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Abstract. This article extends our previous work on applications of isoquantile
(formerly isobar) surfaces to market analysis. The approach is applied to lagged
returns of selected stock market indices and compared to various estimations of
the Hurst exponent.

We evaluate the Efficient Market Hypothesis by means of the two aforementioned
approaches for the ASPI, BET, BUX, JSX, NASDAQ, PX and S&P500 indices.
The more does a time series satisfy the EMH, the closer it resembles Brownian
motion. In this case isoquantile surfaces form a circle and the Hurst exponent
approaches 1

2 .
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1 Introduction

This article applies two approaches to evaluate the Efficient Market Hypothesis for selected stock market
indices. The notion of an efficient market was introduced in Fama [6]. We study the particular version of
EMH stating that returns of efficient stock market indices follow the behaviour of Brownian motion; as
for this article, closeness to this ideal will be understood as a measure of efficiency.

The first section discusses the isoquantile approach introduced in [4] (originally called the isobar
approach). For a fixed center point and a level u, an isoquantile encloses the u-th quantile of a multi-
dimensional data distribution, mapping every direction from the center to a particular distance. The
term “isoquantile” is used for both the mapping and its image (a continuous surface). Since isoquantiles
of varying levels u continuously cover the whole domain, points in it can be ordered by comparing the
levels of their (unique) encompassing isoquantiles.

The second author of [4] focused on practical estimation of isoquantile shapes. The article [9] considers
estimation of the edge of the bounded support (u→ 1) using nonparametric regression and [10] extends
this method for unbounded support using asymptotical location and isoquantiles.

In this article, we follow the approach of [9] and limit ourselves to homothetic isoquantiles (i.e.
isoquantiles of varying levels are assumed to be scaled copies of each other). In our prior article [8] we’ve
formulated two isoquantile shape estimation methods (differing in the chosen coordinate system) and
applied them on the PX and NASDAQ indices.

The next section discusses the Hurst exponent [7, 5, 3], a measure of fractal dimension. It’s commonly
used in financial analysis as an indicator of long-term persistence of time series. We’ve chosen four
commonly used methods for its estimation: detrended fluctuation analysis, rescaled range analysis,
detrending moving average and height-height correlation analysis.

The third section is concerned with an application. We discuss the means to apply the approaches to
a time series, summarize the tested indices and discuss the results.
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2 Isoquantile surfaces

Isoquantiles require us to work in polar coordinates. Choosing the Euclidean space, the transformation of
a non-zero vector x ∈ Rd to generalized polar coordinates is given by

r = ‖x‖2 , θ =
x
‖x‖2

,

where ‖x‖2 is the Euclidean norm of the vector x. Observe that the generalized angle θ lies on Sd−1, the
sphere of unit radius in Rd.

We’ll use the definition of isoquantile as it appears in [4], page 2: For every u ∈ (0, 1), the u-level
isoquantile is defined as a mapping of a fixed θ to the value of the inverse distribution function of the
Euclidean distance from the origin: θ → F−1

R |Θ(u). The name “u-level isoquantile” will also be used
interchangeably for the surface Su = F−1

R |Θ(u) determined by each θ with a fixed quantile u in the inverse
of the conditional distribution function F−1

R |Θ.

We’ll assume our sample to originate from the random variable X = (R,Θ). Assume continuity
of the marginal density fΘ(θ), conditional density fR |Θ(r | θ) and the conditional distribution function
FR |Θ(r | θ). The distribution function is assumed to be invertible, the introduced mapping continuous
and strictly positive.

A rigorous definition of the introduced ordering is as follows. Consider a sample of n independent
realizations of the random variable X, e.g. Xi = (Ri,Θi), 1 ≤ i ≤ n. For every i there exists an unique
ui-level isoquantile containing the point Xi. Denoting Xi,n the realizations ordered by their respective
quantile values ui, the maximum value is given by the point Xn,n which belongs to the upper-level
isoquantile with level max1≤i≤n ui.

In practice, we’ll assess the 1-level isoquantile on the grounds of the asymptotical location property as
described in [10]. For large n, the furthest points from the origin lie near the n−1

n -level isoquantile. The
1-level isoquantile is then simply the edge of the bounded support.

Isoquantile estimation is performed by the non-parametric regression of [9, 10]. For the estimation
we’ll assume homotheticity of isoquantiles. The function v(θ) corresponds to the 1-level isoquantile and
unambiguously describes the shape of all isoquantiles. The distribution of x

v(θ) is spherically symmetric.

