can use the following estimate

Ijxð�j Þ �
�2j
2	2jx

,

where 	2jx ¼ Var½ pj ðx, �Þ � pj ðxÞ�. Using the estimate we get

1� PðXL � XS
Lþ�Þ �

Xm
j¼1

X
x2X

exp



� S

�2j
2	2jx

�

� mjXj exp



� Smin

j,x

�2j
2	2jx

�
,

where the minimum is taken over x2X and j2 {1, . . . ,m}. Using the previous upper

bound it is possible to estimate the sample size S such that the feasible solutions of

the original problem are feasible for the relaxed sample-approximated problems with

a high probability. g
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3.2. Bounded jX j

If the set of feasible solutions is infinite but bounded, we must add an assumption on
Lipschitz continuity of the penalized constraints. Then we must differentiate between
two cases: when the Lipschitz modulus is fixed or random.

We can use the result valid for the finite case, because for a given u40 there exists
a finite set Xu with jXuj �Dn/un such that for any x2X there is a x0 2Xu such that
kx� x0k � u. The choice of u will be discussed in the proofs below.

3.2.1. Fixed Lipschitz modulus

THEOREM 3.2 Let

(i) the set of feasible solutions X be bounded, not necessarily finite, with diameter
D¼ supx,x02X kx� x0k,

(ii) the functions pj (x, �) be Lipschitz continuous on X moduli Mj40 which do not
depend on �, i.e.

j pj ðx, �Þ � pj ðx
0, �Þj �Mj x� x0

�� �� 8x, x0 2X, 8�2�, 8j,

(iii) the moment generating function of pj (x, �)� pj (x) be finite.

Then for small �j40, �¼ (�1, . . . , �m),

(a) the probability that the set of feasible solutions is contained in the relaxed
sample-approximated set of feasible solutions increases exponentially with
increasing sample size, and it holds that

PðXL � XS
Lþ�Þ � 1�m

D




� �n

exp �Smin
j,x

ð�j � 2Mj
Þ
2

2	2jx

( )
,

where 	2jx ¼ Var½ pj ðx, �Þ � pj ðxÞ� and the minimum is taken over x2Xu and
j2 {1, . . . ,m}. The constant u is chosen such that �j� 2Mju is small 8j.

(b) we can get an estimate for the sample size which is necessary to ensure that the
relaxed sample-approximated feasibility set is contained in the original
feasibility set and vice versa with a high probability, equal to 1� �

S �
1

minj,xð�j � 2Mj
Þ
2=2	2jx

�
ln
m

�
þ n ln

D




�
:

Proof For �j40, �¼ (�1, . . . , �m), it holds that

1� PðXL � XS
Lþ�Þ ¼ P

�
9~j2 f1,...,mg9x2X : p~jðxÞ � L~j & pS~j ðxÞ4L~j þ �~j

�
� P

�
9~j2 f1,...,mg9x2X
 : p~jðxÞ � LþM~j


& pS~j ðxÞ4Lþ �~j �M~j

�

�
Xm
j¼1

X
x2X


Pð pSj ðxÞ � pjðxÞ4 �j � 2Mj
Þ

�
Xm
j¼1

X
x2X


exp
�
�SIjxð�j � 2Mj
Þ

	
:
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If u is chosen such that �j� 2Mju are small, we can use the following bound

Ijxð�j � 2Mj
Þ �
ð�j � 2Mj
Þ

2

2	2jx
,

where 	2jx ¼ Var½ pj ðx, �Þ � pj ðxÞ�. Then we obtain

1� PðXL � XS
Lþ�Þ � jX
j

Xm
j¼1

exp



� S
ð�j � 2Mj
Þ

2

2	2jx

�

� m
D




� �n

exp



� Smin

j,x

ð�j � 2Mj
Þ
2

2	2jx

�
:

Finally, we can get an estimate for the sample size which is necessary to ensure that

the relaxed sample-approximated feasibility set is contained in the original feasibility

set with a high probability. g

3.2.2. Random Lipschitz modulus

THEOREM 3.3 Let

(i) the set of feasible solutions X be bounded with a diameter D¼ supx,x02X
kx� x0k,

(ii) pj (x, �) be Lipschitz continuous on X moduli Mj (�)40 which depend on �, i.e.

j pj ðx, �Þ � pj ðx
0, �Þj �Mj ð�Þ x� x0

�� �� 8x, x0 2X, 8�2�, 8j,

(iii) Mj¼E[Mj (�)]51 8j,
(iv) the moment generating functions of pj (x, �)� pj (x) and Mj (�)�Mj be finite.

