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Abstract: New analytic solutions of the two-dimensional Schrodingquation with a two-dimensional fourth-order
polynomial (i.e. quartic) potential are derived and disags The solutions represent the ground state energiedand t
corresponding wave functions. In general, the obtainedltesannot be reduced to two one-dimensional cases.
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1. Introduction Commonly the solutions)(x, y) are required to be quadrat-

The Schrodinger equation represents the fundamentat equg:rilé/igigtr?grable in the whole planr, y), i.e. the boundary

tion of quantum mechanics. This paper is aimed to its time-
independent form in two dimensions

whereA = 8‘9—; + 86—;2. The functionV (z, y) is the potential,
i.e. a given real function representing physical problemthis
paper, potential/ is assumed in the form of the fourth order

Y(z, y)Y" (z,y) o dy < 400 [3]
R?2
has to be fulfilled. The asterix denotes the complex conjuga-
tion

The common method to find solutions of Eq. (1) is to sepa-
rate it into the two ordinary (i.e. one-dimensional) diéfatial

polynomial: equations. To solve equation (1) when it is impossible tasep
Viz,y) = Z Vin 2™y, 2] ][g';e it into the two ordinary ones, the proper methods atedal
mmzf,@o The method presented here is based on the method for one-

dimensional problems, given in [1, 2, 3]. There, it is assdme

whereV,,,,, are real constants. Potential (2) represents a widg, . solutions) () of the one-dimensional Schrodinger equa-

class of physical problems including quantum anharmonic o
cillator and quantum double-well problem. These models are
widely used for example in chemical physics. d?

Equation (1) represents a partial differential equatiohneW/ 3,2
we speak about solving of Eqg. (1), we mean two problems.
First problem is to find such values éfthat equation (1) has are linear combinations of the functions, () in the form
the solution, i.e. we search for the eigenvalues of the dpera

U(z) + V(z)o(z) = Ed(z) [4]

—A+V (z,y). The second problemis to find the correspondingy(z) = Z AP (),

complex functiong)(z, y) of real variablese, y solving Eq.
(2). In this paper, we restrict ourselves to search for tleigd
states, i.e. for the lowest value @& denotedE, and for the
corresponding wave functioh denoted),. We search for the
analytical solutions, i.e. for their formulae in the clogedn.
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[5]

where

Ym(x) = [ (2)h(x) [6]

It has been proved that in order to obtain analytic soluttbes
potentiallV must have the form
V(z) =) Vi (@)™ [7]

Functionh(x) is searched in the form[1, 2]
h(z) = exp <—/thfm(ar)d:c> .

[8]
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Using this approach, it is possible to take different fordfthe  the quadrant: > 0, y > 0. In this paper we chose another
function f(x) and to test if the Schrodinger equation with the approach. We modify the wave function in the same way as in
potentialV’ of the form (7) has analytical solutions obeying the [1, 2, 3, 4] to the form
corresponding boundary condition. In equation (7), thetim
for th(=T indexm are given by studied po@ential and if necessary,y(z,y) = exp(—dso|z|® — dosly|® — da12?|y| — dia|z|y?
negative values ofn can also be admited. After substituting donz® — deou? — d d d
Egs. (5-8) into Schrodinger equation (4), system of algiebr — daoa” — dooy” — durly| = diolz| — dor[y])-
equations for unknowns,, andh,,, is obtained. Allowed val- [14]
ues of indicesn in Egs. (5) and (8) follow from the condition . : . : . .
the number of obtained equations has to be equal to the numb pis funct|pn solves t.he Schrodinger equation with the mod
of unknowns. ied potential depending dr| and|y|

In paper [4], the first attempt was made to generalise thi B 2 4 2 4
method to two dimensions. There, Schrodinger equation hasg(x’y) = Wao™e" + Woa"y

the form (1). Its solutiong)(z, y) are assumed in the form + Var |22y + Vigz|y|® + Vagr?y? [15]
+ Vaolz|® + Vosly[® + Var2®[y| + Viz|a|y?
w('rv y) = Z Cmnd’mnv [9] 2 2
o + Voo™ + Vooy~ + Vir|zy| + Violz| + Vo lyl.
where This approach has a disadvantage that the wave function
m N (Eqg. (14)) and the potential (Eq. (15)) do not have contirsuou
Ymn (2, y) = f7(2)g" ()M (2, y). [10]  gerivatives on axes = 0 andy = 0.

