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Abstract

We introduce a new method for detection of long-range cross-correlations
and cross-multifractality – multifractal height cross-correlation analysis
(MF-HXA). MF-HXA is a multivariate generalization of the height-height
correlation analysis. We show that long-range cross-correlations can be
caused by a mixture of the following – long-range dependence of sepa-
rate processes and additional scaling of covariances between the processes.
Similar separation applies for cross-multifractality – standard separation
between distributional properties and correlations is enriched by division
of correlations between auto-correlations and cross-correlations. Efficiency
of the method is showed on two types of simulated series – ARFIMA and
Mandelbrot’s Binomial Multifractal model. We further apply the method
on returns and volatility of NASDAQ and S&P500 indices as well as of
Crude and Heating Oil futures and uncover some interesting results.

Keywords: multifractality, long-range dependence, cross-correlations

1 Introduction

The research of long-range dependence and multifractality in various time se-
ries has grown significantly during the last years, e.g. Di Matteo (2007); Matos
et al. (2008); Czarnecki et al. (2008); Grech and Mazur (2004). An efficient de-
tection of long-range dependence and estimation of Hurst exponent is crucial for
financial analysts as its presence has important implications for a portfolio se-
lection, an option pricing and a risk management. There are several methods for
the long-range dependence detection, among the most popular are the rescaled
range analysis (Hurst, 1951), the modified rescaled range analysis (Lo, 1991),
the rescaled variance analysis (Giraitis et al., 2003), the detrended fluctuation
analysis (Peng et al., 1994) and the detrending moving average (Alessio et al.,
2002). For the detection of multifractality, there are three popular methods –
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the multifractal detrended fluctuation analysis (MF-DFA) of Kantelhardt et al.
(2002), the generalized Hurst exponent approach (GHE) of Alvarez-Ramirez
et al. (2002); Di Matteo et al. (2003), which is based on the height-height cor-
relation analysis of Barabasi et al. (1991), and the wavelet transform modulus
maxima (WTMM) of Muzy et al. (1991). The precision of various methods has
been discussed as well (Couillard and Davison, 2005; Grech and Mazur, 2005;
Weron, 2002; Barunik and Kristoufek, 2010; Kristoufek, 2009).

Recently, the examination of long-range cross-correlations has become of
interest as it provides more information about the examined process. Podob-
nik et al. Podobnik and Stanley (2008) generalized the detrended fluctuation
analysis for two time series and introduced the detrended cross-correlation anal-
ysis (DCCA). Zhou Zhou (2008) further generalized the method and introduced
the multifractal detrended cross-correlation analysis (MF-DXA). In this pa-
per, we introduce two new methods, which are a generalization of the height-
height correlation analysis of Barabasi et al. (1991) – the multifractal height
cross-correlation analysis (MF-HXA) and its special case of the height cross-
correlation analysis (HXA).

The paper is structured as follows. In Section 2, we briefly discuss the
basic notions of long-range correlations and multifractality. Section 3 introduces
the method of MF-HXA and discusses long-range cross-correlations and cross-
multifractality in detail. In Section 4, we show the efficiency of the method on
two simulated types of processes. In Section 5, we apply MF-HXA on daily
returns and volatility of NASDAQ and S&P500 indices as well as of the Crude
and Heating Oil. We show that these two pairs of processes posses very different
properties. The long-rage correlations and cross-multifractality of the stock
indices cannot be distinguished from two pairwise independent processes. On
the other hand, the commodity pair shows very complex dynamics with long-
range cross-correlations and cross-multifractality deviating from the pairwise
independent behavior. Section 6 concludes.

2 Long-range correlations and multifractality

In this section, we present basic notions of multifractality, long-range correla-
tions and long-range cross-correlations. As the subject is widely discussed in the
recent literature, we present only a brief description. For more detailed reviews,
see Beran (1994); Kantelhardt (2009); Embrechts and Maejima (2002).

A stationary process is long-range dependent if an autocorrelation function
ρ(k) of the said process decays as ρ(k) ∼ Ck2H−2 for lag k → ∞ where pa-
rameter 0 < H < 1 is Hurst exponent (Hurst, 1951; Mandelbrot and van Ness,
1968).