Then for �j40 small, �¼ (�1, . . . , �m),

(a) the probability that the set of feasible solutions is contained in the relaxed

sample-approximated set of feasible solutions increases exponentially with

increasing sample size, and it holds that

PðXL � XS
Lþ�Þ � 1�m

�
1þ

Dn


n

�
exp

�
�Sd ð�Þ

	
,

where

	2jx ¼ Var½ pj ðx, �Þ � pj ðxÞ�,

	2Mj
¼ Var½Mjð�Þ �Mj �,

dð�Þ ¼ min min
j,x

�2j
8	2jx

, min
j

�2j
8	2Mj

( )
,

the minimum is taken over x2Xu and j2 {1, . . . ,m} and the constant

u¼maxj �j/(4Mjþ �j).
(b) we can get an estimate for the sample size which is necessary to ensure that the

relaxed sample-approximated feasibility set is contained in the original
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feasibility set and vice versa with a high probability, equal to 1� �

S �
1

dð�Þ

 
ln
m

�
þ ln

�
1þ

Dn


n

�!
:

Proof Denote MS
j ¼ 1=S

PS
s¼1 Mj ð�

sÞ the sample-approximated Lipschitz modulus.

For �j40, �¼ (�1, . . . , �m), it holds that

1� PðXL � XS
Lþ�Þ ¼ P

�
9~j2 f1,...,mg9x2X : p~jðxÞ � L~j & pS~j ðxÞ4L~j þ �~j

�
� P

�
9~j2 f1,...,mg9x2X
 : p~jðxÞ � LþM~j


& pS~j ðxÞ4Lþ �~j �MS
~j


�

¼ Pð9~j2 f1,...,mg9x2X
 : pS~j ðxÞ � p~jðxÞ4 �~j � ðM
S
~j
þM~jÞ
Þ:

In this case, such u should be chosen that the following implications hold for any j

MS
j �Mj 4

�j
2
) ðMS

j þMj Þ
4
�j
2
:

It is enough to set


j ¼
�j

4Mj þ �j

and u¼maxj uj. Then, if the moment generating functions of pj (x, �)� pj (x) and

Mj (�)�Mj are finite, we can use the following estimates

Pð9~j2 f1,...,mg9x2X
 : pS~j ðxÞ � p~jðxÞ þ ðM
S
~j
þM~jÞ
4 �~jÞ

�
Xm
j¼1

PðMS
j 4Mj þ �j=2Þ þ

Xm
j¼1

Pð9x2X
 : pSj ðxÞ � pjðxÞ4 �j=2Þ

�
Xm
j¼1

PðMS
j �Mj 4 �j=2Þ þ

Xm
j¼1

X
x2X


Pð pSj ðxÞ � pjðxÞ4 �j=2Þ

�
Xm
j¼1

exp
�
�SIMj

ð�j=2Þ
	
þ
Xm
j¼1

X
x2X


exp
�
�SIjxð�j=2Þ

	
,

where IMj
, Ijx are the corresponding large deviation functions. If �j are small, we can

use the estimates

Ijxð�j=2Þ �
�2j
8	2jx

, IMj
ð�j=2Þ �

�2j
8	2Mj

,

where 	2Mj
¼ Var½MS

j �Mj �. We set

d ð�Þ ¼ min min
j,x

�2j
8	2jx

, min
j

�2j
8	2Mj

( )
:
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Then

1� PðXL � XS
Lþ�Þ � mð1þ jX
jÞ exp

�
�Sd ð�Þ

	
:

Finally, we can get an estimate for the sample size which is necessary to ensure that
the relaxed sample-approximated feasibility set is contained in the original feasibility
set with a high probability. g

4. Numerical comparison

In this section, we deal with blending problem which was originally defined as a joint
chance-constrained problem. The costs of the fertilizers are minimized subject to the
constraints on minimal nutrients necessary to increase the production of a crop.
However, the first fertilizer has an uncertain nutrient content.

The problem was solved using the sample-approximation method in [17]. We will
show that by solving the sample-approximated problems with expectation of the
penalized random constraints we can also obtain reliable solutions of the underlying
problem.