Substituting Egs. (12) and (13) into Eq. (1) and comparing
the terms of the equal order yields the formula for the ground
state energy [4]

The potential/ (x, y) is assumed in the form

V(z,y) =D Vi f™(2)g" (y). [11]
mn Ey = 2dso + 2do2 — dio” — do1”. [16]

For the polynomial potential, we takz) = x andg(y) =  The system of equations for the wave function coefficieits
y. Here, we aim to the fourth-order polynomial potential,l#®t pecomes

sum in Eq. (11) is performed over alt € {0,1,2,3,4} and

n € {0,1,2,3,4} excluding casesi+n > 4. TermVp, repre- ~ Wao” = 9dso® + do1?, [17]
sents an irrelevant additive factor, so that we assugge= 0. Woa? = 9dos> + di22, [18]
We get Va1 = 12d3pd21 + 4d21d12, [19]
V(x,y) = Wi at + Woa2y? + Var23y + Vizay® 4 Vaga?y? Viz = 12dozdi2 + 4di12da, [20]
FVaoa® + Vst + Var22y + Vigzy? Vas = 6dodia + 4dia” + 4do1” + 6d21dos, [21]

+Vaox? + Vooy? + Virzy + Viez + Vo, [12] Vao = 12dodso + 2dy1day, [22]

‘/03 = 12d02d03 + 2d11d127 [23]

whereWyg = ++1/Vyo andWyy = ++/ V4. The sign of the

coefficientsV,, andWo, is discussed below. We assume that V21 = 4d21doz + 8daodar + 6dzodin + ddidao, [24]
Vio > 0, Vo4 > 0 which are necessary conditions for the exis- Viz = 4di2dao + 8dpadi2 + 6dozdi1 + 4di1dar, [25]
tence of solutions fulfilling the boundary condition (3). Vao = 2do1dor + di1? + 4dao® + 6d1odso, [26]
Generalisation of formula (8) to two dimensions has not _ 2 2

been found. However, it has been shown in [4] that for the two- Vo2 = 2d1odi2 + d11” + 4do2” + 6do1dos, [27]
dimensional quartic polynomial, the functiénis equal to the Vi1 = 4doidia + 4diidoz 4 4dzodi1 + 4diodan, [28]
ground state wave functiafn, and it has the form Vio = 4diodag — 6d3p + 2dp1d11 — 2d42, [29]
Vo1 = 4do1doz — 6do3 + 2d10d11 — 2da1. [30]
P This is a system of 14 equations for 9 coefficiedfs It is

h(z,y) = Yo(z,y) = exp Z —dijz'y’ |, [13]  evident that this system is not solvable in general. However

i;fjgo for certain choices of the potential coefficieffs some of the

above equations become dependent and a regular system of
where the coefficientd;; have to be found. One of the ex- equations is obtained. This problem is well known from the
isting solutions is presented in [4]. Searching for genfmal ~ one-dimensional case, where only some quartic potentials a
mulae for those coefficients and consequently for formwae f analytically solvable [1, 2, 3].
ground state wave functions and the corresponding endggies
the subject of this paper. 2. Classification of the solutions

The wave function (13) is not quadratically integrable ia th <*
whole plane(z, ). One possible approach how to solve this We prove in Appendix A that each two-dimensional quartic
problem is to suppose we solve the Schrodinger equation gfolynomial can be transformed to a polynomial with, =
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0. Therefore, without any loss of generality we can assumme [33]
V31 = 0.
In equations (19)-(20) it is necessary to discuss whetteer thThe corresponding ground state energy is
values of the variableBs, d2; andd;» are zero or non-zero.
We denote the corresponding solutions as of an "a type” for 5 2 o 2\ 2
di2 = 0 anddy; = 0, "b type” for di2 = 0 andda; # 0, _ Va0 Vos (4Wi0™Vao — Wao®a® — Vo®)
"c type” for di2 # 0 andds; = 0 and "d type” ford;, # 0 and 0 2Wyao  2Wos 64W,0°
ds1 # 0. Further, we denote solutions as type | fag = 0
and Il for Vi3 # 0. In total, we get eight solution classes: al, _

(4Woa*Voz — WoaPa? — V032)2
bl, cl, dl, all, bll, cll, dll listed in Table 1. 64Wo4° '

[34]

di2=0, | di2 =0, | di2 #0, | di2 #0,
do1 =0, | d1 #0 | d21 =0 | d21 #0 | The resulting wave function (33) is quadratically intedesin
Vis=0,Va =0 | al bl cl dl the whole plandz, y), becauséV,, andWy, are supposed to
Vis#0, Va1 =0 | all bll cll dil be positive.