A critical value of Hurst exponent is 0.5 and suggests two possible processes –
either an independent process (Beran, 1994) or a short-term dependent process
(Lillo and Farmer, 2004). If H > 0.5, auto-covariances decay hyperbolically and
are positive at all lags, the process is then called long-range dependent with pos-
itive correlations (Embrechts and Maejima, 2002) or persistent (Mandelbrot and
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van Ness, 1968). On the other hand, if H < 0.5, auto-covariances again decay
hyperbolically and are negative at all lags and the process is said to be long-
range dependent with negative correlations (Embrechts and Maejima, 2002) or
anti-persistent (Mandelbrot and van Ness, 1968). The persistent process implies
that a positive movement is statistically more likely to be followed by another
positive movement or vice versa. On the other hand, the anti-persistent process
implies that a positive movement is more statistically probable to be followed
by a negative movement and vice versa (Vandewalle et al., 1997).

If the process can be described by a single Hurst exponent H, it is called
monofractal (or unifractal). If different Hurst exponents are needed for vari-
ous scales, the process exhibits crossovers and is called a multiscaling process.
Further, there can be different Hurst exponents for parts of the series, which
is solved by a use of the time-dependent (or local) Hurst exponent (Grech and
Mazur, 2004). The most complicated is the case when there is a whole spectrum
of Hurst exponents which is needed for a full description of the process made
up of many complex fractal processes (Kantelhardt et al., 2002).

Both long-range dependence and multifractality can be present in the rela-
tion between two separate series. The series may be long-range dependent but
can also have a long memory of a different process so that it is pairwise long-
range dependent with Hurst exponent Hxy. Cross-correlation function ρxy(k)
of processes xt and yt then decays hyperbolically as ρxy(k) ∼ Ck2Hxy−2. Sim-
ilarly to the standard case, if the whole spectrum of cross-correlation Hurst
exponents Hxy is needed for the description of the cross-correlations between
two processes, the relation is cross-multifractal. Further features of the long-
range cross-correlations and cross-multifractality are discussed in the following
sections.

3 Multifractal height cross-correlation analysis

We introduce the multifractal height cross-correlation analysis (MF-HXA) in
this section. The connection to the generalized Hurst exponent approach (GHE)
is discussed in detail as well as a crucial division of long-range cross-correlations.
The last subsection discusses a detection of cross-multifractality in a pair of
series.

3.1 Method

The detection of long-range dependence and the estimation of the generalized
Hurst exponent H(q) of Barabasi et al. (1991) is based on the q-th order height-
height correlation function of time series X(t), with q > 0, as

Kq(τ) =
1

T − τ

T−τ∑
t=0

(|X(t+ τ)−X(t)|q) (1)

which scales as
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Kq(τ) ∝ τ qH(q). (2)

We generalize the method presented above and introduce the multifractal
height cross-correlation analysis (MF-HXA) which can be used for the detection
of long-range correlations and multifractality between two separate time series.

In the procedure, we take the first differences of time series {x(t)}Tt=0 and
{y(t)}Tt=0 and obtain {∆x(t)}Tt=1 and {∆y(t)}Tt=1. The differences are further
standardized by a deduction of a corresponding mean µ and a division by a
corresponding standard deviation σ so that we get the new series {∆x̃(t)}Tt=1 =

{∆x(t)−µx

σx
}Tt=1 and {∆ỹ(t)}Tt=1 = {∆y(t)−µy

σy
}Tt=1. Further, the series are cumu-

lated so that we obtain {X(t)}Tt=0 and {Y (t)}Tt=0 with X(t) =
∑t
i=1 ∆x̃(i) and

Y (t) =
∑t
i=1 ∆ỹ(i). Moreover, X(0) = Y (0) = 0. Generalizing Equation 1 for

two time series, we obtain

Kxy,q(τ) =
1

T − τ

T−τ∑
t=0

(|[X(t+ τ)−X(t)][Y (t+ τ)− Y (t)]|
q
2 ) (3)

For q = 1, the generalized height correlation function represents a scaling
of the absolute deviations of the covariates; and for q = 2, it corresponds to
the standard cross-correlation function. We propose the multifractal height
cross-correlation analysis (MF-HXA) based on the generalization of Equation
2. Scaling relationship between Kxy,q(τ) and the generalized cross-correlation
Hurst exponent Hxy(q) is obtained as

Kxy,q(τ) ∝ τ qHxy(q). (4)

For q = 2, the method can be used for the detection of long-range cross-
correlations solely and we call it the height cross-correlation analysis (HXA).
Obviously, for {X(t)}Tt=0 = {Y (t)}Tt=0, MF-HXA turns into the generalized
Hurst exponent approach of Alvarez-Ramirez et al. (2002), which is equivalent
to the height-height correlation analysis of Barabasi et al. (1991).

