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Analytic Energies and Wave Function of Two-
Dimensional Schr ödinger Equation: Ground
State of Two-Dimensional Quartic Potential and
Classification of Solutions

Vladimı́r Tichý 1, Ale š Antonı́n Kub ěna2, Lubomı́r Sk ála1,3

Abstract: New analytic solutions of the two-dimensional Schrödinger equation with a two-dimensional fourth-order
polynomial (i.e. quartic) potential are derived and discussed. The solutions represent the ground state energies and the
corresponding wave functions. In general, the obtained results cannot be reduced to two one-dimensional cases.
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1. Introduction

The Schrödinger equation represents the fundamental equa-
tion of quantum mechanics. This paper is aimed to its time-
independent form in two dimensions

−∆ψ(x, y) + V (x, y)ψ(x, y) = Eψ(x, y), [1]

where∆ = ∂2

∂x2 + ∂2

∂y2 . The functionV (x, y) is the potential,
i.e. a given real function representing physical problem. In this
paper, potentialV is assumed in the form of the fourth order
polynomial:

V (x, y) =
∑

m≥0 n≥0

m+n≤4

Vmnx
myn, [2]

whereVmn are real constants. Potential (2) represents a wide
class of physical problems including quantum anharmonic os-
cillator and quantum double-well problem. These models are
widely used for example in chemical physics.

Equation (1) represents a partial differential equation. When
we speak about solving of Eq. (1), we mean two problems.
First problem is to find such values ofE that equation (1) has
the solution, i.e. we search for the eigenvalues of the operator
−∆+V (x, y). The second problem is to find the corresponding
complex functionsψ(x, y) of real variablesx, y solving Eq.
(1). In this paper, we restrict ourselves to search for the ground
states, i.e. for the lowest value ofE denotedE0 and for the
corresponding wave functionψ denotedψ0. We search for the
analytical solutions, i.e. for their formulae in the closedform.
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Commonly the solutionsψ(x, y) are required to be quadrat-
ically integrable in the whole plane(x, y), i.e. the boundary
condition
∫

R2

ψ(x, y)ψ∗(x, y)dxdy < +∞ [3]

has to be fulfilled. The asterix denotes the complex conjuga-
tion.

The common method to find solutions of Eq. (1) is to sepa-
rate it into the two ordinary (i.e. one-dimensional) differential
equations. To solve equation (1) when it is impossible to sepa-
rate it into the two ordinary ones, the proper methods are called
for.

The method presented here is based on the method for one-
dimensional problems, given in [1, 2, 3]. There, it is assumed
that solutionsψ(x) of the one-dimensional Schrödinger equa-
tion

− d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) [4]

are linear combinations of the functionsψm(x) in the form

ψ(x) =
∑

m

dmψm(x), [5]

where

ψm(x) = fm(x)h(x) [6]

It has been proved that in order to obtain analytic solutionsthe
potentialV must have the form

V (x) =
∑

m

Vmf(x)
m. [7]

Functionh(x) is searched in the form[1, 2]

h(x) = exp

(
−
∫ ∑

m

hmf
m(x)dx

)
. [8]
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Using this approach, it is possible to take different forms of the
functionf(x) and to test if the Schrödinger equation with the
potentialV of the form (7) has analytical solutions obeying the
corresponding boundary condition. In equation (7), the limits
for the indexm are given by studied potential and if necessary,
negative values ofm can also be admited. After substituting
Eqs. (5-8) into Schrödinger equation (4), system of algebraic
equations for unknownsdm andhm is obtained. Allowed val-
ues of indicesm in Eqs. (5) and (8) follow from the condition
the number of obtained equations has to be equal to the number
of unknowns.

In paper [4], the first attempt was made to generalise this
method to two dimensions. There, Schrödinger equation has
the form (1). Its solutionsψ(x, y) are assumed in the form

ψ(x, y) =
∑

m,n

cmnψmn, [9]

where

ψmn(x, y) = fm(x)gn(y)h(x, y). [10]

The potentialV (x, y) is assumed in the form

V (x, y) =
∑

m,n

Vmnf
m(x)gn(y). [11]

For the polynomial potential, we takef(x) = x andg(y) =
y. Here, we aim to the fourth-order polynomial potential, so the
sum in Eq. (11) is performed over allm ∈ {0, 1, 2, 3, 4} and
n ∈ {0, 1, 2, 3, 4} excluding casesm+n > 4. TermV00 repre-
sents an irrelevant additive factor, so that we assumeV00 = 0.
We get

V (x, y) =W40
2x4 +W04

2y4 + V31x
3y + V13xy

3 + V22x
2y2

+V30x
3 + V03y

3 + V21x
2y + V12xy

2

+V20x
2 + V02y

2 + V11xy + V10x+ V01y, [12]

whereW40 = ±
√
V40 andW04 = ±

√
V04. The sign of the

coefficientsW40 andW04 is discussed below. We assume that
V40 > 0, V04 > 0 which are necessary conditions for the exis-
tence of solutions fulfilling the boundary condition (3).