We estimate v(θ) using radial regression:

w(θ) = E(R |Θ = θ) = c v(θ),

The estimate of the expected value of R given Θ = θ describes the shape of 1-level isoquantile up to a
multiplicative constant. This constant is chosen in a way that the estimated expected value shape ŵ(θ)
contains the whole data after scaling:

v̂(θ) =
ŵ(θ)
ĉ

, where 1/ĉ = max
1≤i≤n

Ri

ŵ(Θi)

For practical estimation we’ll use the two parametrizations introduced in [9] (hyperspherical) and [8]
(unit sphere projection). For details and rationale see our previous work [8].

To enable quantitative comparison with the methods of the following section, we’re introducing a
numerical measure that preserves index ordering from the previously used visual assessment. This novel
market efficiency measure is computed via Fourier analysis of the estimated isoquantile shape; due to size
constraints, details will be revealed in an upcoming article.

3 Hurst exponent

For comparison, we present the results for another measure frequently used as a measure of market
efficiency – the Hurst exponent H. The exponent 0 < H < 1 is a characteristic measure of long-range
dependence in the time series. For H > 0.5, the series is persistent, i.e. following a trend; while for
H < 0.5, the series is anti-persistent, i.e. switching more frequently than a random series does. Therefore,
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a deviation from H = 0.5 indicates possible profitable trading as there are long-range correlations in the
series. Out of many Hurst exponent estimators, we use the most popular ones for the financial series
– detrended fluctuation analysis, rescaled range analysis, detrending moving average and height-height
correlation analysis.

Rescaled range analysis (RS) is the most traditional of the methods, proposed by [7]. According to
[14], the time series of length 2υmax is divided into the sub-periods of length 2υ. For each sub-period, the
range R of the profile is calculated as well as the standard deviation of the increments S. The rescaled
range R/Sυ, based on the average rescaled ranges for each sub-period with length υ, scales as R/Sυ ∝ υH .
In our application, we set υmin = 4 and υmax = log2 T .

Detrended fluctuation analysis (DFA), proposed by [13], is based on scaling of variance of the detrended
series. In the procedure, the profile (cumulative return deviations from the average) of the time series of
length T is divided into sub-periods of length s and for each sub-period, a linear fit Xs(t) of the profile is
estimated. A detrended signal Ys(t) is then constructed as Ys(t) = X(t)−Xs(t). Fluctuation F 2

DFA(s),
defined as an average mean squared error from the linear fit over all sub-periods of length s, scales as
F 2
DFA(s) ∝ s2H [11]. To get reasonable estimates of H, we set smin = 5 and smax = T/5.

Detrending moving average (DMA), proposed by [1], is based on a moving average filtering. For a
set window size λ, we construct a centered moving average X̄λ(t) for each data point X(t) of the series.
Similarly to DFA, fluctuations F 2

DMA(λ), defined as the mean squared error of X(t) from X̄λ(t), scale as
F 2
DMA(λ) ∝ λ2H . As the centered moving average is used, we set λmin = 3 and λmax = 21 with a step of 2.

Height-height correlation analysis (HHCA), proposed by [2], is based on a scaling of height-height
correlation function of the series X(t) with time resolution ν and t = ν, 2ν, ..., νbTν c (where bc is a lower
integer operator). Second-order height-height correlation function of X(t) is then defined as K2(τ) =∑bT/νc
t=1 |X(t + τ) − X(t)|2/bT/νc where time interval τ generally ranges between ν = τmin, . . . , τmax.

Kq(τ) then scales as Kq(τ) ∝ τ2H . In the following, we set τmin = 1 and τmax = 20.

4 Evaluating the efficient market hypothesis – stock market indices

The efficient market hypothesis states that returns (closing−opening price) of market indices in efficient
markets behave ideally like Brownian motion (see e.g. [12]). In practice, this assumption is violated
mostly by the periodic structure (day, week, quarter, year) of agent behaviour. Further bias mostly
reveals non-rational behaviour, non-zero information costs or delayed reactions. Our goal is to measure
the efficiency of a market using both the isoquantile and Hurst exponent approach and to compare them.

Our data consists of weekly closing and opening prices for the past ten years (sample size around 500)
obtained from the Reuters Wealth Manager service.

Firstly we’ll describe the results for isoquantiles. The y-axis denotes the current value of stock market
index returns, the x-axis denotes their lagged values. Under the efficient market hypothesis, the isoquantile
shape for this configuration should be close to a circle (since Brownian motion is independent to itself when
lagged). The results were computed for lags between one and sixteen weeks. Image 1 shows examples of
various isoquantile shapes for the assessed stock market indices. Our previous work [8] contains complete
depictions of 1–14-week lags for the PX and NASDAQ indices.