3.2 Two types of cross-correlations

Similarly to Hurst exponent H(2), the cross-correlation Hurst exponent 0 <
Hxy(2) < 1 has a critical value of 0.5 which indicates that the examined series are
pairwise uncorrelated (or pairwise short-range dependent). For Hxy(2) > 0.5,
the series are cross-persistent so that a positive (a negative) value of ∆X(t)∆Y (t)
is more statistically probable to be followed by another positive (negative)
value of ∆X(t + 1)∆Y (t + 1). Conversely for Hxy(2) < 0.5, the series are
cross-antipersistent so that a positive (a negative) value of ∆X(t)∆Y (t) is
more statistically probable to be followed by a negative (a positive) value of
∆X(t + 1)∆Y (t + 1). In other words, the increments of the cross-persistent
series tend to move in the same direction whereas the increments of the cross-
antipersistent series are more statistically likely to move in an opposite direction.
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We now derive an expected value of cross-correlation Hurst exponent Hxy(q).
Using a standard definition of multifractality of Calvet and Fisher (2008), con-
sider processes {X(t)}Tt=0 and {Y (t)}Tt=0 are fractal with generalized Hurst ex-
ponents Hx(q) and Hy(q):

E[|(X(t)−X(t− τ))|q] = cx(q)τ qHx(q) (5)

E[|(Y (t)− Y (t− τ))|q] = cy(q)τ qHy(q) (6)

From Equation 3, we are considering fractality of a joint process Z(t) =∑t
i=1[X(i) − X(i − 1)][Y (i) − Y (i − 1)] for t = 1, . . . , T with Z(0) = X(0) =

Y (0) = 0. Let us denote ∆Xτ = X(t)−X(t−τ) and ∆Yτ = Y (t)−Y (t−τ). We
label covariances between |∆Xτ |q and |∆Yτ |q as σXY (τ, q) and correspondingly
the correlations as ρXY (τ, q). In the same way, we label the variances of |∆Xτ |q
and |∆Yτ |q as σ2

X(τ, q) and σ2
Y (τ, q), respectively. Generally, we have

E
[
|(∆Xτ )(∆Yτ )|

q
2

]
= E

[
|∆(Xτ )|

q
2

]
E
[
|(∆Yτ )|

q
2

]
+ σXY

(
τ,
q

2

)
(7)

which leads us to several possible scenarios and different implications for
both long-range cross-correlations and cross-multifractality:

(i) If the examined series are pairwise independent, then it holds that σXY (τ, q) =
0 for all q > 0. From Equations 5 - 7, we have

E
[
|(∆Xτ )(∆Yτ )|

q
2

]
=
√
cx(q)τ qHx(q)cy(q)τ qHy(q) = (8)

=
√
cx(q)cy(q)τ q

Hx(q)+Hy(q)

2 ∝ τ qHxy(q)

which implies

Hxy(q) =
Hx(q) +Hy(q)

2
(9)

(ii) If the examined series are pairwise uncorrelated, then it holds that
σXY (τ, q2 ) = 0 for q = 2, i.e. σXY (τ, 1) = 0. Then similarly to the previ-
ous case, we have

Hxy(2) =
Hx(2) +Hy(2)

2
(10)

(iii) If the examined series are pairwise correlated (or generally pairwise
short-range dependent) as well as long-range dependent, then σXY (τ, q2 ) 6= 0.
We know that in general σ(

∑n
i=1Xi,

∑m
j=1 Yj) =

∑n
i=1

∑n
j=1 σ(Xi, Yj) so that

the covariances for the cumulated series, which is exactly our case, change lin-
early in τ . Thence, we can write

E
[
|(∆Xτ )(∆Yτ )|

q
2

]
∝ τ q

Hx(q)+Hy(q)

2 (11)

σXY

(
τ,
q

2

)
∝ τ (12)

This implies that Kxy(τ) no longer scales according to the power law in
τ (see Equation 4) which implies that we observe multiscaling, i.e. different
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scaling for different regions of τ . In effect, Equations 9 and 14 do not hold for
correlated series apart from the specific case of highly correlated series. We now
consider this special case.