Table 1. Labeling of solutions .
2.2. Solutions of type cl
It is seen from Eqgs. (17)-(30) that only some cases have to Here, we suppose thafi; = V3; = do1 = 0, di2 # 0.
be considered, because bl and cl classes are equivalent aBduation (19) is fulfilled automatically and Eqgs. (17)-(28)
one of them can be obtained from the other one by interchang@0)-(21) have the form
dij < dji, Wi; < W, andV;; < Vj,. Further, classes all

and bll are empty, becauseWi; # 0 andd;> = 0 thenthe W, 2 = 9d5,°, [35]
Eqg. (20) has no solution. Wos2 = 9dos? + dyo? [36]
2.1. Solutions of type al 0 = 12dosdsz, ) [37]
In this case, we suppo$és = Vs = dg; = dy2 = 0. This Voo = 6d3odi2 + 4di2”. [38]
case is solved in [4] using the parameter
v v Solution and condition of the solvability of this system are
21 12
A= — = —=., [31]
Wao Woa d _ Wao [39]
Resulting potential has the form 80 3’
2, 4 2, 4 3 3 dos = 0, [40]
Vo(z,y) = Wao™2™ + Wos"y" + Vaolz|” + Vos|y| dis = Wou, [41]
+ W400¢.§C2|y| + VVO40‘|ZE|y2 + V20I2 + V02y2 Voo = 2WyuoWos + 4W042. [42]
+ g ﬁ + E | |
2 \ Wi ™ Wos ) ™Y Substituting Egs. (39)-(41) to Egs. (22)-(25) we get
2 _ 2 2 2
+ (4W04 Vor MV/VOL; a” = Vos a Vao = 4daoWao, [43]
) 8Woa 2 o ) Vos = 2d11Woa, [44]
AWao™Vao — W‘“i a” — Vao Vao — 2W40) || Var = 4diiWos + 2Wiyoda, [45]
8Wio Viz = 4daoWos + 8do2Woa. [46]
AW40° Voo — Wag a? — Vo
+ W03 @ Solution of this system of equations and condition of its/sol
ability are
AWoa* Voo — Woa®a? — Vos®
4 04" Vo2 Oi a 03 Vos — 2W04) Iyl [32]
8Wou dyy = V30 [47]
whereW,o andW,, are arbitrary positive real numbers and AWyo'
V30, Vos, Vao, Voo, a are arbitrary real numbers. Ground state T Vao 48
wave function for the potential (32) has the form 27 SWo 8Wi [48]
Vos
B Wi, 3 Woa, 3 Vao o Vo3 o dypy = ) [49]
(o) = exp (- e - R - g2 o
a AW40*Vag — Wag*a? — Vao® Vo = Vo3 (ﬁ + 2) - (50]
- =lzy| - 3 |z] Wou
2 8Wio
 AWos*Vog — Wosa® — Vos® |y|> Substituting Eqs. (39)-(41) and (47)-(49) to Egs. (26)}(30
8Wo4® A
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we get [61]
Vao? Vos? The condition (58) has to be fulfilled as well.
Voo = qiyoz + 2dWao + o, [51] Substituting Egs. (39)-(41), (47)-(49) and (56)-(57) i
(ViaW. VaoWor)? Va2 (14) we obtain the resulting formula for the ground stateavav
Voo = 12Wao : 30 204 + 2d30Wos + 03 - [52] function
16W40 W04 4WO4 W, Ve
V30 Vo3 Vo3 (ViaWao — V3o Woa) Yo(z,y) = exp l— 2923 — Woa|z|y? — g2
Vii=———+4do1Wos + ,[53 ’
11 Mo W 01 W04 AWor2Wao [53] 3 4Wyo
do1Voz |, dioV30 ( Via V3o ) 2 Vo3
Vio= — 2Woy — 2W. 54 - - - x
T W * Wao o 40 [54] 8Woa  8Wyo Y 2Wo 2yl [62]
~dioVos | do1(Vi2Wao — VaoWoa) Vo Vos® Vao
VOI— ) [55] + 3 + 2 |$C|
Woa 2WoaWayo 8Wao 8W40Woa 2Wao
zCi:soefﬁuentsilo anddy; can be expressed from Egs. (51) and (53) ( VaoVos VosVie  V ) "
) 16WaoWos? — 16Wo®  4Wos) 71|
die— V3o Vos Vao [56]
10__8W403 - SWaoWos> + W0 It is seen that in some cases function (62) is quadratically i
VaoVos VosVio Vi tegrable in the whole plangr,y). The main cases arises if
dor=— - + . 57 Wio > 0, Wy > 0and 22 — Y20 > (. This situation can be
O T W Wor2  16Wos® | AWos [57] a0 > 0, Woy > Wor ~ Wi >