The blending problem is formulated as jointly chance-constrained program

’CCP" ¼ minx1 þ x2

s:t:

Pð�1x1 þ x2 � 7, �2x1 þ x2 � 4Þ � 1� ",

x1 � 0, x2 � 0,

where "2 (0, 1) and the random components (�1, �2) are independent and have
uniform distributions on the intervals [1, 4] and [1/3, 1]. The explicit solution can be
obtained, cf. [17], depending on the choice of the level "2 [0.5, 1]:

x	1 ¼
9

11� 9ð1� "Þ
, x	2 ¼

41� 36ð1� "Þ

11� 9ð1� "Þ
, ’CCP" ¼

50� 36ð1� "Þ

11� 9ð1� "Þ
:

Optimal solutions for particular choices of the level " are given in Table 2.
Using a penalty function # :R2

!Rþ we can obtain the problem with a
generalized integrated chance constraint

min x1 þ x2

s:t:

E

h
#ð7� �1x1 � x2, 4� �2x1 � x2Þ

i
� L,

x1 � 0, x2 � 0

Table 2. Blending problem – optimal solutions.

" x	1 x	2 ’CCP"

0.1 3.1034 2.9655 6.0690
0.05 3.6735 2.7755 6.4490
0.01 4.3062 2.5646 6.8708
0.005 4.4010 2.5330 6.9340
0.001 4.4798 2.5067 6.9866
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for some level L� 0. If we incorporate the expectation of the penalized constraints

into the objective, we get

minx1 þ x2 þN � E
h
#ð7� �1x1 � x2, 4� �2x1 � x2Þ

i
s:t:

x1 � 0, x2 � 0,

for some N40. The reformulation using penalty objective was also considered in [5]

to study stability of the optimal value with respect to the changes of the underlying

probability measure using contamination technique. In a case where the penalty term

is small enough, the problem with penalty objective can serve as a good

approximation of the chance-constrained problem. This was confirmed by the

proposed numerical experiment.
We generated 100 samples for each sample size (100, 150, 200, 500) and solved the

resulting problems using GAMS 23.2 and IBM ILOG CPlex 12.1. The sample sizes

were chosen according to the recommendations given in [17] (100–200) and one

larger sample size (500) was taken into consideration. We used two penalty functions

in both problems: #1,1(u1, u2)¼ [u1]
þ
þ [u2]

þ and #2(u1, u2)¼max{[u1]
þ, [u2]

þ}.
To solve the sample-approximated chance constrained problem, additional

binary variables ys are necessary

min x1 þ x2

s:t:

7� �s1x1 þ x2 � Cð1� ysÞ,

4� �s2x1 þ x2 � Cð1� ysÞ,

1

S

XS
s¼1

ys � 1� �,

x1 � 0, x2 � 0, ys 2 f0, 1g, s ¼ 1, . . . ,S,

where C is a large enough constant. On the other hand, in the penalty problems

no additional binary variables are necessary and only continuous variables are

needed to model positive parts in the penalty functions. We obtained a

sample-approximated problem with generalized integrated chance constraint using

the penalty function #1,1:

min x1 þ x2

s:t:

7� �s1x1 þ x2 � u1s,

4� �s2x1 þ x2 � u2s,

1

S

XS
s¼1

u1s þ u2s � L,

x1 � 0, x2 � 0, u1s, u2s � 0, s ¼ 1, . . . ,S,
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for some level L40, sample-approximated problem with integrated chance

constraint using the penalty function #2

min x1 þ x2

s:t:

7� �s1x1 þ x2 � us,

4� �s2x1 þ x2 � us,

1

S

XS
s¼1

us � L,

x1 � 0, x2 � 0, us � 0, s ¼ 1, . . . ,S,

for some level L40, a sample-approximated problem with penalty objective using

the penalty function #1,1

minx1 þ x2 þ
N

S

XS
s¼1

u1s þ u2s

s:t:

7� �s1x1 þ x2 � u1s,

4� �s2x1 þ x2 � u2s,

x1 � 0, x2 � 0, u1s, u2s � 0, s ¼ 1, . . . ,S,

Table 3. Blending problem – CCP.