For q = 2, we examine the scaling of covariances for the processes |∆Xτ | and
|∆Yτ |. If the correlation between the two series is close to unity, we can use a
representation of covariance in a form of product of correlation and correspond-
ing standard deviations. We use the fact that standard deviations scale with
changing τ , which covers both long-range dependent and uncorrelated series
(considered separately). This leads us to

E[|(∆Xτ )(∆Yτ )|] = E[|∆(Xτ )|]E[|(∆Yτ )|] + ρXY (1, 1)σX(τ, 1)σY (τ, 1) = (13)

=
√
cx(2)cy(2)τHx(2)+Hy(2) + ρXY (1, 1)bxτ

Hx(2)byτ
Hy(2) =

= τHx(2)+Hy(2)

(√
cx(2)cy(2) + ρXY (1, 1)bx(2)by(2)

)
∝ τHx(2)+Hy(2)

which again implies1

Hxy(2) =
Hx(2) +Hy(2)

2
(14)

Summarizing the three previous possibilities, we can see that apart from the
two specific cases – an independent series in general or an uncorrelated series
with q = 2 – we cannot draw any general conclusions about the expected value of
the generalized cross-correlation Hurst exponent Hxy(q). For dependent series
and q 6= 2, there is no general pattern in the effect of correlations for different
moments q on the final Hxy(q).

Nevertheless, this is a crucial result as it shows that even for two pairwise
independent long-range dependent processes, it holds that the cross-correlation
Hurst exponent Hxy(2) 6= 0.5, apart from a special case Hx(2) + Hy(2) = 1.
Therefore, Hxy(2) 6= 0.5 can be caused by long-range dependence of the two
processes even if there are no ”true” long-range cross-correlations. Therefore,
we need to distinguish between the two types of long-range cross-correlations:
(i) long-range cross-correlations caused by long-range interrelation between two
series (i.e. the scaling of covariances between |∆Xτ |q/2 |∆Yτ |q/2 as shown in
Equation 7), and (ii) long-range cross-correlations which are caused by long-
range dependence of the separate series.

3.3 Cross-multifractality

If a spectrum of Hurst exponents Hxy(q) is needed to describe the relationship
between two time series, the series are cross-multifractal. The generalized cross-
correlation Hurst exponent Hxy(q) is independent of q for monofractal series or
it is dependent on q for multifractal series. The influence of joint distributional

1The following equality was shown to hold for two correlated ARFIMA processes (i.e. two
ARFIMA models with different Hurst exponents but with the same error terms) by Podobnik
et al. (2009).
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properties implies that multifractality can be due to the cross-correlations as
well as the broadness (heavy tails) of the joint-distribution (Kantelhardt, 2009).
Again, the effect of correlations can be separated into two – auto-correlations
and cross-correlations as discussed in the previous section.

There are two mostly used measures to asses multifractality – a range of
generalized Hurst exponents, and singularity strength and spectrum. The range
∆H is usually defined as either ∆H = max{H(q)} − min{H(q)} or ∆H =
H(qmin) − H(qmax). Since the range of H(q) is an unstable measure even for
unifractal processes, the latter measures are used more frequently (Kantelhardt
et al., 2002). Singularity strength, or Hölder exponent, α is a characteristic
measure of a series whereas singularity spectrum f(α) refers to a dimension
of subset of the series described by α. Both α and f(α) are connected to the
scaling exponent τ(q), which is defined2 as τ(q) = qH(q) for a standard case
and as τ(q)xy = qHxy(q) from Equations 2 and 4 . To obtain α and f(α), we
generalize the procedure of Barabasi et al. (1991) for two time series.

To characterize the relationship between the series X(t) and Y (t), we con-
struct a probability measure pt(τ) connected to a hierarchy of changes of the
two series. The measure is calculated as

pxy,t(τ) =

√
|[X(t+ τ)−X(t)][Y (t+ τ)− Y (t)]|∑T−τ

t=1

√
|[X(t+ τ)−X(t)][Y (t+ τ)− Y (t)]

. (15)

As pxy,t(τ) is a standard probability measure, it holds that
∑T−τ
t=1 pxy,t(τ) =

1 and pxy,t(τ) ≥ 0. We further define a generating function for two time se-
ries χq,xy(τ), which is associated with the probability measures pxy,t(τ), and
corresponding generalized dimensions Dxy,q as

χxy,q(τ) =

T−τ∑
t=1

pqxy,t(τ). (16)

χxy,q(τ) ∝ τ (q−1)Dxy,q . (17)

Finally, we use the Legendre transformation and obtain the singularity strength
α through a change of the generalized dimension Dxy,q with varying q. The sin-
gularity spectrum f(α) is then obtained with a use of both α and Dxy,q. The
specific relationships hold as follows

αxy =
∂[(q − 1)Dxy,q]

∂q
(18)

f(αxy) = qαxy − (q − 1)Dxy,q (19)

The above described procedure can be replaced by an alternative one. If we
assume that the probability measure pxy,t(τ) describes the hierarchy of both