Equations (52) and (54)-(55) give the last conditions of'sol

obtained by appropriate choice of the potential coefficsient
Substituting Egs. (47)-(48) and (56)-(57) to Eq. (16) we get

ability as equation for the corresponding ground state energy
16WyoVo2 — 16WoaVag Vo V30 ( Va0 Vos Vao >2
= _ _
Wi (4Vo3® + Vi2?) 414/(J41/3,02+1/3(J2 2V Vig + 4Vps? AWos — 4Wao  \8Wio®  8WioWou®> 2Wio
Wos? Wao? Waio Woq B ( Va0 Vo3 VosViz Vi ) [63]
[58] 16WioWos®  16Wos®  4Wos
and .
3 ) ) 2.3. Solutions of type dI
Vig — VaoVao  Vao®  VaoVos”™  Vog™Via In this case, we suppodgs = Va1 = 0, do; # 0, d12 # 0
2VV402 8W404 8W402W042 16WO44 and from Egs. (19)-(20) follows
VosV; Va0 Vs> —_
pYosVir o VaoVos™ oy oy, [59] d12 =—3ds0, [64]
4Woy 16Wa0Woa doy =—3dp3. [65]
Vio — 4VosVao = Vi1 Vao Vi0” Vos _ Vos® The resulting wave functions are not quadratic integrable i
o T S W Wos SWao?Wos  8WioWos® the whole plangz,y). The proof will be performed for the
2 2 quadrantz > 0, y > 0 and it can be performed for other
n V12V1; Vao ;/032 _ V03V124 [60] quadrants analogously.
8Wos™  32Wao"Wsy  32Wos Let the wave function of the form (14) be quadratically inte-

Substituting Egs. (39)-(42), (47)-(50), (56)-(57) and )59

(60) into Eq. (14) we get the following formula for the potiaht

V(I, 1]) = W4021174 + W042y4 + 2(W40W04 + 2W042):172y2

grable in the quadrant > 0,y > 0. In this case, it is necessary
thatdsy > 0 anddys > 0. Substituting expressions (64)-(65)
to (14) we get

bo(w,y) = h(z,y)

W,
+ Vaolz|® + Vos|y|® + Vs (W—iz + 2> 22 |y| + Vig|z|y? = exp [—de(I3 — 3ka?y — 3zy® + ky®) + .. ] , [66]
+ Vooa® + Voou? + Vip|zy| wherek = j—gg > ( and the dots denote lower order terms. To
VeV Va3 VeV Vo2V obtain quadratically integrable function (66) in the queaur
( L UL E e x>0,y > 0, it has to have zero limit for all directions going
2Wyo 8Wao™  8Wao"Wos 16Woq to infinity and lie in the quadrant > 0, y > 0. However,
VosVii VaoVos? beside the line: = ¢, y = (k + v/1 + k2) ¢, this function has
7~ g — 2Woa = 2Woo | [2] a limit
n (4V03V20 — ViV Va2 Vos B Vo3® tilgl o [I =ty= (k +V1i+ k2) t}
8W4OWO4 8W403W04 8W40WO43 3
= i [2d (k+1+k2§+k3)t3+...] [67]
ViaVin Va0 Vos _ V03V122> 1wl 1 pee X [#030 ( )
8W042 32VV402VV042 32WO44 . = 400 75 0.
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Note, that this case has thT -symmetric solutions given the solvability can be written in the form
in [5].

Vao — B2 Vso®

dio= - 3, [79]
2.4. Solutions of type cll 2“30 8Wao
) o do1 = %2 (4W40 B2 + Vso® — AWio*Vao)
In this case, it is supposéd; = 0, Vis # 0, day = 0, 288Wyo
di2 # 0. Then Eqg. (19) is fulfilled automatically and Egs. (17)- Vog -~
(18) and (20) have the form 6—a ; (80]
Vi3*Viao? Vi3 9 2
1= Voo —4v" =8
Wio? =9d30°, [68] 864Wy a3 18a2 ( )
Woa? =9do3” + di2” [69] Vis® 2 Vao B
’ +——— (8% — Vao) + + 467, 81
‘/13 = 12d03d12. [70] 216“/'40043 (5 20) W40 5'7 [ ]
V3o Visf 2 VisVao®B
i ions i V10_<2W 27 36, a2>(v2°_ﬂ)+144w 302
Solution of these equations is 40 , 40 , , 40
Wool3 — 8672 — Vig — 2
n Vo238 8[376 Vizg — 208 Vo - 2Wi, [82]
Wao a  8W
d30:—3 ) [71] Vo — <i _ ﬂ) (V _ 52) + V13‘/3027
1 o1 Wiy 18Wyoa? T2Waol a2
do3== \/2W04 +\/AWos* — Vi3® = a, [72] Vao?
6 + L (20 — 287 — 892) — 2 @ ~ 6a. [83]
Vi3 3a 4Wao
dig=——. [73]
12«

