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Abstract. Many applications from economic and financial practice lead to optimization
problems depending on a probability measure. A complete knowledge of the “underlying”
measure is a necessary assumption to determine an exact optimal solution and an exact
optimal value. Since this condition is not usually fulfilled, the solution is often determined
using empirical data. Estimates of the optimal value and the optimal solution sets can be
obtained by this approach only.
Many efforts has been paid to the investigation of the above mentioned estimates. Espe-
cially the consistency and the convergence rate have been investigated. However, it was
mostly done for “classical” problems and “underlying” distributions with “thin” tails. The
aim of this paper is to analyze these estimates from the point of the distribution tails.
To this end, first, we recall some known results. Furthermore, we recall stability results
based on the Wasserstein metric corresponding to L1 norm (see e. g. [16], [17]) and employ
them to the case of “heavy” tails. Results based on simulation techniques complete our
investigation.
Keywords: Stochastic programming, empirical estimates, moment generating function,
stability, Wasserstein metric, L1 norm, Lipschitz property, consistence, convergence rate,
normal distribution, Pareto distribution, Weibull distribution, distribution tails,
simulation.

JEL classification: C44
AMS classification: 90C15

1. Introduction

Economic processes are usually influenced simultaneously by a random factor and
a decision parameter. Consequently, constructing their mathematical model we of-
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ten obtain an optimization problem depending on a probability measure. These
problems can be static (one–stage) or dynamic. Multistage stochastic programming
programs belong to a dynamic type. Employing a recursive definition (see e. g. [5],
[19], [27]) we obtain a system of one–stage (mostly) parametric problems. Conse-
quently, under some assumptions (corresponding to many practical situations), the
results obtained for one–stage problems can be employed to investigate the multi-
stage problems. So the investigation of one–stage problems is crucially important
also for the multistage case.

To introduce “classical” one–stage stochastic programming problem let (Ω,S, P )
be a probability space; ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) s–dimensional random vector
defined on (Ω,S, P ); F := F (z) with z ∈ Rs, PF and ZF denote the distribution
function, the probability measure and the support corresponding to ξ. Let, more-
over, g0 := g0(x, z) be a real–valued (say continuous) function defined on Rn × Rs;
X ⊂ Rn be a nonempty set. If the symbol EF denotes the operator of mathematical
expectation corresponding to F and if for every x ∈ X there exists a finite EFg0(x, ξ),
then a rather general “classical” one–stage stochastic programming problem can be
introduced in the form

to find ϕ(F ) = inf{EFg0(x, ξ) |x ∈ X}. (1)

In applications, we very often have to replace the measure PF by its stochastic
estimate to obtain at least an approximate optimal value and optimal solution. An
empirical probability measure is a very suitable candidate for this measure estimate.
Consequently, the solution of the problem (1) has to be often sought with respect
to an empirical problem

to find ϕ(FN) = inf{EFNg0(x, ξ) |x ∈ X}, (2)

where FN denotes an empirical distribution function determined by a random sam-
ple {ξi}Ni=1 (not necessary independent) corresponding to the distribution function
F . If we denote the optimal solutions sets of (1) and (2) by X (F ),X (FN), then
(under rather general assumptions) ϕ(FN),X (FN) are “good” stochastic estimates
of ϕ(F ),X (F ).

The properties of the above mentioned estimates have been investigated many
times in the stochastic programming literature. It was shown there that these es-
timates are consistent under rather general assumptions. Furthermore, the con-
vergence rate has been studied. However, there mostly results for “underlying”
distribution with “weak” tails have been obtained. This assumption corresponds
to “classical” situations and, moreover, it has been proven that the corresponding
results have very “pleasant” properties. However, it has been recognized later that
random elements corresponding to economic and financial situations do not fulfil
these conditions. Consequently, a question has arisen if the above mentioned esti-
mates have then also “acceptable” properties. The aim of this paper is to deal with
the case of “heavy” tails. In particular, we try to show a relationship between finite
moments existence and a rate of convergence of the corresponding estimates.
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2. Historical Survey

The investigation of the empirical estimates started in 1974 by [43]; followed by
many works (see e. g. [4], [13], [35], [36], [37], [39]). This topic appears also e. g. in
[2], [20] or [22]). Let us recall some of the known results. First, we recall consistent
results.