Generalisation of formula (8) to two dimensions has not
been found. However, it has been shown in [4] that for the two-
dimensional quartic polynomial, the functionh is equal to the
ground state wave functionψ0 and it has the form

h(x, y) = ψ0(x, y) = exp



∑

i≥0 j≥0

i+j≤3

−dijxiyj


 , [13]

where the coefficientsdij have to be found. One of the ex-
isting solutions is presented in [4]. Searching for generalfor-
mulae for those coefficients and consequently for formulae for
ground state wave functions and the corresponding energiesis
the subject of this paper.

The wave function (13) is not quadratically integrable in the
whole plane(x, y). One possible approach how to solve this
problem is to suppose we solve the Schrödinger equation on

the quadrantx ≥ 0, y ≥ 0. In this paper we chose another
approach. We modify the wave function in the same way as in
[1, 2, 3, 4] to the form

ψ0(x, y) = exp(−d30|x|3 − d03|y|3 − d21x
2|y| − d12|x|y2

− d20x
2 − d02y

2 − d11|xy| − d10|x| − d01|y|).
[14]

This function solves the Schrödinger equation with the modi-
fied potential depending on|x| and|y|

V (x, y) =W40
2x4 +W04

2y4

+ V31|x|3y + V13x|y|3 + V22x
2y2

+ V30|x|3 + V03|y|3 + V21x
2|y|+ V12|x|y2

+ V20x
2 + V02y

2 + V11|xy|+ V10|x|+ V01|y|.

[15]

This approach has a disadvantage that the wave function
(Eq. (14)) and the potential (Eq. (15)) do not have continuous
derivatives on axesx = 0 andy = 0.

Substituting Eqs. (12) and (13) into Eq. (1) and comparing
the terms of the equal order yields the formula for the ground
state energy [4]

E0 = 2d20 + 2d02 − d10
2 − d01

2. [16]

The system of equations for the wave function coefficientsdij
becomes

W40
2 = 9d30

2 + d21
2, [17]

W04
2 = 9d03

2 + d12
2, [18]

V31 = 12d30d21 + 4d21d12, [19]

V13 = 12d03d12 + 4d12d21, [20]

V22 = 6d30d12 + 4d12
2 + 4d21

2 + 6d21d03, [21]

V30 = 12d20d30 + 2d11d21, [22]

V03 = 12d02d03 + 2d11d12, [23]

V21 = 4d21d02 + 8d20d21 + 6d30d11 + 4d11d12, [24]

V12 = 4d12d20 + 8d02d12 + 6d03d11 + 4d11d21, [25]

V20 = 2d01d21 + d11
2 + 4d20

2 + 6d10d30, [26]

V02 = 2d10d12 + d11
2 + 4d02

2 + 6d01d03, [27]

V11 = 4d01d12 + 4d11d02 + 4d20d11 + 4d10d21, [28]

V10 = 4d10d20 − 6d30 + 2d01d11 − 2d12, [29]

V01 = 4d01d02 − 6d03 + 2d10d11 − 2d21. [30]

This is a system of 14 equations for 9 coefficientsdij . It is
evident that this system is not solvable in general. However,
for certain choices of the potential coefficientsVij some of the
above equations become dependent and a regular system of
equations is obtained. This problem is well known from the
one-dimensional case, where only some quartic potentials are
analytically solvable [1, 2, 3].

2. Classification of the solutions

We prove in Appendix A that each two-dimensional quartic
polynomial can be transformed to a polynomial withV31 =

c©2012 NRC Canada
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0. Therefore, without any loss of generality we can assumme
V31 = 0.

In equations (19)-(20) it is necessary to discuss whether the
values of the variablesV13, d21 andd12 are zero or non-zero.
We denote the corresponding solutions as of an ”a type” for
d12 = 0 andd21 = 0, ”b type” for d12 = 0 andd21 6= 0,
”c type” for d12 6= 0 andd21 = 0 and ”d type” ford12 6= 0 and
d21 6= 0. Further, we denote solutions as type I forV13 = 0
and II for V13 6= 0. In total, we get eight solution classes: aI,
bI, cI, dI, aII, bII, cII, dII listed in Table 1.

d12 = 0, d12 = 0, d12 6= 0, d12 6= 0,
d21 = 0, d21 6= 0 d21 = 0 d21 6= 0

V13 = 0, V31 = 0 aI bI cI dI
V13 6= 0, V31 = 0 aII bII cII dII

Table 1. Labeling of solutions

It is seen from Eqs. (17)-(30) that only some cases have to
be considered, because bI and cI classes are equivalent and
one of them can be obtained from the other one by interchange
dij ↔ dji, Wij ↔ Wji andVij ↔ Vji. Further, classes aII
and bII are empty, because ifV13 6= 0 andd12 = 0 then the
Eq. (20) has no solution.