Substitutingls; = 0 and Egs. (77)-(78) to Eq. (15), we get the

Togeta quadratically integrable function of the form (1Ag formula for the potential as

first sign in the Eqg. (72) have to be chosen positive. The sicon
sign can be chosen arbitrarily. These two choices lead to two

different potentials and the corresponding ground stateewa Vi(z,y) = Wio2z* + Woay* + Vaslz||y?
functions and energies. It is obvious, that the sufficiemt-co ' '

dition for the wave function (14) to be positive 1§; > 0. L Vs (6Wyoa + Vis)z2y?
Moreover, there exist quadratically integrable solutidimat 3602
obey more general conditions but we will not perform general + Vaolz|® + Vosly|® + Var 22|y [84]
discussion here. VisVao . Wiz +608) Jaly?
Equa_tions (21)—(25)_ can_be s_oI\_/ed and conditions of their 12Wyoa 3a
solvability can be obtained in a similar way, as it has bearedo + Vao? + Voou® + Vin|zy| + Violz| + Voulyl-

in case of cl class. Result is

Here, the coefficients;, V19, Vo1 have to be calculated using

Vo
dog = 74 Egs. (81)-(83) and
20 Wy’ [74] gs. (81)-(83)
3‘/21(1
dii=—=2" =3 75
= a1 Vs 5 [75] 1
dop— 6Vosa — Vish _ y 6] = 6\/21/04 +1/4Vos? — Vis?, [85]
7202 ’
Vig g SVma [86]
Voo = 360 EY Y] (6W4004 + V13) [77] 6Wyoar + Vi3 ’
VisVao | 2Vigy _ Voo — Va3 .
= . 78 V= : [87]
Vie=owea T 3a T80 [78] 7202

Inthese equations, it is supposed tatis known from Eqgs. (71).
If we also suppose thdbg, dg2 anddy; are known from Eqgs. (74)- Substituting Egs. (71)-(75) and (79)-(80) into Eq. (14§ th
(75), the solution of the Egs. (26)-(30) and their condisiofi  resulting ground state wave function for the solutions qiety
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cllis obtained in the form Equation (99) represents equation of the type (134) which is
analysed in Appendix B. Herey, is the unknown and
Wao, 3 3 2
T,Yy) = ex — —|z|° — a1 Vi
Yo(z,y) P{ 3 || vl d=Vio, e=Vos, f— ;; [100]
Vis, o Vao 5 2
2021 e W Blzyl and
Vao — B2 Vao?
. ( 20— F° Vo 3) 2| Vis2
2Wao 8Wao a="Vi+Voa, b=VioVoa, c¢=24/VioVos— 16
Vis

+ [m (4VV402ﬁ2 + V30® — 4W402V20) [101]

Voo — 8% — 472 } Variable« has to be rea_l and positive, becaw_.g@ has to be

—] lyl real to get quadratically integrable wave function. We sigep
Gox that variabled/,, andVj, are positive, i.ed > 0, ¢ > 0. Using

[88] results of Appendix B, paragraph A, it is seen that togetal

and positive, the necessary and sufficient conditiele is- 2 f,
Substituting Eqgs. (74)-(76) and (79)-(80) into Eq. (16& tbr-  i.e. the condition
mula for the corresponding ground state energy is obtaimed i )

the form VioVou > Vis® [102]

+

16
_ 32 2\ 2
Ey= % 4oy (VQO CANE 3) must be fulfilled.
2Wio 2Wio 8Wio Possible solutions of Eq. (99) are
Vis 2 02 2 2
— | ——— (4W. + Vap™ — 4Wyp* Vs 89 2
[288W403o¢2 (4Wao* 30 10°Vao)  [89] o Vis 5 [103]
2 272 16(V40 + Vo4) + 8v 16V Vos — Vis
Voo — 7 — 4y
t—a |- Vis?
6o Qg = =. [104]
) 16(V40 + Vo4) — 816V oVos — Vi3
2.5. Solutions of type dli - . . . .
Here, we supposEy; = 0, Viz # 0, doy # 0, dis # 0. In ~ Examining the asymptotic beha\(|our of function (14) in a
this case, Egs. (17)-(21) have the form s[mllar way as in section 2.3 and using Egs. (90_)-(97), thre co
dition for the wave function to be quadratically integrabéen
Vio=9d30> + do12, [90]  be expressed as
Vo1 =9dos” + d12%, [91] 3
0212d30d21 + 4d21d12, [92] 8V40d21 - 3‘/13d30 - 8(‘/40) 2 > 0. [105]
Viz=12dp3d1s + 4di2ds1, [93] It can be found that if Eg. (98) has to be equivalent to equa-
Vao = 6dsodya + 4d1o? + 4dor® + 6doydos. [94] tiond(_%9) and the condition (105) has to be fulfilled, then the
condition
From Egs. (90)-(93) we can find
. Viz <0 [106]
. 2
do3 =5\ Vos — 9dz0”, [95]  must be fuffilled.
5 Next, if Vi3 < 0 and if the positive sign is chosen for the
do1 ==/ Vio — 9d30”, [96]  coefficientds;, thena, solves Egs. (98), (99) and numerical
d12=—3ds0, [97] tests indicate that condition (105) is fulfilled and leads to