Theorem 1. [13] If

1. X is a compact set, g0(x, z) is a uniformly continuous bounded function on
Rs ×X,

2. {ξi}∞i=1 is an ergodic sequence,

then
P{ω : |ϕ(FN)− ϕ(F )| −−−→

N→∞
0} = 1.

Remark. Theorem 1 has been proven under the assumption that {ξi}∞i=1 is an er-
godic sequence. We recall that ergodic property corresponds to an invariant trans-
formation. Of course ergodic property covers independent case. For more details
see e. g. [1].

Theorem 2. Let X be a nonempty compact set. If

1. in every x ∈ X the function g0(x, z) is a continuous function of x for almost
every z ∈ ZF (w. r. t. PF ),

2. g0(x, z), x ∈ X is dominated by an integrable function (w. r. t. F ),

3. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then
P{ω : |ϕ(FN)− ϕ(F )| −−−→

N→∞
0} = 1.

Proof. The assertion of Theorem 2 follows immediately from Proposition 5.2 and
Theorem 7.48 proven in [39].

Furthermore, we recall convergence rate results.

Theorem 3 ([14]). Let t > 0, X be a nonempty compact, convex set. If

1. g0(x, z) is a uniformly continuous function on X × ZF , bounded by M > 0
(i. e., |g0(x, z)| ≤M),

2. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L′ not de-
pending on z,

3. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then there exist constants K(t,X, L′), k1(M) > 0 such that

P{ω : |ϕ(F )− ϕ(FN)| > t} ≤ K(t,X, L′) exp{−Nk1(M)t2}.
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Remarks.

1. K(t,X, L′) depends on t,X, L′ and k1(M) on M . Employing their estimations
presented in [14] it has been proven ([15]) that

P{ω : Nβ|ϕ(F )− ϕ(FN)| > t} −−−→
N→∞

0 for β ∈ (0, 1
2
).

Moreover if g0(x, z) is uniformly strongly convex function of x ∈ X with a
parameter ρ > 0, then X (F ) and X (FN) are singletons and

P{ω : Nβ‖X (F )−X (FN)‖2 > t} −−−→
N→∞

0 for β ∈ (0, 1
2
).

Recall that g0(x, z) is a (uniformly) strongly convex function on convex set X
if there exists a constant ρ > 0 such that the relation

g0(x, z) ≤ λg0(x
1, z) + (1− λ)g0(x

2, z)− λ(1− λ)ρ‖x1 − x2‖2

is valid for every λ ∈ 〈0, 1〉, x = λx1+(1−λ)x2, x1, x2 ∈ X, z ∈ Rs; ‖·‖ = ‖·‖2n
denotes the Euclidean norm in Rn. For more details see e. g. [34].

1. The assertion of Theorem 3 is valid independently of the distribution function
F ; consequently also for the distribution functions with heavy tails. On the
other hand g0(·, ·) must be a bounded function. This condition substitutes,
evidently, the assumption on a bounded support of the corresponding random
element in the Hoeffding paper [9].

If the moment generating function Mg0(t), corresponding to g0(x, ξ), is defined
by the relation

Mg0(t) := EF

{
et[g0(x,ξ)−EF g0(x,ξ)]

}
,

then the following assertion has been proven in [38].

Theorem 4 ([38]). Let X ⊂ Rn be a nonempty closed set. If

1. for every x ∈ X the moment generating function Mg0(t) is finite valued for all
t in a neighbourhood of zero,

2. there exists a measurable function κ : ZF → R+ and a constant γ
′
> 0 such

that
|g0(x

′, z)− g0(x, z)| ≤ κ(z)‖x′ − x‖γ
′

for all z ∈ ZF and all x, x′ ∈ X,

3. the moment generating function Mκ(t) of κ(ξ) is finite valued for all t in a
neighbourhood of zero,

4. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then for any ε > 0 there exist positive constants C = C(ε) and β = β(ε), independent
of N , such that

P

{
sup
x∈X
|EFNg0(x, ξ)− EFg0(x, ξ)| ≥ ε

}
≤ C(ε)e−Nβ(ε),

‖ · ‖ = ‖ · ‖2n denotes the Euclidean norm in Rn.
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Remark. In Theorem 4 no assumptions are made on the function g0(x, z). The
corresponding assumptions are concerning only the moment generating function
Mg0 . This fact contrasts the assumptions of Theorems 1, 2, 3. (Moreover, Mg0 is in
fact the moment generating function corresponding to the central moment.)