We’ve applied the methods on seven stock market indices. We’ll shortly summarize them before
presenting the results:

• The All Share Price Index: 241 Sri Lankan stocks of the Colombo Stock Exchange

• The BET Index: 10 Romanian stocks of the Bucharest Stock Exchange.

• The BUX Index: 13 Hungarian stocks of the Budapest Stock Exchange.

• The JSX Composite Index: 379 Indonesian stocks of the Indonesia Stock Exchange.

• The NASDAQ Composite Index is comprised of 2742 stocks of the NASDAQ Stock Market.

• The PX Index is comprised of 14 stocks of the Prague Stock Exchange (only five of which are Czech).

• S&P500: 500 stocks traded on NYSE or NASDAQ.
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Figure 1: Examples of isobar shapes.

Isoquantile shapes for the All Share Price Index, NASDAQ Composite Index and S&P500 are very
close to circles. Small deviations from the circle shape can be observed in ASPI (lags 1, 3 and 5), NASDAQ
(lags 12, 13 and 16) and in S&P500 (lags 12, 13 and 16). Deviations in the 13-week lag can be explained
by the expected quarterly periodicity of agent behaviour. Based on visual examination, the underlying
markets of ASPI, NASDAQ and S&P500 may follow the efficient market hypothesis.

Isoquantile shapes for BET differ from circles in multiple lags (of 2, 3, 4, 11 and 13 weeks): the
deviations are distinctive, which suggests short-time dependency in the data.

The isoquantile shapes of the PX Index, BUX and JSX Composite Index deviate from circles constantly:
for PX it’s the longer lags of 4, 7, and 9–15 weeks, for BUX it’s 3 and 5–16 weeks. Isoquantiles for the JSX
Composite Index don’t resemble a circle for any lag. Observing a systematic deviation from independence
between current values and lagged ones, we can postulate that the efficient market hypothesis doesn’t
apply to markets described by these indices.

The first parametrization prefers rounder shapes; isoquantiles resemble a circle more often. The second
parametrization follows the data shape better.

We proceed by comparing both parametrizations with the four chosen methods of Hurst exponent
estimation. Image 2 depicts both the isoquantile measures on horizontal axes plotted against Hurst
exponent estimations on vertical axes. The hyperspherical isoquantile parametrization is shown in the
left column, the projection parametrization in the right one. Rows subsequently depict the four Hurst
exponent estimation methods in this order: rescaled range analysis (RS), detrended fluctuation analysis
(DFA), detrending moving average (DMA) and height-height correlation analysis (HHCA). Each of the
images additionally contains a linear fit.

The ideally effective market has isoquantile measure of zero and Hurst exponent equal to 0.5; the
isoquantile measure increases with decreasing similarity to Brownian motion while the Hurst exponent
approaches 1 for persistent time series. Both of these phenomena signify lower efficiency, so the measures
should be positively correlated: this prediction holds for rescaled range analysis, detrended fluctuation
analysis and height-height correlation analysis. The DFA method fulfills this prediction best (see e.g. [14]),
followed by the RS and HHCA methods (DFA differs for NASDAQ having a lower value than S&P500,
and for JSX being higher than PX). The most distant index from the linear fit is ASPI - according to
the isoquantile approach it’s among the most Brownian-like indices while the Hurst exponent shows
pronounced persistence. This result is possibly caused by the fact that we’ve used short lags (1 to 16
weeks) in the isoquantile approach and the Hurst exponent measures long-term dependece. We interpret
this by stating that ASPI shows dependence only in the long term. The results for DMA show almost no
linear relationship between the Hurst exponent and the isobars measure. This difference is caused mainly
by the low DMA estimation for JSX. Based on the construction of the methods, this indicates that JSX
exhibits seasonal or cyclical behavior.

5 Conclusion

We’ve contrasted two approaches for studying the time dependence in time series data: the isoquantile
approach (formerly called isobar) for short-time dependence (1–16 week lags) and the Hurst exponent for
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Figure 2: Isoquantile measures plotted against various Hurst exponent estimators.

long-time dependence. We’ve compared two parametrizations for isoquantiles (hyperspherical coordinates
and unit sphere projection) and four methods for estimating the Hurst exponent (detrended fluctuation
analysis, rescaled range analysis, detrending moving average and height-height correlation analysis). Using
these methods we’ve tested the EMH for selected indices: the All Share Price Index, the NASDAQ
Composite Index, S&P500, BET, PX Index, BUX and the JSX Composite Index. Since none of tested
indices have shown strong anti-persistence, we’ve assumed a positive correlation between isoquantiles and
the Hurst exponent – an assumption confirmed for three of four Hurst exponent estimation methods.

According to our results, the isoquantile approach and the Hurst exponent approach complement each
other nicely, each focusing on a different dependency scale.
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