2.1. Solutions of type aI
In this case, we supposeV13 = V31 = d21 = d12 = 0. This

case is solved in [4] using the parameter

α ≡ V21

W40

=
V12

W04

. [31]

Resulting potential has the form

V0(x, y) =W40
2x4 +W04

2y4 + V30|x|3 + V03|y|3

+W40αx
2|y|+W04α|x|y2 + V20x

2 + V02y
2

+
α

2

(
V30

W40

+
V03

W04

)
|xy|

+

(
4W04

2V02 −W04
2α2 − V03

2

8W04
3

α

+
4W40

2V20 −W40
2α2 − V30

2

8W40
4

V30 − 2W40

)
|x|

+

(
4W40

2V20 −W40
2α2 − V30

2

8W40
3

α

+
4W04

2V02 −W04
2α2 − V03

2

8W04
4

V03 − 2W04

)
|y|, [32]

whereW40 andW04 are arbitrary positive real numbers and
V30, V03, V20, V02, α are arbitrary real numbers. Ground state
wave function for the potential (32) has the form

ψ0(x, y) = exp

(
−W40

3
|x|3 − W04

3
|y|3 − V30

4W40

x2 − V03

4W04

y2

− α

2
|xy| − 4W40

2V20 −W40
2α2 − V30

2

8W40
3

|x|

−4W04
2V02 −W04

2α2 − V03
2

8W04
3

|y|
)
.

[33]

The corresponding ground state energy is

E0 =
V30

2W40

+
V03

2W04

−
(
4W40

2V20 −W40
2α2 − V30

2
)2

64W40
6

−
(
4W04

2V02 −W04
2α2 − V03

2
)2

64W04
6

.

[34]

The resulting wave function (33) is quadratically integrable in
the whole plane(x, y), becauseW40 andW04 are supposed to
be positive.

2.2. Solutions of type cI

Here, we suppose thatV13 = V31 = d21 = 0, d12 6= 0.
Equation (19) is fulfilled automatically and Eqs. (17)-(18)and
(20)-(21) have the form

W40
2 = 9d30

2, [35]

W04
2 = 9d03

2 + d12
2, [36]

0 = 12d03d12, [37]

V22 = 6d30d12 + 4d12
2. [38]

Solution and condition of the solvability of this system are

d30 =
W40

3
, [39]

d03 = 0, [40]

d12 = W04, [41]

V22 = 2W40W04 + 4W04
2. [42]

Substituting Eqs. (39)-(41) to Eqs. (22)-(25) we get

V30 = 4d20W40, [43]

V03 = 2d11W04, [44]

V21 = 4d11W04 + 2W40d11, [45]

V12 = 4d20W04 + 8d02W04. [46]

Solution of this system of equations and condition of its solv-
ability are

d20 =
V30

4W40

, [47]

d02 =
V12

8W04

− V30

8W40

, [48]

d11 =
V03

2W04

, [49]

V21 = V03

(
W40

W04

+ 2

)
. [50]

Substituting Eqs. (39)-(41) and (47)-(49) to Eqs. (26)-(30)
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we get

V20=
V30

2

4W40
2
+ 2d10W40 +

V03
2

4W04
2
, [51]

V02=
(V12W40 − V30W04)

2

16W40
2W04

2
+ 2d10W04 +

V03
2

4W04
2
, [52]

V11=
V30V03

2W04W40

+ 4d01W04 +
V03(V12W40 − V30W04)

4W04
2W40

,[53]

V10=
d01V03

W04

+
d10V30

W40

− 2W04 − 2W40, [54]

V01=
d10V03

W04

+
d01(V12W40 − V30W04)

2W04W40

, [55]

Coefficientsd10 andd01 can be expressed from Eqs. (51) and (53)
as

d10=− V30
2

8W40
3
− V03

2

8W40W04
2
+

V20

2W40

, [56]

d01=− V30V03

16W40W04
2
− V03V12

16W04
3
+

V11

4W04

. [57]

Equations (52) and (54)-(55) give the last conditions of solv-
ability as

16W40V02 − 16W04V20

=
W40

(
4V03

2 + V12
2
)

W04
2

−4W04V30
2

W40
2

+
V30

2

W40

−2V30V12 + 4V03
2

W04

[58]

and

V10 =
V30V20

2W40
2
− V30

3

8W40
4
− V30V03

2

8W40
2W04

2
− V03

2V12

16W04
4

+
V03V11

4W04
2
− V30V03

2

16W40W04
3
− 2W04 − 2W40, [59]

V01 =
4V03V20 − V11V30

8W40W04

− V30
2V03

8W40
3W04

− V03
3

8W40W04
3

+
V12V11

8W04
2
+

V30
2V03

32W40
2W 2

04

− V03V12
2

32W04
4

[60]

Substituting Eqs. (39)-(42), (47)-(50), (56)-(57) and (59)-
(60) into Eq. (14) we get the following formula for the potential

