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Abstract.  
Economic and financial activities are often influenced simultaneously by a decision parameter 
and a random factor. Since mostly it is necessary to determine the decision parameter without 
knowledge of a random element realization, deterministic optimization problems depending 
on a probability measure correspond often to such situations. In applications very often the 
problem has to be solved on the data basis. Great effort has been paid to investigate properties 
of these (empirical) estimates; mostly under assumptions of “thin" tails and a linear 
dependence on the probability measure. The aim of this contribution is to focus on the cases 
when these assumptions are not fulfilled. This happens usually in economic and financial 
applications (see e.g. [10], [12], [14],[18]).  
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1    INTRODUCTION  

 
Let  be a probability space; ( S PΩ, , ) )1( ( ) [ ( ) ( )]s…ξ ξ ω ξ ω ξ ω:= = , ,  an –dimensional random 

vector defined on ( )

s

S PΩ, , ;  ( ( ) )sF F z z R, ∈:=  the distribution function of ξ;   the 

probability measure corresponding to . Let, moreover,  be a function defined 

on 

FP

F 0 0( (g g:= ))x, z

n sR R× ;  n
FX R⊂  a nonempty set generally depending on F ,  nX R⊂  a nonempty 

“deterministic" set. If E  denotes the operator of mathematical expectation corresponding to 

 then static “classical" stochastic optimization problem can be introduced in the form:  

F

F ,

Find  

 0( ) inf{E ( )F FF X g x x X }Fφ ξ, = , | ∈ .  (1) 

The objective function in (1) depends linearly on the probability measure  Recently appear 

problems that can be covered only by more general type of problems:  

FP .

Find  

 0( ) inf{E ( E ( ))F F FF X x h x x Xgφ ξ ξ, = , , , | ∈ }F ,

)

 (2) 

where  is –dimensional vector function defined on 
11( ) ( ( ) ( )mh h x z h x z … h x z:= , = , , , , 1m

n sR R× ,  0 0( ( ))x z yg g:= , ,  is a real–valued function defined on 1mn sR R R× × .   

 



Let us recall and analyze some simple examples that can appear:  

1. If )( )  (defined on )n s(L L x z:= , R R×  represents a loss function, then 

)( ) min
u

VaR xα { { } (0 1P L x( ) }uω ξ α≤ ≥ α  can be considered as a risk 

measure, known as “Value–at –Risk" (see e.g. [3]).  

:= : , , ∈ ,

Setting 0{ [min { ( ) } ]F u
}X x X P L x u uω ξ α:= ∈ : : , ≤ ≥ ≤ ,   constant;  we can 

obtain the problem with risk measure in constraints.  

0u

2. 1
1( ) min[ E ( ( ) ) ]Fv R

CVaR x v L x vα α ξ +
−∈

= + , −  is another risk measure known as 

“Conditional Value–at–Risk". Setting 0( ) ( )x z y Cg VaR xα, , :=  we obtain function 

not depending linearly on the probability measure. However, since according to 

[15]  

 
1( )

1min ( ) min { E ( ( ) ) }
1 Fx X v x R X

CVaR x v L x vα ξ
α

+

∈ , ∈ ×
= + , −

−
,  (3) 

the dependence of the objective on the probability measure is already linear.  

3. Employing Markowitz approach to very simple portfolio problem: 

 

Find
1 1

max s t 1 0 1
n n

k k k k
k k

x x x k … n sξ
= =

. . ≤ , ≥ , = , , , = ,∑ ∑

k

n   

with x  a fraction of the unit wealth invested in the asset k,  kξ  the return of the 

asset, we can introduce the Markowitz problem (see e.g. [2]):  

Find  

  (4) 1 1 1 1
( ) max{ } s t 1

0 1 0 constant

n n n n
M

k k k k j j k
k k j k

k

F x K x c x

x k … n K

φ μ ,
= = = =

= − . .

≥ , = , , , > ,

∑ ∑∑ ∑ x ≤ ,

k j …nwhere E E ( )( ) 1k F k k j F k k j jcμ ξ ξ μ ξ μ,= , = − − , , = ,

1

n

k k j j
j

x c x,
=
∑

1
E E [

n n

F k k F k k
k k

.

]

 The dependence on the 

probability measure in (4) is not linear.  can be considered as a risk measure that 

can be replaced, for example by x xξ ξ
=

| −∑ ∑ |  (see [9]). The dependence on the 

probability measure is again nonlinear.  

 

In applications often we have to replace the measure  by an empirical measure FP NF
P .  