2Note that definitions of α and f(α) differ across literature depending on definition of τ(q),
which is either τ(q) = qH(q) (Di Matteo et al., 2005) or τ(q) + 1 = qH(q) (Bogachev et al.,
2008). If the latter definition is used, there is unity added to both α and f(α).
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series X(t) and Y (t) uniformly, we can write pxy,t(τ) = 1
T for τ → 0. Such

an assumption allows to use only Hxy(q) for the construction of the singularity
strength α and the singularity spectrum f(α). It then holds that3

αxy =
∂[qHxy(q)]

∂q
−Hxy(1) (20)

f(αxy) = q
∂[qHxy(q)]

∂q
− qHxy(q) (21)

4 Two illustrative examples

To validate MF-HXA, we present results for two randomly generated processes
– two independent ARFIMA processes and two independent multifractal se-
ries based on the Mandelbrot’s Binomial Multifractal model. Note that both
variants of the processes are independent so that the expected cross-correlation
Hurst exponents Hxy(q) are equal to arithmetic means of Hx(q) and Hy(q) of
the separate processes according to Equation 9.

4.1 Two ARFIMA processes

The autoregressive fractionally integrated moving average models (ARFIMA)
are a generalization of the autoregressive moving average models (ARMA) of
Box and Jenkins (1970) which allow for long-range dependence. With a use of a
backshift operator B, ARFIMA models are represented by (1−

∑p
i=1 ϕiB

i)(1−
B)dXt = (1 +

∑q
i=1 θiB

i)εt, where (1−B)d =
∑d
k=0

(−1)kBkΓ(d+1)
Γ(k+1)Γ(d−k+1) (see Baillie

et al. (1996) for details). Here d is a fractional differencing parameter and it
holds that d = H − 0.5.

In Figure 1a, we show the estimates of Hx(q), Hy(q) and Hxy(q) for two
independent ARFIMA processes with Hx = 0.7 and Hy = 0.9 with T = 1000,
τmin = 2, τmax = 100 and q = 0.1, 0.2, . . . , 9.9, 10. Even though the both series
are monofractal, the generalized Hurst exponents range from Hx(0.1) = 0.7442
to Hx(10) = 0.6579 and from Hy(0.1) = 0.9281 to Hy(10) = 0.8546. The
differences are due to a finite sample size and emphasize a need for using α and
f(α) for the examination of multifractality. Importantly, the estimates of the
generalized Hurst exponents characterizing the long-range dependence solely are
close to the expected values – Hx(2) = 0.7134 and Hy(2) = 0.9035. Further,
the estimates of cross-correlation Hurst exponents Hxy(q) satisfy the relation of
Equation 9 with only small deviations holds for all qs.

4.2 Mandelbrot’s Binomial Multifractal series

The Mandelbrot’s Binomial Multifractal (MBM) is the simplest multifractal
measure (Mandelbrot et al., 1997). Let m0 > 0, m1 > 0 and m0 +m1 = 1 and

3For a detailed derivation, see the Appendix of Barabasi et al. (1991)
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let us work on interval [0,1]. In the first stage, the mass of 1 is divided into two
subintervals [0,1/2] and [1/2,1], when there is m0 in the first subinterval and m1

in the second one. In the following stage, each subinterval is again halved and
its mass is divided between the smaller subintervals in ratio m0 : m1. After k
stages, we obtain a series of 2k values. Note that the values are deterministically
given as there is no noise added in the simplest version of the method. For an
interval [z, z+ 2−k], the value µ has a value of µ[z, z+ 2−k] = mkϕ0

0 mkϕ1

1 , where
ϕ0 and ϕ1 stand for the relative frequencies of numbers 0 and 1 in a binary
development of 2kz, respectively.

In Figure 1b, we show the estimates Hx(q), Hy(q) and Hxy(q) for two inde-
pendent MBM models with m0 = 0.2 and m0 = 0.4, respectively. We generated
the series with 10 steps and obtained T = 1024 observations and kept other
parameters the same so that MF-HXA is run with τmin = 2, τmax = 100 and
q = 0.1, 0.2, . . . , 9.9, 10. The variation of Hx(q), Hy(q) and Hxy(q) is much
stronger than in the case of monofractal ARFIMA models. The values range
from Hx(0.1) = 0.8645 to Hx(10) = 0.4305 and from Hy(0.1) = 0.8175 to
Hy(10) = 0.6819 for the respective processes. Importantly, Equation 9 holds for
all qs.