Evidently, according to the above mentioned results (as well as to the results pub-
lished e. g. in [3], [10], [12], [39] and [44]), the existence of the corresponding finite
moment generating functions is a “rather simple” sufficient condition to guarantee
exponential convergence rate in many cases (see e. g. linear objective functions).
Of course, the normal distribution fulfils this assumption and, moreover, the normal
distribution (or at least normal approximation) has been former times employed usu-
ally in economic and financial applications. We can recall the well known Markowitz
model of a portfolio selection where the normal distribution is usually considered
and where the variance corresponds to a risk measure. It has been shown in [24] that
there exists a relationship between this risk measure and absolute deviation just in
the case of the normal distribution. However, relatively soon it has been recognized
that many data correspond to the distributions (with “heavy” tails) for which the
finite moment generating function does not exist.

A relatively “good” analysis of the “heavy” tailed distributions in economy and
finance is presented e. g. in [30]. There is mentioned e. g. the fact that some data
about river flow, cotton, exchange rate, returns and so on correspond just to dif-
ferent random parameters with heavy tails distributions. The Weibull distribution
corresponds often to lifetime value as well as to problems about wind speed and
power, rainfall intensity and so on. Furthermore, it was mentioned in [7] that some
date about gold prices, telecommunication, quality control, but also problems about
incomes correspond to the lognormal distribution. A relationship between heavy
tailed distributions and the stable distributions can be found e. g. in [23]; between
the stable heavy tailed distributions and the Pareto tails is known and can be found
e. g. in [23] and [26] (see also [31]).

According to the above recalled facts, it is easy to see that the distributions with
“heavy” tails correspond really to many economic and financial data. Consequently,
a question arises: how “good” are empirical estimates corresponding to them. Are
these estimates consistent and what is it valid about a convergence rate and an
asymptotic distribution? Some results about consistency are known (see also The-
orem 2). A minor result (about the convergence rate) has been proven in [21]. In
this paper we try to extend the last theoretical results, especially we focus our in-
vestigation on the value of the convergence rate. Moreover, we complete theoretical
results by simulation techniques.

3. Some Definitions and Auxiliary Assertions

Let F,G be two s–dimensional distribution functions. To recall the definition of the
Wasserstein metric dW p

1
(F,G) = dW p

1
(PF , PG) with p = 1, 2, let P(Rs) denote the set

of all (Borel) probability measure on Rs. IfMp
1(Rs) = {ν ∈ P(Rs) :

∫
Rs ‖z‖

p
sdz <∞}

and D(PF , PG) denotes the set of those measures on P(Rs × Rs) whose marginal
measures are PF and PG, ‖ · ‖2s corresponds to the Euclidean norm, ‖ · ‖1s to the L1
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norm in Rs, then

dW p
1
(F,G) := dW p

1
(PF , PG) = inf

{∫
Rs×Rs

‖z − z̄‖psκ(dz × dz̄) : κ ∈ D(PF , PG)
}
,

PF , PG ∈Mp
1(Rs), p = 1, 2.

We introduce the following system of the assumptions:

A.1 • g0(x, z) is a uniformly continuous function on X × Rs,

• g0(x, z) is for x ∈ X a Lipschitz function of z ∈ Rs with the Lipschitz
constant L (corresponding to the L1 norm) not depending on x,

A.2 • {ξi}∞i=1 is an independent random sequence corresponding to F ,

• FN is an empirical distribution function determined by {ξi}Ni=1, N =
1, 2, . . . ,

A.3 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on
R1 (PFi , i = 1, 2, . . . , s denote one-dimensional marginal probability measures
corresponding to F ).

Employing the Wasserstein metric corresponding to L1 norm and the results of
[42], the following stability assertion has been proven.

Proposition 5 ([17]). Let PF , PG ∈ M1
1(Rs), and let X be a compact set. If the

assumption A.1 is fulfilled, then

|ϕ(F )− ϕ(G)| ≤ L
s∑
i=1

∫ +∞

−∞
|Fi(zi)−Gi(zi)|dzi.

Proposition 5 reduces (from the mathematical point of view) s–dimensional case
to one–dimensional. Of course, stochastic dependence between components of the
random vector is there neglected.

