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1. Introduction

The theory of nonadditive measures and integrals was a powerful tool in several fields [6,13]. Sugeno integral [29] is a
useful tool in several theoretical and applied statistics. For instance, in decision theory, the Sugeno integral is a median,
which is indeed a qualitative counterpart to the averaging operation underlying expected utility [7].

In most decision-making problems a global preference functional is used to help the decision-maker make the ‘‘best’’
decision. Of course, the choice of such a global preference functional is dictated by the behavior of the decision-maker
but also by the nature of the available information, hence by the scale type on which it is represented. The use of the Sugeno
integral can be envisaged from two points of view: decision under uncertainty and multi-criteria decision-making [8]. Su-
geno integral is analogous to Lebesgue integral which has been studied by many authors, including Pap [11,23], Ralescu
and Adams [24] and Wang and Klir [30], among others.

Integral inequalities play important roles in classical probability and measure theory. These are useful tools in several
theoretical and applied fields. For instance, integral inequalities play a role in the development of a time scales calculus
[22]. In general, any integral inequality can be a very powerful tool for applications. In particular, when we think of an inte-
gral operator as a predictive tool then an integral inequality can be very important in measuring and dimensioning such pro-
cess. The study of inequalities for Sugeno integral was initiated by Román-Flores et al. [9,25–28], and then followed by the
. All rights reserved.
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authors [1,3,4,15–17]. Recently, the authors generalized several classical inequalities, including Minkowski’s, Chebyshev’s
and Hölder’s inequalities, to the frame of Sugeno integral [1,2,15,18].

The aim of this paper is strengthened versions of the Minkowski, Chebyshev and Hölder type inequalities for Sugeno inte-
gral and relate them to T-evaluators and S-evaluators. As an application, some equivalent forms and some particular results
have been established.

The paper is arranged as follows. For convenience of the reader, in the next section, we review some basic concepts and
summarization of some previous known results. In Sections 3 and 4, we construct strengthened versions of the Minkowski,
Chebyshev and Hölder type inequalities for Sugeno integral and relate them to T-evaluators and S-evaluators. Finally, some
conclusions are given.

2. Preliminaries

In this section, we are going to review some well known results from the theory of nonadditive measures, Sugeno’s inte-
gral and T-(S-)evaluators. For details, we refer to [24,29,30,12,5].

As usual we denote by R the set of real numbers. Let X be a non-empty set, F be a r-algebra of subsets of X. Let N denote
the set of all positive integers and Rþ denote [0,+1]. Throughout this paper, we fix the measurable space ðX;FÞ, and all con-
sidered subsets are supposed to belong to F .

Definition 2.1 ([24]). A set function l : F ! Rþ is called a nonadditive measure if the following properties are satisfied:

(FM1) l(;) = 0;
(FM2) A � B implies l(A) 6 l(B);
(FM3) A1 � A2 � � � � implies lð

S1
n¼1AnÞ ¼ limn!1lðAnÞ; and

(FM4) A1 � A2 � � � �, and l(A1) < +1 imply lð
T1

n¼1AnÞ ¼ limn!1lðAnÞ.

When l is a nonadditive measure, the triple ðX;F ;lÞ then is called a nonadditive measure space.

Let ðX;F ;lÞ be a nonadditive measure space, by FþðXÞ we denote the set of all nonnegative measurable functions
f : X ! ½0;1Þwith respect to F . In what follows, all considered functions belong to FþðXÞ. Let f be a nonnegative real-valued
function defined on X, we will denote the set {x 2 Xjf(x) P a} by Fa for a P 0. Clearly, Fa is nonincreasing with respect to a,
i.e., a 6 b implies FakFb. Moreover, for any fixed k in (0,1) denote by F kðXÞ the set of all measurable functions f : X ! ½0; k�.
Observe that the system ðF kðXÞÞ is strictly increasing and

S
F kðXÞ$FþðXÞ.

Definition 2.2 ([23,30]). Let ðX;F ;lÞ be a nonadditive measure space and A 2 F , the Sugeno integral of f on A, with respect
to the nonadditive measure l, is defined as
ðSÞ
Z

A
f dl ¼

_
aP0

ða ^ lðA \ FaÞÞ:
When A = X, then
ðSÞ
Z

X
f dl ¼ ðSÞ

Z
f dl ¼

_
aP0

ða ^ lðFaÞÞ:
It is well known that Sugeno integral is a type of nonlinear integral [14]. I.e., for general case,
ðSÞ
Z
ðaf þ bgÞdl ¼ aðSÞ

Z
f dlþ bðSÞ

Z
g dl
does not hold. Some basic properties of Sugeno integral are summarized in [23,30], we cite some of them in the next
theorem.

Theorem 2.3 ([23,30]). Let ðX;F ;lÞ be a nonadditive measure space, then

(i) lðA \ FaÞP a) ðSÞ
R

A f dl P a;
(ii) lðA \ FaÞ 6 a) ðSÞ

R
A f dl 6 a;

(iii) ðSÞ
R

A f dl < a() there exists c < a such that lðA \ FcÞ < a;
(iv) ðSÞ

R
A f dl > a() there exists c > a such that lðA \ FcÞ > a;

(v) If l(A) <1, then lðA \ FaÞP a() ðSÞ
R

A f dl P a;
(vi) If f 6 g, then ðSÞ

R
f dl 6 ðSÞ

R
g dl.