V (x, y) =W40
2x4 +W04

2y4 + 2(W40W04 + 2W04
2)x2y2

+ V30|x|3 + V03|y|3 + V03

(
W40

W04

+ 2

)
x2|y|+ V12|x|y2

+ V20x
2 + V02y

2 + V11|xy|

+

(
V30V20

2W40
2
− V30

3

8W40
4
− V30V03

2

8W40
2W04

2
− V03

2V12

16W04
4

+
V03V11

4W04
2
− V30V03

2

16W40W04
3
− 2W04 − 2W40

)
|x|

+

(
4V03V20 − V11V30

8W40W04

− V30
2V03

8W40
3W04

− V03
3

8W40W04
3

+
V12V11

8W04
2
+

V30
2V03

32W40
2W04

2
− V03V12

2

32W04
4

)
|y|.

[61]

The condition (58) has to be fulfilled as well.
Substituting Eqs. (39)-(41), (47)-(49) and (56)-(57) intoEq.

(14) we obtain the resulting formula for the ground state wave
function

ψ0(x, y) = exp

[
− W40

3
|x|3 −W04|x|y2 −

V30

4W40

x2

−
(
V12

8W04

− V30

8W40

)
y2 − V03

2W04

|xy|

+

(
V30

2

8W40
3
+

V03
2

8W40W04
2
− V20

2W40

)
|x|

+

(
V30V03

16W40W04
2
+
V03V12

16W04
3
− V11

4W04

)
|y|
]
.

[62]

It is seen that in some cases function (62) is quadratically in-
tegrable in the whole plane(x, y). The main cases arises if
W40 > 0,W04 > 0 and V12

W04
− V30

W40
> 0. This situation can be

obtained by appropriate choice of the potential coefficients.
Substituting Eqs. (47)-(48) and (56)-(57) to Eq. (16) we get

equation for the corresponding ground state energy

E0=
V12

4W04

+
V30

4W40

−
(
V30

2

8W40
3
+

V03
2

8W40W04
2
− V20

2W40

)2

−
(

V30V03

16W40W04
2
+
V03V12

16W04
3
− V11

4W04

)2

. [63]

2.3. Solutions of type dI
In this case, we supposeV13 = V31 = 0, d21 6= 0, d12 6= 0

and from Eqs. (19)-(20) follows

d12=−3d30, [64]

d21=−3d03. [65]

The resulting wave functions are not quadratic integrable in
the whole plane(x, y). The proof will be performed for the
quadrantx ≥ 0, y ≥ 0 and it can be performed for other
quadrants analogously.

Let the wave function of the form (14) be quadratically inte-
grable in the quadrantx ≥ 0, y ≥ 0. In this case, it is necessary
thatd30 > 0 andd03 > 0. Substituting expressions (64)-(65)
to (14) we get

ψ0(x, y) = h(x, y)

= exp
[
−d30(x3 − 3kx2y − 3xy2 + ky3) + . . .

]
, [66]

wherek = d30

d03

> 0 and the dots denote lower order terms. To
obtain quadratically integrable function (66) in the quadrant
x ≥ 0, y ≥ 0, it has to have zero limit for all directions going
to infinity and lie in the quadrantx ≥ 0, y ≥ 0. However,
beside the linex = t, y =

(
k +

√
1 + k2

)
t, this function has

a limit

lim
t→+∞

ψ0

[
x = t, y =

(
k +

√
1 + k2

)
t
]

= lim
t→+∞

exp
[
2d30

(
k + (1 + k2)

3

2 + k3
)
t3 + . . .

]

= +∞ 6= 0.

[67]
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Note, that this case has thePT -symmetric solutions given
in [5].

2.4. Solutions of type cII

In this case, it is supposedV31 = 0, V13 6= 0, d21 = 0,
d12 6= 0. Then Eq. (19) is fulfilled automatically and Eqs. (17)-
(18) and (20) have the form

W40
2=9d30

2, [68]

W04
2=9d03

2 + d12
2, [69]

V13=12d03d12. [70]

Solution of these equations is

d30=
W40

3
, [71]

d03=±1

6

√
2W04

2 ±
√
4W04

4 − V13
2 ≡ α, [72]

d12=
V13

12α
. [73]

To get a quadratically integrable function of the form (14),the
first sign in the Eq. (72) have to be chosen positive. The second
sign can be chosen arbitrarily. These two choices lead to two
different potentials and the corresponding ground state wave
functions and energies. It is obvious, that the sufficient con-
dition for the wave function (14) to be positive isV13 > 0.
Moreover, there exist quadratically integrable solutionsthat
obey more general conditions but we will not perform general
discussion here.