Consequently, (instead of the problems (1) and (2)) the following problems are solved:  

Find  

  (5) 0( ) inf{E ( )N N
N

F F
F X g x x Xφ ξ, = , | ∈ }NF

.

Find  

 0( ) inf{E ( E ( ))N N N
N

F F F
F X x h x x Xgφ ξ ξ, = , , , | ∈ }NF

.  (6) 

Solving (5) and (6) we obtain estimates of the optimal values and optimal solutions. Their 

investigation started in [20], followed by many papers (see e.g. [1], [5], [6], [7], [17]). There 

consistency, the convergence rate and asymptotic distribution have been studied under the 

assumptions of “weak" tails distributions, FX X=  and linear dependence of objective 

function on the probability measure. The exception are e.g. papers [4], [8] and [14]. We focus 

on the problem (2), the case of “heavy" tails and FX X .:=  

 

2    SOME DEFINITIONS AND AUXILIARY ASSERTIONS  

Let  denote one–dimensional marginal distribution functions corresponding to ; 1iF i …s, = ,

( )

F

sP R  the set of Borel probability measures on 1sR s, ≥ ;   
1

1( ) { ( ) ( ) }
s

s s
s

R

M R P P R z P dz= ∈ : < ∞ ;∫  1

s
⋅  denote  norm in 1L sR .  We introduce the 

assumptions:  

B. 1. 1( )s
F GP P M R, ∈ ,  there exist 0ε >  such that  

• 0( )x z y, ,  is for g ( ) sx X z Rε∈ , ∈  a Lipschitz function of ( )y Y ε∈  with a 

Lipschitz constant yL ; 

 1( ) { ( ) for some ( ) }m sY y R y h x z x X z Rε ε= ∈ : = , ∈ , ∈ , ( )F h x E ξ, ,  

E ( ) ( )Gh x Yξ ε, ∈ ,   

• for every ( ) ( )x X y Yε ε∈ , ∈  there exist finite mathematical expectations,  
1 1
0 00E ( E ( )) E ( E ( )) E ( E ( ))F F F G G Fx h x g x h x g x h xg ξ ξ ξ ξ ξ ξ, , , , , , , , , , , ,

1
0E ( E ( ))G Gg x h xξ ξ, , , ,   

• 1  are for every ( )x X( ) 1ih x z i … m, , = , , ε∈  Lipschitz functions of z  with 

the Lipschitz constants i
hL  (corresponding to 1L  norm),  

• 0( )x z y, ,  is for every g ( ) ( )x X y Yε ε∈ , ∈  a Lipschitz function of sz R∈  

with the Lipschitz constant zL  (corresponding to 1L  norm).  



B. 2.  0( ) ( )x z yg , , h x z, ,  are uniformly continuous functions on ( ) ( )sX R Yε ε× × ,   

B.  3. X  is a convex set and 0( E ( )Fx h xg )ξ ξ, , ,  a convex function on ( )X ε .   

 

( ( ) 0X ε ε, >  denotes ε – neighbourhood of X . )  

 

Proposition 1. [8] Let 1( )s
F GP P M R, ∈ ,  the assumptions B.1 be fulfilled, then there exist 

 such that it holds for ˆ 0C > x X∈   

 0 0
1

ˆE ( E ( )) E ( E ( )) ( ) ( )
s

F F G G i i i i i
i

x h x x h x C F z G z dzg gξ ξ ξ ξ
∞

= −∞

| , , , − , , , |≤ | − |∑ ∫ .  (7) 

 Proposition 1 reduces –dimensional case to one dimensional. Of course a stochastic 

dependence between components of the random vector is there neglected.  The idea to reduce 

s

 –dimensional case to one dimensional appeared already in [11].  s

 

3    PROBLEM ANALYSIS  
 

To employ the Proposition 1 to empirical estimates we introduce the assumptions:  

A.2. -  is independent random sequence corresponding to ,  1{ }i iξ ∞
= F

-  is an empirical distribution function determined by   NF 1{ }i N
iξ = ,

A.3.   are absolutely continuous w. r. t. the Lebesguemeasure on the R11
iFP i …s, = , .   

Lemma 1 [19] Let   and A.2 be fulfilled. Then  1s = , 1
1( )FP M R∈

  { ( ) ( ) 0}N
NP F z F z dzω

∞

→∞
−∞

: | − | ⎯⎯⎯→ =∫ 1.