the quadratically integrable solution. In some casgssolves
To get a quadratically integrable wave function of the formEgs. (98) and (99), however numerical tests indicate ¢hat
(14), the positive sign of the coefficied$s has been chosen. does not lead to the quadratically integrable wave function
Substituting expressions (95)-(97) into (93) we get summary, we get the resulting formulae for the wave function
coefficients as

Vig = F12d301/ Vao — 9d30” — 12d301\/ Voa — 9dz0”.  [98 1
13 = F12d30/ Vo 30 30\ Vo4 30 (98] d03=—m7 [107]

3

After squaring, modifying and performing the substitutior- 1
9d502, we obtain dzo= 3V, [108]
o Vos+Vio Vis2 dor =+/Vao — o, [109]
(e —fa$a\/‘/zl0_a\/‘/04_a+3—2:0. [99] d12:—\/0[_1, [110]
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whereq; is defined by formula (103). from the previous equations as
dig = do3(3Vao — 12d2o” — 3d11”) — doy (Voo — 4dg2” — di17)
6d30(d21 + 3do3) ’
From Egs. (94), (95)-(97) and (99), it is possible to get the [116]
condition for the potential coefficient, as  Vao + Voo — ddag? — ddoa? — 2d1,2
dor = [117]

2(d21 + 3do3) ’

, Vi1 = 4di1 (dao + d2o)
48Vyoay — 16Vhaay + Via

Voo = . [111] 2da1° 2 2
16 — (-, 4d d
“ 3d30(3do3 + da1) (=Voz + ddoz” + dir”)
2da1do3 2 2
—————————— (Vog —4dy” — d
d30(3d03 + d21) ( 20 20 11 )
6d
ﬁ (_V02 — Voo + 4d022 + 4d202 + 2d11[j-)1’8]
Solution of Eqgs. (22)-(25) and the condition of its solviil _ di B 2 2 2
can be writen in terms of the variablés, dos, do1 as Vio = 3dos + do (Vao + Voz — ddao” — ddop” — 2dn,”)
2d20do3 2 2
——————— (Voo —4dyp” — d
d30(3do3 + do1) (Vao 2 )
2daodo1 2 2
- (Voo — 4dp2” — d 119
S0 (3dos + dor) (Voz 02 %), [119]
Vor = —2(3do3 + da1)
2d
o= V3o da1 (V3o +2V12)d03 + 2V0362307 [112] + ﬁ (Vao + Voo — 4dao® — 4do2® — 2d117)
12d30 36d30 2d30 —dgldog —d03 doad
Vos dso (Va0 + Vi2)dos + 2Vosdso b (Vag — ddao® — di1?)
doo= — , 113
" 12dos  12dos 2dso” — dardos — dos” 3] d3°(3303d+ da1)
—1 (Vao + Via)dos + 2Vosd 2 (Voo — 4des® — dii?) . 120
dllz?( 30 . 12)do3 03 2307 [114] S0 (3dos + dor) (Vo2 02 11 ) [120]
2d30” — da1doz — dos
~ dso [3Vao(dos + do1) + Via(3dos — do1)] Note that these fractions are regular, because thedase:
Vor= —3dps leads tol;3 = 0 which is not dll class but dl class.

2 2
3(2ds0” — dardos — dos”) Potentials belonging to class dll and the appropriate gioun
_ 2d31do3(2V30d21 4 3Vs0dos — Viadar) [115] State wave functions can be obtained as follows: We suppose
9ds0(2d30> — daydos — dos?) V31 = 0. CoefficientsVyg, Vou andVi3 must be chosen to ful-
2 2 fill conditions (102) and (106). Thew,; must be determined
V03(18d32 +da” - 3d21303). from Eq. (99) and coefficientsos, do1, di» from formulae
9(2d30” — da1doz — do3”) (107)-(110). Potential coefficierity, is given by Eq. (111).
Further, the remaining potential coefficients are givenday f
mulae (115), (118)-(120) and the wave function coefficients
follow from formulae (112)-(114) and (116)-(117). The riésu
ing wave function of the form (14) is quadratically integleab
in the whole planéz, y). The corresponding ground state en-
ergy can be calculated using formula (16).
L . The above discussion shows that the results in the class dll
For the sake of genegrallty, it would bg necessary to diséwss t -4 a1s0 be obtained. However, explicit formulae for thespet
value of the tern2dso” — da1dos — dos™ = 0 in the numerator  tja|, ground state wave function and the correspondinggner

of these expressions. This simple discussion will not bemiv are too complex, so that we do include them here.
here.