Replacing G by FN in Proposition 5 we can investigate properties of the em-
pirical estimates ϕ(FN). It follows from Proposition 5 that the investigation (of
the problem (2)) cannot be only reduced to the case s = 1 however that proper-
ties of |ϕ(F )− ϕ(FN)| follows from the properties of

∫ +∞
−∞ |Fi(zi)− F

N
i (zi)|dzi, i =

1, 2, . . . , s; (FN
i , i = 1, . . . , s denotes one–dimensional marginal empirical distribu-

tion functions corresponding to FN).

Remark. The Wasserstein metric based on L1 norm has appeared already in [41]
(see also [32]).

We recall the following assertions.

Lemma 6 ([40]). Let s = 1 and PF ∈M1
1(R1). Let, moreover, the assumption A.2

be fulfilled. Then

P

{
ω :

∫ ∞
−∞
|F (z)− FN(z)|dz −−−→

N→∞
0

}
= 1.
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Proposition 7 ([18], [21]). Let s = 1, t > 0 and the assumptions A.2, A.3 be
fulfilled. If there exists β > 0, R := R(N) > 0 defined on N such that R(N) −−−→

N→∞
∞

and, moreover,

Nβ

∫ −R(N)

−∞
F (z)dz −−−→

N→∞
0, Nβ

∫ ∞
R(N)

[1− F (z)]dz −−−→
N→∞

0,

2NF (−R(N)) −−−→
N→∞

0, 2N [1− F (R(N))] −−−→
N→∞

0,(
12NβR(N)

t
+ 1

)
exp

{
−2N

(
t

12R(N)Nβ

)2
}
−−−→
N→∞

0,

(3)

then

P

{
ω : Nβ

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
−−−→
N→∞

0. (4)

N denotes the set of natural numbers.

Proof. First replacing in Proposition 5 G by FN and employing the properties of
the probability measure we can obtain for t > 0, R > 0 and s = 1 the following
relation

P

{
ω :

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
≤ P

{
ω :

∫ R

−R
|F (z)− FN(z)|dz > t

3

}
+ P

{
ω :

∫ −R
−∞
|F (z)− FN(z)|dz > t

3

}
+ P

{
ω :

∫ ∞
R

|F (z)− FN(z)|dz > t

3

}
.

If furthermore we set for N = 1, 2, . . .

Ω(N,R) = {ω : ξi(ω) ∈ (−R,R), i = 1, . . . , N},
Ωc(N,R) = Ω− Ω(N,R),

then evidently

P
{
ω :

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
≤ P

{
ω :

∫ R

−R
|F (z)− FN(z)|dz > t

3

}
+ P

{
ω ∈ Ω(N,R) :

∫ −R
−∞
|F (z)− FN(z)|dz > t

3

}
+ P

{
ω ∈ Ω(N,R) :

∫ ∞
R

|F (z)− FN(z)|dz > t

3

}
+ P

{
ω ∈ Ωc(N,R) :

∫ −R
−∞
|F (z)− FN(z)|dz > t

3

}
+ P

{
ω ∈ Ωc(N,R) :

∫ ∞
R

|F (z)− FN(z)|dz > t

3

}
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and, consequently,

P

{
ω :

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
≤ P

{
ω :

∫ R

−R
|F (z)− FN(z)|dz > t

3

}
+ P

{
ω ∈ Ω(N,R) :

∫ −R
−∞

F (z)dz >
t

3

}
+ P

{
ω ∈ Ω(N,R) :

∫ ∞
R

(1− F (z))dz >
t

3

}
+ 2P

{
ω ∈ Ωc(N,R)

}
.

Since

1. P{ω : ω ∈ Ωc(N, R)} ≤ NF (−R) +N(1− F (R)),

2. it has been proven in [6] (for independent random sample) that

P
{
ω : |F (z)− FN(z)| > t

}
≤ 2 exp{−2Nt2} independently on z ∈ R1,

3. employing the results of [6] it has been proven in [18] (see also [17]) that

P

{
ω :

∫ R

−R
|F (z)− FN(z)|dz > t

}
≤
(

1

t
+ 1

)
exp
{
−2Nt2

}
for

t

4R
< 1,

we can see that the assertion of Proposition 7 is valid.