Equations (21)-(25) can be solved and conditions of their
solvability can be obtained in a similar way, as it has been done
in case of cI class. Result is

d20=
V30

4W40

, [74]

d11=
3V21α

6W40α+ V13
≡ β, [75]

d02=
6V03α− V13β

72α2
≡ γ, [76]

V22=
V13

36α2
(6W40α+ V13), [77]

V12=
V13V30

12W40α
+

2V13γ

3α
+ 6αβ. [78]

In these equations, it is supposed thatd30 is known from Eqs. (71).
If we also suppose thatd20,d02 andd11 are known from Eqs. (74)-
(75), the solution of the Eqs. (26)-(30) and their conditions of

the solvability can be written in the form

d10=
V20 − β2

2W40

− V30
2

8W40
3
, [79]

d01=
V13

288W40
3α2

(
4W40

2β2 + V30
2 − 4W40

2V20
)

+
V02 − β2 − 4γ2

6α
, [80]

V11=
V13

2V30
2

864W40
3α3

+
V13

18α2

(
V02 − 4γ2 − β2

)

+
V13

2

216W40α3

(
β2 − V20

)
+
V30β

W40

+ 4βγ, [81]

V10=

(
V30

2W40
2
− V13β

36W40α2

)(
V20 − β2

)
+

V13V30
2β

144W40
3α2

+
2V02β − 8βγ2 − V13 − 2β3

6α
− V30

3

8W40
4
− 2W40, [82]

V01=

(
β

W40

− V13γ

18W40α2

)(
V20 − β2

)
+

V13V30
2γ

72W40
3α2

+
γ

3α

(
2V02 − 2β2 − 8γ2

)
− V30

2β

4W40
3
− 6α. [83]

SubstitutingV31 = 0 and Eqs. (77)-(78) to Eq. (15), we get the
formula for the potential as

V (x, y) =W40
2x4 +W04

2y4 + V13|x||y|3

+
V13

36α2
(6W40α+ V13)x

2y2

+ V30|x|3 + V03|y|3 + V21x
2|y|

+

(
V13V30

12W40α
+

2V13γ

3α
+ 6αβ

)
|x|y2

+ V20x
2 + V02y

2 + V11|xy|+ V10|x|+ V01|y|.

[84]

Here, the coefficientsV11, V10, V01 have to be calculated using
Eqs. (81)-(83) and

α=
1

6

√
2V04 ±

√
4V04

2 − V13
2, [85]

β=
3V21α

6W40α+ V13
, [86]

γ=
6V03α− V13β

72α2
. [87]

Substituting Eqs. (71)-(75) and (79)-(80) into Eq. (14), the
resulting ground state wave function for the solutions of type
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cII is obtained in the form

ψ0(x, y) = exp

{
− W40

3
|x|3 − α|y|3

− V13

12α
|x|y2 − V30

4W40

x2 − γy2 − β|xy|

+

(
V20 − β2

2W40

− V30
2

8W40
3

)
|x|

+

[
V13

288W40
3α2

(
4W40

2β2 + V30
2 − 4W40

2V20
)

+
V02 − β2 − 4γ2

6α

]
|y|
}

[88]

Substituting Eqs. (74)-(76) and (79)-(80) into Eq. (16), the for-
mula for the corresponding ground state energy is obtained in
the form

E0 =
V30

2W40

+ 2γ −
(
V20 − β2

2W40

− V30
2

8W40
3

)2

−
[

V13

288W40
3α2

(
4W40

2β2 + V30
2 − 4W40

2V20
)

+
V02 − β2 − 4γ2

6α

]2
.

[89]

2.5. Solutions of type dII
Here, we supposeV31 = 0, V13 6= 0, d21 6= 0, d12 6= 0. In

this case, Eqs. (17)-(21) have the form

V40=9d30
2 + d21

2, [90]

V04=9d03
2 + d12

2, [91]

0=12d30d21 + 4d21d12, [92]

V13=12d03d12 + 4d12d21, [93]

V22=6d30d12 + 4d12
2 + 4d21

2 + 6d21d03. [94]

From Eqs. (90)-(93) we can find

d03=
1

3

√
V04 − 9d30

2, [95]

d21=±
√
V40 − 9d30

2, [96]

d12=−3d30, [97]

To get a quadratically integrable wave function of the form
(14), the positive sign of the coefficientd03 has been chosen.
Substituting expressions (95)-(97) into (93) we get

V13 = ∓12d30

√
V40 − 9d30

2 − 12d30

√
V04 − 9d30

2. [98]

After squaring, modifying and performing the substitutionα =
9d30

2, we obtain

α2− V04 + V40

2
α∓α

√
V40 − α

√
V04 − α+

V13
2

32
= 0. [99]

Equation (99) represents equation of the type (134) which is
analysed in Appendix B. Here,α is the unknown and

d = V40, e = V04, f =
V13

2

32
[100]

and

a = V40 + V04, b = V40V04, c = 2

√

V40V04 −
V13

2

16
.