3. Conclusions

The idea pursued in this paper is to search for analytic so-
lutions of the two-dimensional Schrodinger equation isesa
when other known methods like the separation of variables

Solution of Egs. (26)-(30) and conditions of its solvalilit
are written in terms of the wave function coefficients known

(©2012 NRC Canada
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are unusable. This problem appears to be rather difficult andt.3. Proof of the lemma

for this reason, we have aimed for its partial solution, nlgme  Let ¢, satisfy P °**"(¢,) = 0. Then alsoP ¢¥*"(—ty) = 0
the problem of ground states of two-dimensional fourtheord and P(tg) = P°%(ty), P(—ty) = —P°%(ty). Thus, P(t)
(quartic) polynomial potential. For the sake of generalitg  has a root in the intervah-to, to].

have used the algebraic method of the solution of the Sahgéd

equation. The advantage of this algebraic approach is its ge 4.4. Proof of the theorem

erality not relying on any special properties (like the syeam From the condition (124) we obtain

try, supersymmetry, etc.) of the problem. Our method is thase

on generalisation of the one-dimensional approach uset in [f/31 _ ‘731(1? q)
2, 3] published in [4]. All possible solutions have been fdun A ’ 5 5 9

and they have been classified into eight classes, denotdd as a V310" + (4Vio — 2Va2)p”q + (3Vi3 — 3Va1)p7q

bl, cl, dl, all, bll, cll and dll. The most important classa®g a + (2Vay — 4Vou)pg® — Vasq*. [126]
al, bl, cl, cll and dll, because it has been shown that these

classes cor_ltain physicallyint_eresting (quadrat_icaliggnab!e) We need to prove that the ponnomféjl (p, ) has a real root
wave functions. These functions, corresponding energids a (p,q) satisfying the condition? + ¢> — 1. Vi1 (p,q) is a

the conditions for the potential have been found. : . o 1y
homogenous polynomial, that is why it is sufficient to prove

In Appendix A, it is shown that for any two-dimensional pe o -’
fourth-order polynomial potential it is in general possiib  that Vsi(p, ¢) has a real rootp, ) satisfying the condition

perform the rotation of the coordinates leadingitn = 0. P’ +q* > 0. ~

Again, this result has been used in the preceding sections.  We will show that there always exist a reeduch that/s; (p, 1) =
In Appendix B, Eq. (134) which is needed in the main text0, I.e.

has been analyzed and its solutions together with the condi-

tions of its solvability found. Va1(p, 1) = Vaip* + (4Vig — 2Vao)p®

su(t?j(eagteg?lflﬁzrittrl]%? g;g:r(r:r;fthod to other types of potentials is 4 (3Vis — Vi1 )p® + (2Vhs — 4Vou)p — Vig = 0. [127]

Without loosing generality we suppose that > 0.
4. Appendix A If
4.1. Theorem o P(z) = Va12° + (3Vi3 — 3Va1)z — Vig [128]
LetV(z,y) = > o<y j<4 Vijz'y’ be a polynomial of a de-

gree less than or equal to 4.
Then there exists a rotation in the plapey) = cven

has a real non-negative rogt then the function

5" (p, 1) = Varp® + (3Viz — 3Var)p® — Vis [129]
R: <I> - (f) - < p q) (x) , [121]  has aroot (roots}/z; and the function
Y Y —qp Yy
wherep, ¢ are real numbers satisfying + ¢> = 1 and there Vi (p, 1) = Va1 p* + (4Vio — 2Va2)p®
exists a polynomial 4 (3Vhs — 3Va1)p? + (2Vas — 4Vou)p — Vis  [130]
" B S
V=V(ey) = Z Vija'y [122]  has a real root in the intervdl-,/z1, /z1] according to the
itis4 lemma. IfV;3 < 0 then the root
such that 5
_ 3Vs1 — 3V +1/(3Va1 — 3Vi3)2 + 4Vi3Va 131
Vs =0 [123] D) [131]
and of the polynomialP(z) is real and positive. 1135 > 0 then
B R c o . .
Yoy € R: V(e y) = V(E D), [124] P(0) < 0andP(z) > 0 for large positivez or vice versa

Thus,P(z) has a non-negative real root and existe R such

whereR denotes the set of all real numbers. Before the prooﬂhat
we prove the following lemma.
Va1po® + (4Vio — 2Va2)po® + (3Vis — 3Va1)po®
4.2. Lemma + (2Va2 — 4Voa)po — Vi3 =0 [132]
Let the continuous functio®(¢) : R — R be decomposed
to an even continuous functid©’*" (¢) and to an odd contin- and

uous functionP °4(t) as po 1
- / +p2 /1+p2
P(t) _ Peven(t> —|—P0dd(t) [125] R= 10 Po 0 [133]
V1403 /1402

and let the functior? ¢¥¢"(¢) have at least one real root. Then . _
P(t) has at least one real root. is the searched rotation.