To complete this part, we recall the assertion corresponding to the case β = 1
2
.

Proposition 8 ([11], [16]). Let the assumptions A.2 and A.3 be fulfilled, s = 1,
PF ∈M1

1(R1). If ∫ +∞

−∞

√
F (z)(1− F (z)dz < +∞,

then ∫ +∞

−∞

√
N |FN(z)− F (z)|dz −→d

∫ +∞

−∞
|U(F (z))|dz,

U denotes the Brownian bridge.

4. Convergence Rate – Analysis

In this section we try to introduce assumptions under which the relations (3) are
valid and consequently (4) holds. To this end we restrict to the case s = 1. Let
f denote the probability density corresponding to F . First, we recall the assertion
corresponding to the exponential tails.
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4.1. Exponential Tails

Proposition 9 ([21]). Let s = 1, t > 0, β ∈ (0, 1
2
) and the assumptions A.2, A.3

be fulfilled. If there exist constants C1, C2 and T > 0 such that

f(z) ≤ C1 exp{−C2|z|} for z ∈ (−∞,−T ) ∪ (T,∞),

then

P

{
ω : Nβ

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
−−−→
N→∞

0.

Of course, the finite moment generating function (corresponding to the random
element ξ) exists in this case. Furthermore, we try to relax the assumption of “thin”
(exponential) tails. In particular, we try to consider examples of the distributions
with not everywhere existing finite moment generating function, however for which
the assertion of Proposition 9 is valid. We consider the Weibull distribution.

4.2. Weibull Distribution

Definition 10 ([25]). Let s = 1. A random variable ξ has a Weibull probability
density f if there exist constants c > 0, ν > 0, z0 ∈ R1 such that

f(z) =

{
c
ν

(
z−z0
ν

)c−1
exp{−((z − z0)/ν)c} for z > z0,

0 for z ≤ z0.

Evidently, without loss of generality, we can set z0 = 0. The distribution function
F (z) then fulfils the relation

F (z) = 1− exp{−(z/ν)c}.

Immediately, we can obtain for R(N) = Nγ, γ ∈ (0, 1
2
) that(

12NβR(N)

t
+ 1

)
exp

{
−2N

(
t

12R(N)Nβ

)2
}

=

(
12NβNγ

t
+ 1

)
exp

{
−2N

(
t

12Nγ Nβ

)2
}
−−−→
N→∞

0. (5)

Furthermore, it is easy to see that the moment generating function exists in the case
c > 1; while it does not exist when 0 < c < 1 (for more details see [8]). To deal with
the convergence rate let γ, β > 0, γ + β ∈ (0, 1

2
) and R(N) = Nγ. We distinguish

two cases: c ≥ 1, and 0 < c < 1. If c ≥ 1, then we can obtain (for enough large N)
successively

N [1− F (R(N))] = N exp{−(Nγ/ν)c} −−−→
N→∞

0,

Nβ

∫ ∞
Nγ

[1− F (z)]dz = Nβ

∫ ∞
Nγ

exp{−(z/ν)c}dz ≤ Nβ

∫ ∞
Nγ

exp{−(z/ν)}dz

= Nβ[−ν exp{−(z/ν)}]∞Nγ = Nβν exp{−Nγ/ν} −−−→
N→∞

0. (6)
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Consequently, it follows from the relations (3), (5) and (6) that under the assump-
tions A.2, A.3 the assertion of Proposition 7 is valid. It remains to consider the case
c ∈ (0, 1). First, we obtain in this case

N [1− F (R(N))] = N exp{−(Nγ/ν)c} −−−→
N→∞

0. (7)

Furthermore, if we set a = Ncγ

νc
and define k ∈ N such that k ≥ 1

c
− 1, then (for

enough large N) employing the per partes formula we obtain

Nβ

∫ ∞
Nγ

[1− F (z)]dz = Nβ

∫ ∞
Nγ

exp{−(z/ν)c}dz = Nβ

∫ ∞
a

ν

c
u

1
c
−1 exp{−u}du

≤ Nβ

∫ ∞
a

ν

c
uk exp{−u}du

≤ Nβ

[
−ν
c
uke−u + · · ·+ (−1)k

(ν
c

)k
k(k − 1) · · · 1e−u

]∞
a

+Nβ

∫ ∞
a

e−udu. (8)

Consequently, it follows from the properties of the exponential function that

Nβ

∫ ∞
Nγ

[1− F (z)]dz −−−→
N→∞

0.