[101]

Variableα has to be real and positive, becaused30 has to be
real to get quadratically integrable wave function. We suppose
that variablesV40 andV04 are positive, i.e.d > 0, e > 0. Using
results of Appendix B, paragraph A, it is seen that to getα real
and positive, the necessary and sufficient condition isde > 2f ,
i.e. the condition

V40V04 >
V13

2

16
[102]

must be fulfilled.
Possible solutions of Eq. (99) are

α1=
V13

2

16(V40 + V04) + 8
√
16V40V04 − V13

2
, [103]

α2=
V13

2

16(V40 + V04)− 8
√
16V40V04 − V13

2
. [104]

Examining the asymptotic behaviour of function (14) in a
similar way as in section 2.3 and using Eqs. (90)-(97), the con-
dition for the wave function to be quadratically integrablecan
be expressed as

8V40d21 − 3V13d30 − 8(V40)
3

2 > 0. [105]

It can be found that if Eq. (98) has to be equivalent to equa-
tion (99) and the condition (105) has to be fulfilled, then the
condition

V13 < 0 [106]

must be fulfilled.
Next, if V13 < 0 and if the positive sign is chosen for the

coefficientd21, thenα1 solves Eqs. (98), (99) and numerical
tests indicate that condition (105) is fulfilled andα1 leads to
the quadratically integrable solution. In some cases,α2 solves
Eqs. (98) and (99), however numerical tests indicate thatα2

does not lead to the quadratically integrable wave function. In
summary, we get the resulting formulae for the wave function
coefficients as

d03=
1

3

√
V04 − α1, [107]

d30=
1

3

√
α1, [108]

d21=
√
V40 − α1, [109]

d12=−√
α1, [110]

c©2012 NRC Canada
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whereα1 is defined by formula (103).

From Eqs. (94), (95)-(97) and (99), it is possible to get the
condition for the potential coefficientV22 as

V22 =
48V40α1 − 16V04α1 + V13

2

16α1

. [111]

Solution of Eqs. (22)-(25) and the condition of its solvability
can be writen in terms of the variablesd30, d03, d21 as

d20=
V30

12d30
+

d21

36d30

(V30 + V12)d03 + 2V03d30

2d30
2 − d21d03 − d03

2
, [112]

d02=
V03

12d03
− d30

12d03

(V30 + V12)d03 + 2V03d30

2d30
2 − d21d03 − d03

2
, [113]

d11=
−1

6

(V30 + V12)d03 + 2V03d30

2d30
2 − d21d03 − d03

2
, [114]

V21=
d30 [3V30(d03 + d21) + V12(3d03 − d21)]

3(2d30
2 − d21d03 − d03

2)

−2d21d03(2V30d21 + 3V30d03 − V12d21)

9d30(2d30
2 − d21d03 − d03

2)
[115]

+
V03(18d30

2 + d21
2 − 3d21d03)

9(2d30
2 − d21d03 − d03

2)
.

For the sake of generality, it would be necessary to discuss the
value of the term2d30

2 − d21d03 − d03
2 = 0 in the numerator

of these expressions. This simple discussion will not be given
here.

Solution of Eqs. (26)-(30) and conditions of its solvability
are written in terms of the wave function coefficients known

from the previous equations as

d10 =
d03(3V20 − 12d20

2 − 3d11
2)− d21(V02 − 4d02

2 − d11
2)

6d30(d21 + 3d03)
,

[116]

d01 =
V20 + V02 − 4d20

2 − 4d02
2 − 2d11

2

2(d21 + 3d03)
, [117]

V11 = 4d11 (d20 + d20)

+
2d21

2

3d30(3d03 + d21)

(
−V02 + 4d02

2 + d11
2
)

+
2d21d03

d30(3d03 + d21)

(
V20 − 4d20

2 − d11
2
)

+
6d30

3d03 + d21

(
−V02 − V20 + 4d02

2 + 4d20
2 + 2d11

2
)
,

[118]

V10 =
d11

3d03 + d21

(
V20 + V02 − 4d20

2 − 4d02
2 − 2d11

2
)

+
2d20d03

d30(3d03 + d21)

(
V20 − 4d20

2 − d11
2
)

− 2d20d21
3d30(3d03 + d21)

(
V02 − 4d02

2 − d11
2
)
, [119]

V01 = −2(3d03 + d21)

+
2d02

3d03 + d21

(
V20 + V02 − 4d20

2 − 4d02
2 − 2d11

2
)

+
d03d11

d30(3d03 + d21)

(
V20 − 4d20

2 − d11
2
)

− d21d11

3d30(3d03 + d21)

(
V02 − 4d02

2 − d11
2
)
. [120]

Note that these fractions are regular, because the cased21 =
−3d03 leads toV13 = 0 which is not dII class but dI class.

Potentials belonging to class dII and the appropriate ground
state wave functions can be obtained as follows: We suppose
V31 = 0. CoefficientsV40, V04 andV13 must be chosen to ful-
fill conditions (102) and (106). Then,α1 must be determined
from Eq. (99) and coefficientsd03, d21, d12 from formulae
(107)-(110). Potential coefficientV22 is given by Eq. (111).
Further, the remaining potential coefficients are given by for-
mulae (115), (118)-(120) and the wave function coefficients
follow from formulae (112)-(114) and (116)-(117). The result-
ing wave function of the form (14) is quadratically integrable
in the whole plane(x, y). The corresponding ground state en-
ergy can be calculated using formula (16).