(©2012 NRC Canada



5. Appendix B

In this section, we analyse the equation

172—d;ex:l:x\/(d—:c)(e—:c)—i—f:().

Let us refer to it as a "plus version” if the sign before thedhi
term is+ and "minus version” if the sign is.. We suppose that

[134]

of Eq. (134).

d, e and f are real numbers and our aim is to find real solutions(4b —)(c? — 2ca + 4b)i4b _ 2 \/(cz — 9ca+ 4b)2 -

Moving the term with the square root of Eq. (134) to the
right hand side and squaring both sides of this equation we ge
the same equation for the plus version as for the minus one

(e—d)2+8fx2

0 —(e+d)fr+f>=0.

[135]

5.1. Casele —d)?+8f #0
First, we will suppose thdt —d)?+8 f # 0. Now, quadratic
equation (135) has two roots

dte—2J/de—2f 2f
S A PR Iy Sl gty ey SR
d+e+2/de—3F of
=Tty s; dre_avae—z 2

Itis seen thatife—d)?+8f # 0thende > 2f is the necessary
and sufficient condition to get;, x- real.
Now we discuss the question which solution of Eq. (185)

or z solves the plus, minus or no version of the original equa-
tion (134). This uncertainty arises here because we squared

some equations. It is useful to introduce new variables

a:=d+e, [138]
b:=de, [139]
c:=2+/de — 2f [140]
with the corresponding backward transformation
/a2 —
de=2EVva —ab ‘2’ 1 [141]
4b — c?
e [142]
8
It is easy to find that for any, e, f real the termu? — 4b is
non-negative.
Now, our equation (134) has the form
b 2
IQ—gZC:l:I x2—ax+b—|—§—%20 [143]
and possible solutions are
4b — ¢?
1= m, [144]
4b — 2
= ) 145
2 4(a —c) [145]

After substituting expression (144) to Eq. (143) we get

(4b — )( +2ca+ 4b)  4b— [(c®+2ca+4b 2_0
(c+ a)? c+ta c+a -
[146]

Similarly, after substituting Eq. (145) into Eq. (143) wetain

=0.

(a — ¢)? a—c a—c

[147]

Now it is important to suppose that we work in the real num-
bers domain. In this case we can write the absolute values in-
stead of the square roots of the squares and can get the follow
ing conditions:

o If 4b = ¢, thenz, andzx, solve the both versions of Eq.
(134). It can be seen directly from expressions (136)-
(137), becauseb = ¢? if and only if f = 0 and conse-
quentlyz; = x5 = 0 is solution of (134) evidently.

o If ﬁ%ﬁﬁ‘“’ < 0 thenz; solves the plus version of Eq.
(134).

o If Cz“‘%ﬁj‘*b > (0 thenz; solves the minus version of
Eq. (134).
o If £=2catdb < thenz, solves the plus version of Eq.

a—c

(134).

If % > 0 thenz, solves the minus version of
Eq. (134).

Note that in the complex numbers domain the problem is
slightly different. Both versions of Eq. (134) represeneon
equation with a different choice of the square root brantie T
question of which solution af; andxs is the right one must
be understood as a question of the correspondence to differe
square root branches.

For the cases discussed in this paper it is also important tha
if d>0,e>0and0 < 2f < dethen0 < ¢ < 2vb < a and
0 < 1,2 < min(d, e). The proof of this statement is easy.

5.2. Casele —d)? +8f =0

Now we discuss the cage — d)?> + 8f = 0. We need not
make general discussion since in the cases discussed in the
main text, the variablg is non-negative. Fof > 0 the only
one case exist whefe — d)* + 8f = 0. This is the casé = e
andf = 0.

In this case, we cannot use Eq. (135) because it has the form
0 = 0. We must start from Eq. (134) againdf= dandf =0
then this equation has the form
2? —dr+x\/(d—z)2 =0. [148]

We see thatt = 0 is one solution. Now we can divide this
equation byr and modify it to the form

x—d=x|z—d =0.

Further, we see that also

[149]

(©2012 NRC Canada
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e anyx < d solves the plus version,

e anyx > d solves the minus version.
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