5 Application

To show the usefulness of MF-HXA, we apply the method on two different
types of financial assets – the US stock indices (NASDAQ and S&P500) and
the commodity prices (Crude and Heating Oil). We choose such pairs as we
expect strong correlations and therefore potential long-range cross-dependence
and multifractality. Indeed, NASDAQ and S&P500 are highly correlated (the
correlation coefficient for logarithmic returns is ρxy(0) = 0.8652) as well as the
pair of the oil commodities (with ρxy(0) = 0.6476). For the stock index prices,
we analyze a period between 1.1.2000 and 31.12.2009 (2531 observations). For
the commodity prices, we use a nearest-future basis prices based on the Com-
modity Research Bureau for a period between 1.11.1993 and 16.2.2010 (4115
observations). Note that all the series contain some extreme events as well as
strong trends and reversals. For the stock indices, the examined period con-
tains a long-term decreasing trend in the beginning of the 2000s as well as the
current financial crisis. For the oil prices, the series contains several strong spec-
ulative trends, to name the most evident one – the bubble that started in 2007,
peaked in July 2008 (when the price of both oil commodities almost tripled in
18 months) and reversed into a strong bullish market (returning below the levels
of the beginning of 2007).

We research on the potential long-range dependence and cross-correlations
in returns and volatility. As a measure of volatility, we take the absolute re-
turns, which is standard in the financial literature and also intuitive as returns
can be taken as a product of a sign and a magnitude (absolute return). Basic
descriptive statistics are summarized in Table 1. All the examined assets share
similar properties – average return close to zero, negative skewness and excess
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kurtosis. Such a deviation from normality is supported by both Jarque-Bera and
Shapiro-Wilk tests, which reject normality at all meaningful significance levels.
Stationarity is supported by ADF and KPSS test – strong rejection of a unit
root and inability to reject stationarity. With a use of a standard Q-statistic,
we reject that both returns and volatility show no significant autocorrelations.
Importantly, the autocorrelations are much stronger for volatility than for re-
turns. Such results indicate potential long-range dependence in volatility of the
examined series. All the previous results hold for all the examined series.

To examine possible long-range (cross-)dependence and (cross-)multifractality
in both returns and volatility of the series, we apply MF-HXA with τmin = 1
and τmax = 100 for q = 0.1, 0.2, . . . , 9.9, 10. We choose τmin and τmax to have
enough values for the final regression according to Equation 4. A step of 0.1
of different qs ensures that the evolution of the generalized Hurst exponents,
corresponding α and f(α) is smooth and well interpreted.

Figures 2 - 5 show the estimates of the generalized Hurst exponents for
returns and volatility of NASDAQ, S&P500, Crude Oil, Heating Oil and corre-
sponding joint processes.

The generalized Hurst exponents for the returns vary for NASDAQ from
HNASD(0.1) = 0.5662 toHNASD(10) = 0.3958 and for S&P500 fromHS&P (0.1) =
0.5063 to HS&P (10) = 0.3544. The cross-correlated Hurst exponents vary from
Hxy(0.1) = 0.5365 to Hxy(10) = 0.3817. Long-range dependence Hurst ex-
ponents H(2) are estimated as HNASD(2) = 0.5131, HS&P (2) = 0.4992 and
Hxy(2) = 0.5137. Therefore, there are no signs of persistence in returns for
any of the series. As for multifractality, the specific values of Hxy(q) behave
according to Equation 9 so that the cross-multifractality of NASDAQ and S&P
cannot be distinguished from two pairwise independent processes.

For the commodity futures, the generalized Hurst exponents for the returns
vary for Crude Oil from HCrude(0.1) = 0.4608 to HCrude(10) = 0.5424 and
for Heating Oil from HHeat(0.1) = 0.4703 to HHeat(10) = 0.1943. The cross-
correlated Hurst exponents vary from Hxy(0.1) = 0.4665 to Hxy(10) = 0.5569.
Further, long-range dependence Hurst exponents are estimated as HCrude(2) =
0.5044, HHeating(2) = 0.4535 and Hxy(2) = 0.5114. Such results show weak
signs of anti-persistence in the Heating Oil returns whereas the Crude Oil and
the joint process show no signs of long-range dependence. Nevertheless, the
cross-correlation Hurst exponent Hxy(2) deviates from the average Hurst expo-
nents of the separate processes indicating additional scaling in the covariances
of the joint process. The evolution of generalized Hurst exponents shows even
more interesting results. First, HCrude(q) shows a non-monotone dependence
on q indicating unifractality of the process. Second, HHeat(q) is strongly de-
pendent and decreasing in q, indicating strong multifractality. Third, Hxy(q)
almost copies the evolution of HCrude(q) indicating strong effect of both linear
and non-linear correlations between the processes on the cross-multifractality.