The above discussion shows that the results in the class dII
can also be obtained. However, explicit formulae for the poten-
tial, ground state wave function and the corresponding energy
are too complex, so that we do include them here.

3. Conclusions

The idea pursued in this paper is to search for analytic so-
lutions of the two-dimensional Schrödinger equation in cases
when other known methods like the separation of variables

c©2012 NRC Canada
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are unusable. This problem appears to be rather difficult and,
for this reason, we have aimed for its partial solution, namely
the problem of ground states of two-dimensional fourth-order
(quartic) polynomial potential. For the sake of generality, we
have used the algebraic method of the solution of the Schrödinger
equation. The advantage of this algebraic approach is its gen-
erality not relying on any special properties (like the symme-
try, supersymmetry, etc.) of the problem. Our method is based
on generalisation of the one-dimensional approach used in [1,
2, 3] published in [4]. All possible solutions have been found
and they have been classified into eight classes, denoted as aI,
bI, cI, dI, aII, bII, cII and dII. The most important classes are
aI, bI, cI, cII and dII, because it has been shown that these
classes contain physically interesting (quadratically integrable)
wave functions. These functions, corresponding energies and
the conditions for the potential have been found.

In Appendix A, it is shown that for any two-dimensional
fourth-order polynomial potential it is in general possible to
perform the rotation of the coordinates leading toV31 = 0.
Again, this result has been used in the preceding sections.

In Appendix B, Eq. (134) which is needed in the main text
has been analyzed and its solutions together with the condi-
tions of its solvability found.

Generalisation of the method to other types of potentials is
subject of further research.

4. Appendix A

4.1. Theorem
Let V (x, y) =

∑
0≤i+j≤4

Vijx
iyj be a polynomial of a de-

gree less than or equal to 4.
Then there exists a rotation in the plane(x, y)

R :

(
x
y

)
→
(
x̃
ỹ

)
=

(
p q
−qp

)(
x
y

)
, [121]

wherep, q are real numbers satisfyingp2 + q2 = 1 and there
exists a polynomial

Ṽ = Ṽ (x, y) =
∑

i+j≤4

Ṽijx
iyj [122]

such that

Ṽ31 = 0 [123]

and

∀x, y ∈ R : Ṽ (x, y) = V (x̃, ỹ), [124]

whereR denotes the set of all real numbers. Before the proof,
we prove the following lemma.

4.2. Lemma
Let the continuous functionP (t) : R → R be decomposed

to an even continuous functionP even(t) and to an odd contin-
uous functionP odd(t) as

P (t) = P even(t) + P odd(t) [125]

and let the functionP even(t) have at least one real root. Then
P (t) has at least one real root.

4.3. Proof of the lemma
Let t0 satisfyP even(t0) = 0. Then alsoP even(−t0) = 0

andP (t0) = P odd(t0), P (−t0) = −P odd(t0). Thus,P (t)
has a root in the interval[−t0, t0].

4.4. Proof of the theorem
From the condition (124) we obtain

Ṽ31 = Ṽ31(p, q)

= V31p
4 + (4V40 − 2V22)p

3q + (3V13 − 3V31)p
2q2

+ (2V22 − 4V04)pq
3 − V13q

4. [126]

We need to prove that the polynomialṼ31(p, q) has a real root
(p, q) satisfying the conditionp2 + q2 = 1. Ṽ31(p, q) is a
homogenous polynomial, that is why it is sufficient to prove
that Ṽ31(p, q) has a real root(p, q) satisfying the condition
p2 + q2 > 0.

We will show that there always exist a realp such that̃V31(p, 1) =
0, i.e.

Ṽ31(p, 1) = V31p
4 + (4V40 − 2V22)p

3

+ (3V13 − 3V31)p
2 + (2V22 − 4V04)p− V13 = 0. [127]

Without loosing generality we suppose thatV31 > 0.
If

P (z) = V31z
2 + (3V13 − 3V31)z − V13 [128]

has a real non-negative rootz1 then the function

Ṽ even
31 (p, 1) = V31p

4 + (3V13 − 3V31)p
2 − V13 [129]

has a root (roots)±√
z1 and the function

Ṽ31(p, 1) = V31p
4 + (4V40 − 2V22)p

3

+ (3V13 − 3V31)p
2 + (2V22 − 4V04)p− V13 [130]

has a real root in the interval
[
−√

z1,
√
z1
]

according to the
lemma. IfV13 < 0 then the root

3V31 − 3V13 +
√
(3V31 − 3V13)2 + 4V13V31

2
[131]

of the polynomialP (z) is real and positive. IfV13 ≥ 0 then
P (0) ≤ 0 andP (z) > 0 for large positivez or vice versa.
Thus,P (z) has a non-negative real root and existp0 ∈ R such
that

V31p0
4 + (4V40 − 2V22)p0

3 + (3V13 − 3V31)p0
2

+ (2V22 − 4V04)p0 − V13 = 0 [132]

and

R =




p0√
1+p2

0

1√
1+p2

0

−1√
1+p2

0

p0√
1+p2

0


 [133]

is the searched rotation.
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5. Appendix B

In this section, we analyse the equation

x2 − d+ e

2
x± x

√
(d− x)(e − x) + f = 0. [134]

Let us refer to it as a ”plus version” if the sign before the third
term is+ and ”minus version” if the sign is−. We suppose that
d, e andf are real numbers and our aim is to find real solutions
of Eq. (134).