0Proposition 2. [4], [8] Let  and A.2, A.3 be fulfilled, 1s t= , > ℵ  denotes the set of natural 

numbers. If there exists 0 (R R )N 0β > , := >  defined on ℵ  such that ( ) NR N →∞⎯⎯⎯→∞  and, 

moreover,  

 

( )

( )

2

( ) [1 ( )] 0

2 ( ( )) 0 2 [1 ( ( ))] 0
12 ( )( 1)exp{ 2 ( ) } 0

12 ( )

R N

N N
R N

N

N

N F z dz N F z

NF R N N F R N
N R N tN

t R N N

β β

β

β

− ∞

→∞ →∞
−∞

→∞ →∞

→∞

N

⎯⎯⎯→, − ⎯⎯⎯→ ,

− ⎯⎯⎯→ , − ⎯⎯⎯→ ,

+ − ⎯⎯⎯→ ,

∫ ∫
 (8) 

 th  (9) en { ( ) ( ) } 0N
NP N F z F z dz tβω

∞

→∞
−∞

: | − | > ⎯⎯⎯→ .∫



Evidently, the validity of the relation (9) depends on the tails behaviour.  

 

t moreover Proposition 3. [4] Let 1 0 0s t r= , > , >  and A.2, A.3 be fulfilled. Le ξ  be a 

ndom variable such that       If constants E r
F ξ| | < ∞. 0β γ, >ra  fulfil the inequalities  

0 1 2 1 0r r(1 )β γ γ< + < / , > / , ,  then the relation (9) is valid.  

 

β γ+ − <

4.    MAIN RESULTS  

pplying the assertions of former parts we obtain.  

d either B.2 or B.3 be fulfilled,

A

 

 XTheorem 1. Let the assumptions B.1, A.2, A.3 an  be a 

ompact set and 1( )s
FP M R∈ .c  Then  

 { ( ) ( ) 0} 1NP F X F Xω φ φ: N→∞| , − , | ⎯⎯⎯→ = .  

Proof. The assertion of Theorem 1 follows from Proposition 1 and Lemma 1.  

 

If 1if i … s, = , ,  denote the probability densities corresponding to iF ,  then it holds.  

eorem 2. L

 

Th et the assumptions B.1, A.2, A.3 be fulfilled, ( ) 0s
FP M R t1∈ , > .  If  

• for some  it holds that  2r > E 1
i

r
F i i … sξ| | < +∞, = , , ,   

1 (1 ) 0r r• 0β γ, >  fulfil the inequalities 0 1 2β γ γ β γ< + < / −, > / , + < ,   

then  

 0 0{sup E ( E ( )) 0N NF F
N x h xgβ ξ ξ E ( E ( )) }F F N

x X
P x h x tg ξ ξ →∞

∈
| , , , → .  (10) − , , , |> ⎯⎯⎯

reover either B.2 or B.3 is valid and XIf mo  is a compact set , then also  

{ ( ) ( ) }N
NP N F X F X tβω φ φ →∞: | , − , |> ⎯⎯⎯→ . 0  (11) 

roof The first assertion follows from Propositions 1,2,3. The second 

rst one and from the properties of the convex functions and the integrals. (See a similar 

 

P assertion follows from 

fi

proof for the problem (1) in [4]).  

Evidently, the convergence rate ( )rβ β:=  introduced by Theorem 2 depends on the absolute 

moments existence; it holds that 
2

1 2 ( ) 0
r

r r( ) rβ β +→∞ →
⎯⎯⎯→ / , ⎯⎯⎯→ .  Consequently, the best 

finite all absolute moments (e.g. Weibull and lognormal); even in the case when finite 

convergence rate is valid not only for exponential tails but also for every distribution with 



moment generating function doe

approach) any results in the case when there exist only finite E 1r
F i i … sξ

s not exist. Unfortunately we can not obtain (by this 

| | , = , ,  for 2r < .  

This is the case of stable distributions (with exception of normal distribution) or the case of 

Pareto distribution with a shape parameter 2α ≤ .   

 

5.    CONCLUSION  

The paper generalizes the results concerning the rate convergence of empirical es

ulation results pres

eries of 

 economics and finance.

anagement via stochastic programming.

in economic

tic bounds (via large 

ization via distribution tails. 

rtfolio optimi

Heavy tails in finance for independent or 

tim

tatic stochastic optimization problems nding linearly on probability measure [4] to the

tion is not fulfilled. The corresponding sim

/1610.  
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] Dupačová, J., Hurt, J., and Štěpán, J.: Stochastic modelling in
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zation model 

s  depe

0

d We

tes in stochas

H.-P.: 

case when this assump

[4] can be employed in this more generalized case also. Employing some growth conditions 

(see e.g. [16]) the introduced results can be transformed to the estimates of the optimal 

solution. However the investigation in this direction as the investigation in the case of stable 

distributions is beyond the scope of this paper.  
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