Minimal Mean
Mean optimal solution

Mean optimal
S � reliability reliability x1 x2 value

100 0.1 0.7383 0.8739 3.0255 2.9660 5.9916
100 0.05 0.8183 0.9308 3.6090 2.7717 6.3807
100 0.01 0.9225 0.9700 4.1738 2.5814 6.7552
100 0.005 0.9330 0.9788 4.3266 2.5294 6.8560
100 0.001 0.9330 0.9788 4.3266 2.5294 6.8560

150 0.1 0.8108 0.8876 3.0854 2.9563 6.0418
150 0.05 0.8816 0.9433 3.6892 2.7563 6.4456
150 0.01 0.9404 0.9812 4.2654 2.5638 6.8291
150 0.005 0.9488 0.9885 4.3976 2.5194 6.9170
150 0.001 0.9488 0.9885 4.3976 2.5194 6.9170

200 0.1 0.8321 0.8921 3.1193 2.9448 6.0641
200 0.05 0.8854 0.9435 3.6936 2.7539 6.4475
200 0.01 0.9611 0.9869 4.3786 2.5243 6.9029
200 0.005 0.9600 0.9858 4.3563 2.5318 6.8881
200 0.001 0.9611 0.9903 4.4423 2.5028 6.9451

500 0.1 0.8587 0.8952 3.0928 2.9634 6.0561
500 0.05 0.9113 0.9470 3.6682 2.7728 6.4409
500 0.01 0.9674 0.9909 4.3635 2.5406 6.9041
500 0.005 0.9817 0.9958 4.4577 2.5091 6.9668
500 0.001 0.9817 0.9962 4.4654 2.5066 6.9719
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for a penalty parameter N40, and sample-approximated problem with penalty

objective using the penalty function #2

min x1 þ x2 þ
N

S

XS
s¼1

us

s:t:

7� �s1x1 þ x2 � us,

4� �s2x1 þ x2 � us,

x1 � 0, x2 � 0, us � 0, s ¼ 1, . . . ,S

for a penalty parameter N40.
Due to the simple structure of the problem we can compute the exact probability

of fulfilling the constraints for obtained solutions of the sample-approximated

problems. Mean and minimal probabilities are contained in Tables 3–7. The tables

Table 4. Blending problem – penalty constraint #1,1.

Minimal Mean
Mean optimal solution

Mean optimal
S L reliability reliability x1 x2 value

100 0.1 0.6570 0.7808 2.7301 2.9644 5.6944
100 0.05 0.7652 0.8588 3.0962 2.8954 5.9916
100 0.01 0.8769 0.9418 3.7534 2.7206 6.4740
100 0.005 0.9090 0.9562 3.9439 2.6591 6.6031
100 0.001 0.9250 0.9723 4.2082 2.5696 6.7778
100 0.0005 0.9291 0.9753 4.2618 2.5514 6.8132
100 0.0001 0.9322 0.9780 4.3124 2.5342 6.8466

150 0.1 0.7029 0.7927 2.7457 2.9744 5.7201
150 0.05 0.7829 0.8697 3.1207 2.9016 6.0224
150 0.01 0.8964 0.9485 3.7725 2.7252 6.4977
150 0.005 0.9224 0.9631 3.9603 2.6662 6.6265
150 0.001 0.9392 0.9801 4.2402 2.5724 6.8126
150 0.0005 0.9431 0.9837 4.3063 2.5501 6.8565
150 0.0001 0.9477 0.9874 4.3763 2.5266 6.9029

200 0.1 0.7276 0.7986 2.7721 2.9685 5.7406
200 0.05 0.8160 0.8721 3.1560 2.8866 6.0426
200 0.01 0.9207 0.9511 3.8128 2.7105 6.5234
200 0.005 0.9389 0.9654 3.9999 2.6519 6.6519
200 0.001 0.9551 0.9813 4.2709 2.5606 6.8315
200 0.0005 0.9576 0.9848 4.3360 2.5386 6.8747
200 0.0001 0.9598 0.9889 4.4154 2.5119 6.9273

500 0.1 0.7526 0.7972 2.7398 2.9845 5.7243
500 0.05 0.8348 0.8739 3.1166 2.9107 6.0273
500 0.01 0.9161 0.9524 3.7863 2.7259 6.5123
500 0.005 0.9466 0.9674 3.9738 2.6686 6.6424
500 0.001 0.9692 0.9851 4.2535 2.5774 6.8309
500 0.0005 0.9732 0.9888 4.3227 2.5543 6.8770
500 0.0001 0.9784 0.9935 4.4126 2.5242 6.9368

964 M. Branda

D
ow

nl
oa

de
d 

by
 [

in
st

itu
tio

n 
U

H
K

T
 ]

 a
t 1

0:
57

 2
0 

Ju
ly

 2
01

2 



also contain mean optimal solutions and mean optimal values. In Tables 6 and 7,
there are also means of the penalty terms. As we can see, the penalty terms actually
decrease with increasing N and penalize the violations of the random constraints.