Moving the term with the square root of Eq. (134) to the
right hand side and squaring both sides of this equation we get
the same equation for the plus version as for the minus one

(e − d)2 + 8f

4
x2 − (e + d)fx+ f2 = 0. [135]

5.1. Case(e− d)2 + 8f 6= 0
First, we will suppose that(e−d)2+8f 6= 0. Now, quadratic

equation (135) has two roots

x1=2f
d+ e− 2

√
de− 2f

(e− d)2 + 8f
=

2f

d+ e+ 2
√
de− 2f

, [136]

x2=2f
d+ e+ 2

√
de− 2f

(e− d)2 + 8f
=

2f

d+ e− 2
√
de− 2f

. [137]

It is seen that if(e−d)2+8f 6= 0 thende > 2f is the necessary
and sufficient condition to getx1, x2 real.

Now we discuss the question which solution of Eq. (135)x1
orx2 solves the plus, minus or no version of the original equa-
tion (134). This uncertainty arises here because we squared
some equations. It is useful to introduce new variables

a :=d+ e, [138]

b :=de, [139]

c :=2
√
de− 2f [140]

with the corresponding backward transformation

d, e=
a±

√
a2 − 4b

2
, [141]

f=
4b− c2

8
. [142]

It is easy to find that for anyd, e, f real the terma2 − 4b is
non-negative.

Now, our equation (134) has the form

x2 − a

2
x± x

√
x2 − ax+ b+

b

2
− c2

8
= 0 [143]

and possible solutions are

x1=
4b− c2

4(a+ c)
, [144]

x2=
4b− c2

4(a− c)
. [145]

After substituting expression (144) to Eq. (143) we get

(4b− c2)(c2 + 2ca+ 4b)

(c+ a)2
±4b− c2

c+ a

√(
c2 + 2ca+ 4b

c+ a

)2

= 0.

[146]

Similarly, after substituting Eq. (145) into Eq. (143) we obtain

(4b− c2)(c2 − 2ca+ 4b)

(a− c)2
±4b− c2

a− c

√(
c2 − 2ca+ 4b

a− c

)2

= 0.

[147]

Now it is important to suppose that we work in the real num-
bers domain. In this case we can write the absolute values in-
stead of the square roots of the squares and can get the follow-
ing conditions:

• If 4b = c2, thenx1 andx2 solve the both versions of Eq.
(134). It can be seen directly from expressions (136)-
(137), because4b = c2 if and only if f = 0 and conse-
quentlyx1 = x2 = 0 is solution of (134) evidently.

• If c2+2ca+4b
a+c

≤ 0 thenx1 solves the plus version of Eq.
(134).

• If c2+2ca+4b
a+c

≥ 0 thenx1 solves the minus version of
Eq. (134).

• If c2−2ca+4b
a−c

≤ 0 thenx2 solves the plus version of Eq.
(134).

• If c2−2ca+4b
a−c

≥ 0 thenx2 solves the minus version of
Eq. (134).

Note that in the complex numbers domain the problem is
slightly different. Both versions of Eq. (134) represent one
equation with a different choice of the square root branch. The
question of which solution ofx1 andx2 is the right one must
be understood as a question of the correspondence to different
square root branches.

For the cases discussed in this paper it is also important that
if d > 0, e > 0 and0 ≤ 2f < de then0 < c ≤ 2

√
b ≤ a and

0 ≤ x1,2 ≤ min(d, e). The proof of this statement is easy.

5.2. Case(e− d)2 + 8f = 0
Now we discuss the case(e − d)2 + 8f = 0. We need not

make general discussion since in the cases discussed in the
main text, the variablef is non-negative. Forf ≥ 0 the only
one case exist when(e− d)2 + 8f = 0. This is the cased = e
andf = 0.

In this case, we cannot use Eq. (135) because it has the form
0 = 0. We must start from Eq. (134) again. Ife = d andf = 0
then this equation has the form

x2 − dx± x
√

(d− x)2 = 0. [148]

We see thatx = 0 is one solution. Now we can divide this
equation byx and modify it to the form

x− d± |x− d| = 0. [149]

Further, we see that also

c©2012 NRC Canada
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• anyx ≤ d solves the plus version,

• anyx ≥ d solves the minus version.
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