We now turn to the analysis of the volatilities. For NASDAQ and S&P500,
the results are quite similar – the generalized Hurst exponents vary with q
with very high long-range dependence Hurst exponents H(2) around 0.9. More
specifically, the generalized Hurst exponents vary from HNASD(0.1) = 0.9484
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to HNASD(10) = 0.7632 for NASDAQ and HS&P (0.1) = 0.9154 to HS&P (10) =
0.7983 for S&P500. The evolution of the generalized Hurst exponents for the
joint process are, in the same way as for the process of returns, in hand with
Equation 9. Thus again, the dynamics of the long-range cross-correlation be-
tween volatilities of NASDAQ and S&P500 cannot be distinguished from a pair-
wise independent process.

The results are very different for the volatilities of Crude and Heating Oil.
Both commodities show strong long-range dependence with H(2) around 0.8.
However, the behavior of the generalized Hurst exponent is very different for
the two. For the Crude Oil, the generalized Hurst exponent is non-monotone in
q and varies only weakly q indicating unifractality of the process of the absolute
returns. On the other hand, the generalized Hurst exponents for the Heating
Oil vary strongly and in a monotonous manner in q from HHeat(0.1) = 0.8137
to HHeat(10) = 0.3946. The generalized Hurst exponent of the joint process
deviate from the average for all moments q indicating additional scaling in the
covariances of the processes of the Crude and Heating Oil. Similarly to the
behavior of the returns of the commodities, the generalized Hurst exponents
Hxy(q) almost overlap with HCrude(q) for all qs.

To separate the effects of linear and non-linear correlations at a zero lag
from the long-range correlations and cross-correlations, we present the results for
shuffled series as well. By shuffling, all potential autocorrelations and long-range
cross-correlations are destroyed. Moreover, if the shuffled series are considered
multifractal, such multifractality is caused by a distributional properties solely.

For the stock indices, the most obvious differences arise in the dependence
of the generalized Hurst exponents on q. As for S&P500, the dependence is very
similar as for the original series, whereas for NASDAQ and the joint process, the
variability of H(q) decreased. This indicates that the multifractality of S&P500
is mainly caused by a distributional broadness whereas the multifractality of
NASDAQ and the joint process is due to correlations and cross-correlations as
well. Interestingly, similar statements hold for both returns and absolute returns
dynamics.

The results for the shuffled series of the commodity indices are quite different.
Most importantly, the generalized Hurst exponents of the joint process deviate
from the average of the generalized Hurst exponents of the separate processes for
q > 3 for returns and for q > 1.7 for volatility. This can be assigned to a scaling
of covariances for different moments q. Moreover, the increasing deviation of
the generalized Hurst exponent with q implies stronger correlations at extreme
events, i.e. at the tails of the joint distribution.

To further examine the multifractality and cross-multifractality, we present
the singularity strengths α and singularity spectra f(α) based on Equations 15
– 19. The results for returns, volatilities and corresponding shuffled series are
illustrated in Figures 6 – 9. The characteristics of the relations between α and
f(α) correspond well the basic examination of the behavior of the generalized
Hurst exponents with respect to q.

The singularity spectra of the returns of NASDAQ, S&P500 and the joint
process almost overlap while the important differences are obvious from the
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spectra of the shuffled series. The difference between the shuffled and origi-
nal series supports the previous findings – the multifractality of the returns of
S&P500 is mainly due to the distributional properties whereas NASDAQ and
the joint process can be characterized by the correlations multifractality as well.

For the commodity returns, the singularity spectra again support the previ-
ous findings. On one hand, we get a degenerate spectra for the Crude Oil and
the joint process indicating unifractality. On the other hand, the Heating Oil is
multifractal while both types of multifractality are present. However, we cannot
say anything about the correlations of the extreme events through a singularity
spectra analysis.

An examination of the singularity spectra of the volatilities again support
the most important findings based on the generalized Hurst exponents behavior.
Whereas the stock indices behave similarly, we again observe very different
characteristics for the commodities – the singularity spectra almost overlap for
the Crude Oil and the joint process, which corresponds well to the previous
results.

6 Conclusions

In the paper, we introduced a new method for the detection of long-range cross-
correlations and cross-multifractality – the multifractal height cross-correlation
analysis (MF-HXA). We showed that long-range cross-correlations can be caused
by long-range dependence of separate processes and/or by additional depen-
dence between the two series caused by scaling of the covariances. Similarly for
cross-multifractality, the causes can be separated into three groups – multifrac-
tality due to the joint-distributional properties and due to correlations, which
can be further divided into the auto-correlations and the cross-correlations.