For instance, the obtained solutions for sample size S¼ 200 and choice of
parameters �¼ 0.001, L¼ 0.0001, N¼ 100 are reliable for at least 95% and, on
average, for almost 99%. Of course, the setting of parameters for a particular
sample size depends on the concrete problem. In our blending problem,
there is no significant difference in results caused by choosing any of the penalty
functions.

5. Conclusion

In this article, we dealt with several possible stochastic programming formulations
of a problem with constraints depending on a random factor. Chance-constrained

Table 5. Blending problem – penalty constraint #2.

Minimal Mean
Mean optimal solution

Mean optimal
S L reliability reliability x1 x2 value

100 0.1 0.6455 0.7724 2.7587 2.9325 5.6912
100 0.05 0.7645 0.8564 3.1039 2.8868 5.9907
100 0.01 0.8769 0.9413 3.7553 2.7185 6.4739
100 0.005 0.9090 0.9561 3.9444 2.6586 6.6030
100 0.001 0.9250 0.9723 4.2084 2.5694 6.7778
100 0.0005 0.9291 0.9753 4.2618 2.5514 6.8132
100 0.0001 0.9322 0.9780 4.3124 2.5342 6.8466

150 0.1 0.6914 0.7859 2.7673 2.9496 5.7170
150 0.05 0.7777 0.8665 3.1318 2.8897 6.0215
150 0.01 0.8964 0.9484 3.7728 2.7248 6.4976
150 0.005 0.9224 0.9631 3.9605 2.6660 6.6265
150 0.001 0.9392 0.9801 4.2405 2.5721 6.8126
150 0.0005 0.9431 0.9837 4.3066 2.5498 6.8564
150 0.0001 0.9477 0.9874 4.3765 2.5264 6.9029

200 0.1 0.7185 0.7918 2.7949 2.9431 5.7380
200 0.05 0.8143 0.8699 3.1641 2.8779 6.0420
200 0.01 0.9207 0.9510 3.8132 2.7102 6.5233
200 0.005 0.9389 0.9654 4.0002 2.6517 6.6519
200 0.001 0.9551 0.9813 4.2709 2.5606 6.8315
200 0.0005 0.9576 0.9848 4.3360 2.5386 6.8747
200 0.0001 0.9598 0.9889 4.4154 2.5119 6.9273

500 0.1 0.7417 0.7910 2.7600 2.9618 5.7218
500 0.05 0.8284 0.8715 3.1246 2.9019 6.0266
500 0.01 0.9161 0.9523 3.7867 2.7255 6.5122
500 0.005 0.9466 0.9673 3.9742 2.6682 6.6424
500 0.001 0.9692 0.9851 4.2535 2.5774 6.8309
500 0.0005 0.9732 0.9888 4.3227 2.5543 6.8770
500 0.0001 0.9784 0.9935 4.4126 2.5242 6.9368
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problems and problems with penalties in the constraints or in the objective

were considered. We focused on the problems with expectation-type constraints
which generalize the so-called integrated chance constraints. We showed that these

problems are, under quite mild conditions, asymptotically equivalent to those with

penalties in the objective. This is a result complementary to [3,5,8] where similar

equivalence was proven between the chance-constrained problems and the problems
with a penalty objective.

We generalized results on the exponential rates of convergence for

sample-approximated integrated chance-constrained problems. Based on these

rates, it is possible to estimate sample sizes which are necessary to ensure that the

feasible solutions of the original problem are also feasible for a relaxed
sample-approximated problem. Moreover, no additional binary variables were

necessary to be introduced in order to solve the penalty problems.
In the numerical study, we obtained promising results that the

sample-approximated penalty problems can provide highly reliable solutions. This
is possible without using mixed-integer formulation, avoiding to the binary variables

by employing continuous variables to model the penalty terms.

Table 6. Blending problem – penalty objective #1,1.