It follows from the relations, (5), (7) and (8) that under the assumptions A.2,
A.3 the assertion of Proposition 7 is valid also in the case c ∈ (0, 1). Evidently, we
have proven the following assertion.

Proposition 11. Let s = 1, t > 0, and the assumptions A.2, A.3 be fulfilled. If
there exists constants c > 0, ν > 0, T > 0 such that a probability density f fulfils the
relation

f(z) ≤ c

ν

(
|z|
ν

)c−1

exp{−(|z|/ν)c} for z ∈ (−∞, T ) ∪ (T,∞),

then

P

{
ω : Nβ

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
−−−→
N→∞

0 for β ∈ (0, 1
2
).

Consequently, it follows from Proposition 9 and Proposition 11 that the assertion
of Proposition 7 is valid for β ∈ (0, 1/2) in the case of the exponential tails as well as
in the case tails corresponding to the Weibull distribution. It means that there can
exist the distributions with “heavy” tails (for which the finite moment generating
function does not exist) and simultaneously with the best convergence rate of optimal
value empirical estimates (for more details see Kolmogorov limit theorem, see also
[6]). This result looks very promising. However, recalling the results concerning
Pareto distribution (see also simulations), we can see that only weaker results can
be there guaranteed.
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4.3. Pareto Distribution

Definition 12 ([30]). Let s = 1. A random variable ξ has a Pareto distribution if

P{ω : ξ > z} =

(
C

z

)α
, f(z) = αCαz−α−1 for z ≥ C

f(z) = 0 for z < C,

where C > 0, α > 0 are constants, f := f(z) is a probability density.

The Pareto distribution has only one tail and for α > 1 we obtain PF ∈M1
1(R1).

The finite moments EF ξ
r exist there for r < α. We recall the following assertion.

Proposition 13 ([21]). Let s = 1, t > 0, α > 1, and β, γ > 0 fulfil the inequalities
γ > 1

α
, γ
β
> 1

α−1
, γ + β < 1

2
. Let, moreover, the assumptions A.2, A.3 be fulfilled. If

there exist constants C > 0, T > 0 such that

f(z) ≤ Cα|z|−α−1 for z ∈ (−∞,−T ) ∪ (T,∞),

then

P
{
ω : Nβ

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
−−−→
N→∞

0.

Corollary 14. Let the assumptions of Proposition 13 be fulfilled. If moreover

1. α > 4, γ > 1
4
, then necessary β < 1

4
;

2. α > 3, γ > 1
3
, then necessary β < 1

6
;

3. α > 2, γ > 1
α

, then we can obtain β := β(α) −−−→
α→2+

0.

If α ∈ (1, 2), then we can not obtain (in Pareto case) similar result to the results of
Proposition 13.

Analyzing the cases of the Weibull and the Pareto distributions, we can see that
all moments EF ξ

r exist in the case of the Weibull distribution (for more details see
e. g. [8]) while in the case of the Pareto distribution the moments exist only for r < α.
The convergence rate β, in the case of the Weibull distribution, is the same as in the
case of exponential tails, while in the case of Pareto distribution is worse; evidently
it depends on the value of the parameter α (consequently on the existence of finite
moments). Moreover, it seems that for α, α′ > 2, α < α′ the corresponding β, β′ fulfil
an inequality β < β′. Consequently, according to the assertions of Propositions 9,
Proposition 11 and Proposition 13 it seems that the convergence rate depends not
only on the existence of the finite moment generating function, but it depends on
the existence of finite moments.
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4.4. Relationship between Finite Moments Existence and Convergence
Rate

Thinking about the previous results, it seems that more general results can be
obtained. To this end, first, we recall a well known result of the mathematical
statistics.

Proposition 15 ([8]). Let r > 0, s = 1. Suppose that ξ is a non–negative random
variable. Then

EF ξ
r <∞ =⇒ zrP{ω : ξ > z} −→ 0 as z −→∞.