To show the usefulness of the method, we applied MF-HXA on returns and
volatility of NASDAQ, S&P500, Crude Oil and Heating Oil. We showed that
the two pairs of series are characterized by very different behavior. Whereas the
long-range cross-correlations and cross-multifractality between the stock indices
cannot be distinguished from a pairwise independent processes, the relation-
ship is more complex for the oil commodities where we find strong scaling in
covariances of the processes.
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Table 1: Descriptive statistics of NASDAQ and S&P500 returns

NASDAQ S&P500 Crude Oil Heating Oil

Mean -0.0002 -0.0001 0.0004 0.0003
SD 0.0181 0.0136 0.0258 0.0269

Skewness -0.1269 -0.1262 -0.2355 -0.2957
Kurtosis 6.7762 11.5119 8.7022 14.830

Jarque-Bera 1510 7644 5611 24047
p-value 0.0000 0.0000 0.0000 0.0000

Shapiro-Wilk 0.9510 0.9056 0.9426 0.9258
p-value 0.0000 0.0000 0.0000 0.0000

ρ(1) -0.0073 -0.0791 -0.025 0.0272
Q(20) 59.30 100.28 44.66 35.78
p-value 0.0000 0.0000 0.001 0.016
ρ(1)abs 0.1957 0.2496 0.1451 0.2163
Q(20)abs 3135 4785 1361 1386
p-value 0.0000 0.0000 0.0000 0.0000

KPSS 0.3112 0.1215 0.0451 0.0445
5% critical value 0.463 0.463 0.463 0.463

ADF -17.1554 -17.495 -48.1484 -20.0234
p-value 0.0000 0.0000 0.0000 0.0000
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Figure 1: (a) Estimates of Hx(q), Hy(q) and Hxy(q) (y-axis) for two ARFIMA
processes with Hx = 0.7 and Hy = 0.9 for different qs (x-axis); (b) Estimates of
Hx(q), Hy(q) and Hxy(q) (y-axis) for two MBM with m0 = 0.2 and m0 = 0.4,
respectively, for different qs (x-axis).
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Figure 2: Estimates of HNASD(q), HS&P (q) and Hxy(q) (y-axis) for returns
of NASDAQ and S&P500 for q = 0.1, 0.2, . . . , 10 (x-axis) for original (a) and
shuffled data (b).
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Figure 3: Estimates of HNASD(q), HS&P (q) and Hxy(q) (y-axis) for returns
of Crude and Heating Oil for q = 0.1, 0.2, . . . , 10 (x-axis) for original (a) and
shuffled data (b).
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Figure 4: Estimates of HNASD(q), HS&P (q) and Hxy(q) (y-axis) for absolute
returns of NASDAQ and S&P500 for q = 0.1, 0.2, . . . , 10 (x-axis) for original
data (a) and shuffled data (b).
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Figure 5: Estimates of HNASD(q), HS&P (q) and Hxy(q) (y-axis) for absolute
returns of Crude and Heating Oil for q = 0.1, 0.2, . . . , 10 (x-axis) for original
data (a) and shuffled data (b).

(a) (b)

-20 

-15 

-10 

-5 

0 
-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 

NASDAQ 

S&P 500 

cross 

-20 

-15 

-10 

-5 

0 
-3 -2.5 -2 -1.5 -1 -0.5 0 

NASDAQ 

S&P 500 

cross 

Figure 6: Singularity strengths α (x-axis) and singularity spectra f(α) (y-axis)
for returns of NASDAQ, S&P500 and combined for q = 0.1, 0.2, . . . , 10 for orig-
inal (a) and shuffled data (b).
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Figure 7: Singularity strengths α (x-axis) and singularity spectra f(α) (y-axis)
for returns of Crude Oil, Heating Oil and combined for q = 0.1, 0.2, . . . , 10 for
original (a) and shuffled data (b).

18



(a) (b)

-20 

-15 

-10 

-5 

0 
-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 

NASDAQ 

S&P 500 

cross 

-20 

-15 

-10 

-5 

0 
-3 -2.5 -2 -1.5 -1 -0.5 0 

NASDAQ 

S&P 500 

cross 

Figure 8: Singularity strengths α (x-axis) and singularity spectra f(α) (y-axis)
for absolute returns of NASDAQ, S&P500 and combined for q = 0.1, 0.2, . . . , 10
for original (a) and shuffled (b).
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Figure 9: Singularity strengths α (x-axis) and singularity spectra f(α) (y-
axis) for absolute returns of Crude Oil, Heating Oil and combined for q =
0.1, 0.2, . . . , 10 for original (a) and shuffled data (b).
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