Minimal Mean
Mean optimal solution

Mean optimal Penalty
S N reliability reliability x1 x2 value term

100 5 0.6920 0.7936 2.7707 2.9643 6.1859 0.4509
100 10 0.7783 0.8857 3.2526 2.8637 6.4629 0.3466
100 50 0.9225 0.9700 4.1738 2.5814 6.8084 0.0532
100 100 0.9330 0.9788 4.3266 2.5294 6.8560 0.0000
100 200 0.9330 0.9788 4.3266 2.5294 6.8560 0.0000
100 500 0.9330 0.9788 4.3266 2.5294 6.8560 0.0000

150 5 0.7409 0.8013 2.7633 2.9794 6.2152 0.4725
150 10 0.7991 0.8957 3.3002 2.8573 6.4966 0.3391
150 50 0.9393 0.9747 4.1517 2.6023 6.8364 0.0824
150 100 0.9404 0.9813 4.2651 2.5640 6.8893 0.0602
150 200 0.9488 0.9885 4.3976 2.5194 6.9170 0.0000
150 500 0.9488 0.9885 4.3976 2.5194 6.9170 0.0000

200 5 0.7211 0.8060 2.7996 2.9658 6.2365 0.4710
200 10 0.8467 0.8990 3.3202 2.8520 6.5207 0.3484
200 50 0.9467 0.9761 4.1806 2.5911 6.8631 0.0913
200 100 0.9600 0.9858 4.3563 2.5318 6.9171 0.0290
200 200 0.9611 0.9903 4.4423 2.5028 6.9451 0.0000
200 500 0.9611 0.9903 4.4423 2.5028 6.9451 0.0000

500 5 0.7587 0.8059 2.7733 2.9800 6.2220 0.4687
500 10 0.8589 0.8992 3.2852 2.8699 6.5093 0.3542
500 50 0.9527 0.9774 4.1212 2.6217 6.8603 0.1174
500 100 0.9674 0.9881 4.3096 2.5586 6.9228 0.0545
500 200 0.9774 0.9925 4.3934 2.5306 6.9528 0.0287
500 500 0.9817 0.9962 4.4654 2.5066 6.9719 0.0000
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2010, pp. 67–72.
[5] M. Branda and J. Dupačová, Approximations and contamination bounds for probabilistic

programs, Ann. Oper. Res. (online first; See also SPEPS 2008-13). [Available at http://

www.springerlink.com/content/b52u4p2520285781].

Table 7. Blending problem – penalty objective #2.

Minimal Mean
Mean optimal solution

Mean optimal Penalty
S N reliability reliability x1 x2 value term

100 5 0.6877 0.7859 2.7855 2.9422 6.1832 0.4556
100 10 0.7783 0.8838 3.2580 2.8571 6.4625 0.3474
100 50 0.9225 0.9700 4.1738 2.5814 6.8084 0.0532
100 100 0.9330 0.9788 4.3266 2.5294 6.8560 0.0000
100 200 0.9330 0.9788 4.3266 2.5294 6.8560 0.0000
100 500 0.9330 0.9788 4.3266 2.5294 6.8560 0.0000

150 5 0.7324 0.7928 2.7801 2.9545 6.2124 0.4778
150 10 0.7991 0.8942 3.3038 2.8525 6.4963 0.3400
150 50 0.9393 0.9747 4.1520 2.6020 6.8364 0.0824
150 100 0.9404 0.9812 4.2653 2.5638 6.8893 0.0602
150 200 0.9488 0.9885 4.3976 2.5194 6.9170 0.0000
150 500 0.9488 0.9885 4.3976 2.5194 6.9170 0.0000

200 5 0.7090 0.7982 2.8125 2.9445 6.2343 0.4773
200 10 0.8462 0.8976 3.3256 2.8466 6.5204 0.3482
200 50 0.9467 0.9761 4.1806 2.5911 6.8631 0.0913
200 100 0.9600 0.9858 4.3563 2.5318 6.9171 0.0290
200 200 0.9611 0.9903 4.4423 2.5028 6.9451 0.0000
200 500 0.9611 0.9903 4.4423 2.5028 6.9451 0.0000

500 5 0.7533 0.7987 2.7859 2.9600 6.2197 0.4738
500 10 0.8545 0.8976 3.2898 2.8644 6.5090 0.3547
500 50 0.9527 0.9773 4.1213 2.6216 6.8603 0.1174
500 100 0.9674 0.9881 4.3096 2.5586 6.9228 0.0545
500 200 0.9774 0.9925 4.3934 2.5306 6.9528 0.0287
500 500 0.9817 0.9962 4.4654 2.5066 6.9719 0.0000

Optimization 967

D
ow

nl
oa

de
d 

by
 [

in
st

itu
tio

n 
U

H
K

T
 ]

 a
t 1

0:
57

 2
0 

Ju
ly

 2
01

2 
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