Remark. Proposition 15 is formulated for a non–negative random value ξ. However,
if we assume s = 1, and r > 0 then successively

EF |ξ|r < +∞ =⇒ |z|rP{ω : |ξ| > z} −→ 0 as |z| −→ ∞,
and simultaneously

P{ω : ξ < −z} ≤ P{ω : |ξ| > z}, P{ω : ξ > z} ≤ P{ω : |ξ| > z}, z > 0. (9)

Evidently, we can employ the results of Proposition 7 and Proposition 15 to obtain
the convergence rate for a relatively large class of the distribution functions with
“heavy” tails.

Proposition 16. Let s = 1, t > 0, r > 0, and the assumptions A.2, A.3 be fulfilled.
Let, moreover, ξ be a random variable such that EF |ξ|r <∞. If constants β, γ > 0
fulfil the inequalities

0 < β + γ < 1/2, γ > 1/r, β + (1− r)γ < 0,

then

P

{
ω : Nβ

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
−−−→
N→∞

0.

Proof. First setting R(N) = Nγ we can see that for γ + β < 1/2 it holds(
12NβR(N)

t
+ 1

)
exp

{
−2N

(
t

12R(N)Nβ

)2
}

=

(
12NβNγ

t
+ 1

)
exp

{
−2N

(
t

12Nγ Nβ

)2
}
−−−−→
N−→∞

0. (10)

Furthermore it follows from the assumptions and from Proposition 15 for γ > 1/r
that

NF (−R(N)) −−−→
N→∞

0, N [1− F (R(N))] −−−→
N→∞

0. (11)

and, simultaneously, for β + (1− r)γ < 0 that

Nβ

∫ −R(N)

−∞
F (z)dz −−−→

N→∞
0, Nβ

∫ ∞
R(N)

[1− F (z)]dz −−−→
N→∞

0. (12)

The assertion of Proposition 16 follows now already from the assertion of Proposi-
tion 7 and the relations (10), (11) and (12).
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5. Main Results

It follows from the former section that in the case s = 1 the convergence rate in the
relation

P

{
ω : Nβ

∫ ∞
−∞
|F (z)− FN(z)|dz > t

}
−−−→
N→∞

0 for t > 0

depends on the range of finite moments existence. Consequently, employing the
assertion of Proposition 5 we can obtain a relationship between the range of fi-
nite moments existence for one dimensional marginal distributions and the optimal
value estimates. Consequently we obtain the results concerning the rate of conver-
gence without the assumption that g0(x, z) is a bounded function as well as the
finite moment generating function Mg0 exists. However, first we recall one result on
consistency.

Theorem 17. Let the assumptions A.1, A.2, and A.3 be fulfilled, PF ∈ M1
1(Rs).

Then
P{ω : |ϕ(FN)− ϕ(F )| −−−→

N→∞
0} = 1.

Proof. The assertion of Theorem 17 follows from Proposition 5 and Lemma 6.

The next assertion follows from Proposition 5. Evidently, it generalizes well–
known results on convergence rate of empirical estimates in stochastic programming
problem. Consequently, this result generalizes the former result and it can be useful
in applications on economic problems. Especially according to the fact, that to
verify the corresponding assumptions seems to be simple.

Theorem 18. Let the assumptions A.1, A.2, and A.3 be fulfilled, PF ∈M1
1(Rs), t >

0. If

1. for some r > 2 it holds that

EFi |ξi|r < +∞, i = 1, . . . , s,

2. constants β, γ > 0 fulfil the inequalities

0 < β + γ < 1/2, γ > 1/r, β + (1− r)γ < 0,

then
P{ω : Nβ|ϕ(F )− ϕ(FN)| > t} −−−→

N→∞
0.

Proof. The assertion of Theorem 18 follows immediately from Proposition 5 and
Proposition 16.

According to Theorem 17 we can see that under rather general assumption ϕ(FN)
is a consistent estimate of ϕ(F ). Evidently, the assumptions of Theorem 17 can be
very simply verified (however maybe they are a little stronger then the assumptions
of Theorem 2). Furthermore Theorem 18 generalizes the assertions of Theorem 3
and Theorem 4. According to this result the “best” convergence rate is “practically”
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valid (under some additional assumptions) for all “underlying” distributions with
EFi|ξi|r < ∞, i = 1, . . . , s for all r ∈ N. Namely, generally, the convergence rate
β := β(r) depends on the absolute moments existence and, moreover, it is easy to
see that

β(r) −−−−→
r→+∞

1/2, β(r) −−−→
r→2+

0

Unfortunately, we can not obtain (by this theoretical approach) results in the case
when there exist only EF |ξi|r, i = 1, . . . s for r ≤ 2. It seems that there exists a
relationship between the convergence rate and a domain of attractions for a normal
law (for the definition of domain of attraction see e. g. [29]). To obtain some further
information we employ the simulation technique.

6. Simulation

In order to illustrate the asymptotic behaviour of the Wasserstein metric we
compute values of the integrated empirical process

Nβ

∫ ∞
−∞
|F (z)− FN(zi)|dz. (13)

for different distributions – namely standard normal N(0; 1) distribution (as a bench-
mark), Pareto I distribution with the scale parameter C = 1 and different values of
shape parameter α (from 1.8 to 3), and standard Weibull distribution with the shape
parameters c = 0.6 and 0.8 and scale parameter ν = 1 – and for different values of
β (up to 1

2
). For each situation we generate random sequences of N = 100, 1000,

and 2000 samples, and do 200 simulations in total in order to estimate the limiting
distribution of the process (13).

The limiting distribution of Pareto integrated empirical process is seen to be
of very large variance (compared to standard normal distribution) for α = 2 and
smaller α’s; this also generates a negative impact for estimates (we have only a poor
information about convergence rate). Also note the curve for N = 100 in Figure 1:
it differs from curves for larger sample sizes – thus one concludes that using small
sample sizes for estimating could be seen problematic.

We observe the convergence to zero for normal distribution with β = 2/5 in
Figure 2 (the solid curve is the leftmost one). This is not evident for any of the
used Pareto distributions: for α = 3 we theoretically assure the convergence to zero
only for small value of β = 1/6 (even though it is only a conservative estimate). For
smaller αs, we have no theoretical results; we observe again a great value of limiting
variance and we are not sure at all if the sample size of 2000 realization is enough
to conclude about limiting distribution, at least empirically.

We got very similar behaviour simulating the process with β = 1/3 and with
α = 1.6 and 1.5: even greater variance and doubts about the sufficient sample size.
These simulation are not presented in this paper.

For Weibull distribution we have chosen shape parameters c corresponding to
situation where the moment generating function does not exists; however the asser-
tion of the Proposition 7 is valid as shown in Section 4.2.. We observe moderate
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Convergence of integr. empirical process

N × Wasserstein.metric
Process value: N=100 (dotted), N=1000 (dashed), N=2000 (solid)
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Figure 1: Normal and Pareto distributions (α = 3.0, 2.0, 1.8) with β = 1/2

asymptotic properties for moderate value of c = 0.8 (see the top part of Figure 3);
the convergence for β < 1/2 is theoretically assured but no visual difference between
distribution of (13) for N = 1000 and 2000 samples is observed on the right-hand
side graph. The situation is getting much more worse for the shape of c = 0.6 (bot-
tom part of Figure 3): the variance of the limiting distribution for β = 1/2 (left-hand
side) increases (left-hand side graph) and the convergence to zero for β = 2/5 is not
visually observed even for 2000 sample size. So is for smaller values 0.5 and 0.3
which we have also computed but not finally included in this paper.

7. Conclusion

The paper deals with the investigation of empirical estimates of the optimal value
in the case of one–stage (rather general) stochastic programming problems. First,
some consistent results are introduced, however the main effort has been paid to the
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Figure 2: Normal and Pareto distributions (α = 3.0, 2.0, 1.8) with β = 2/5

convergence rate of the optimal value with the “underlying” probability measure for
which the finite moment generating function does not exist. Evidently, the classical
results are generalized. Employing some growth conditions the introduced results
can be transformed to the estimates of the optimal solution (for more details see
e. g. [11], [34] and [35]).

Furthermore, it follows from [21] that the achieved results can be applied to some
nonlinear functionals, covering some risk measures and to the multistage stochastic
programming problems with “underlying” autoregressive (or at least Markov) se-
quences (see e. g. [19]). However the investigation in these directions is beyond the
scope of this paper.
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[17] V. Kaňková and M. Houda: Empirical Estimates in Stochastic Programming. In:
Proceedings of Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), MAT-
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[20] V. Kaňková: A Remark on Empirical Estimates via Economic Problems. In: Pro-
ceedings of the 27th International Conference on Mathematical Methods in Economics
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