In [16], Ouyang and Fang proved the following result which generalized the corresponding one in [27].
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Lemma 2.4. Let m be the Lebesgue measure on R and let f: [0,1) ? [0,1) be a nonincreasing function. If ðSÞ
R a

0 f dm ¼ p, then
f ðp�ÞP ðSÞ
Z a

0
f dm ¼ p
for all a P 0, where f ðp�Þ ¼ limx!p� f ðxÞ.
Moreover, if p < a and f is continuous at p, then f(p�) = f(p) = p.

Notice that if m is the Lebesgue measure and f is nonincreasing, then f(p�) P p implies ðSÞ
R a

0 f dm P p for any a P p. In
fact, the monotonicity of f and the fact f(p�) P p imply that [0,p) � Fp. Thus, m([0,a] \ Fp) P m([0,a] \ [0,p)) = m([0,p)) = p.
Now, by Theorem 2.3(i), we have ðSÞ

R a
0 f dm P p.

Based on Lemma 2.4, Ouyang et al. proved some Chebyshev type inequalities [17] and their united form [15]. Notice that
when proving these Theorems, the following lemma, which is derived from the transformation theorem for Sugeno integral
(see [30]), plays a fundamental role.

Lemma 2.5. Let ðSÞ
R

A f dl ¼ p. Then 8r P p; ðSÞ
R

A f dl ¼ ðSÞ
R r

0 lðA \ FaÞdm, where m is the Lebesgue measure.

In this contribution, we will prove strengthened versions of the Minkowski, Chebyshev and Hölder inequalities for Sugeno
integral and T-(S-)evaluators of comonotone functions. Recall that two functions f,g :X ? R are said to be comonotone if for
all (x,y) 2 X2, (f(x) � f(y))(g(x) � g(y)) P 0. Clearly, if f and g are comonotone, then for all non-negative real numbers p, q
either Fp � Gq or Gq � Fp. Indeed, if this assertion does not hold, then there are x 2 FpnGq and y 2 GqnFp. That is,
f ðxÞP p; gðxÞ < q and f ðyÞ < p; gðyÞP q;
and hence (f(x) � f(y))(g(x) � g(y)) < 0, contradicts with the comonotonicity of f and g. Notice that comonotone functions can
be defined on any abstract space.

In [15], Mesiar and Ouyang proved the following Chebyshev type inequalities for Sugeno integral.

Theorem 2.6. Let f ; g 2 FþðXÞ and l be an arbitrary nonadditive measure such that ðSÞ
R

A fdl and ðSÞ
R

A gdl are finite. Let
w:[0,1)2 ? [0,1) be continuous and nondecreasing in both arguments and bounded from above by minimum. If f, g are
comonotone, then the inequality
ðSÞ
Z

A
f H g dl P ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
ð2:1Þ
holds.
It is known that
ðSÞ
Z

A
f H g dl 6 ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
; ð2:2Þ
where f, g are comonotone functions whenever w P max (for a similar result, see [19]), it is of great interest to determine the
operator w such that
ðSÞ
Z

A
f H g dl ¼ ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
ð2:3Þ
holds for any comonotone functions f, g, and for any nonadditive measure l and any measurable set A. Ouyang et al. [21,20]
proved that there are only 18 operators such that (2.3) holds, including the four well-known operators: minimum, maxi-
mum, PF (called the first projection, PF for short, if x w y = x for each pair (x,y)) and PL (called the last projection, PL for short,
if x w y = y for each pair (x,y)).

Now, we give the following definitions which will be used later.

Definition 2.7 [5]. For a complete lattice (X,6,\, >) with the least and the greatest elements \ and >, respectively, a
function u :X ? [0,1] is said to be an evaluator on X iff it satisfies the following properties:

(1) u(\) = 0, u(>) = 1.
(2) for all a, b 2 L, if a 6 b then u(a) 6 u(b).
Definition 2.8 [12]. A binary operation T : [0,1] � [0,1] ? [0,1] is said to be a t-norm iff it satisfies the following properties:

(i) for each y 2 [0,1] T(1,y) = y,
(ii) for all x,y 2 [0,1] T(x,y) = T(y,x),

(iii) for all x,y1,y2 2 [0,1] if y1 6 y2 then T(x,y1) 6 T(x,y2),
(iv) for all x,y,z 2 [0,1] T(x,T(y,z)) = T(T(x,y),z).
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The four basic t-norms are:

� the minimum t-norm, TM(x,y) = min{x,y},
� the product t-norm, TP(x,y) = x � y,
� the Łukasiewicz t-norm, TL(x,y) = max{0,x + y � 1},
� the drastic product,
TDðx; yÞ ¼
0 if maxfx; yg < 1;
minfx; yg if maxfx; yg ¼ 1:

�

A function S : [0,1] � [0,1] ? [0,1] is called a t-conorm [12], if there is a t-norm T such that S(x,y) = 1 � T(1 � x,1 � y). Evi-
dently, a t-conorm S satisfies:

(i0) S(x,0) = S(0,x) = x, "x 2 [0,1] as well as conditions (ii), (iii) and (iv). The basic t-conorms (dual of four basic t-norms)
are:

� the maximum t-conorm, SM(x,y) = max{x,y},
� the probabilistic sum, SP(x,y) = x + y � xy,
� the Łukasiewicz t-conorm, SL(x,y) = min{1,x + y},
� the drastic sum,
SDðx; yÞ ¼
1 if minfx; yg > 0;
maxfx; yg if minfx; yg ¼ 0:

�

Definition 2.9 [5]. Consider a complete lattice (X,6,\,>), a t-norm T and a t-conorm S. An evaluator on X is called a T-eval-
uator iff for all a,b 2 X

T(u(a),u(b)) 6 u(min(a,b)),
and it is called an S-evaluator iff
S(u(a),u(b)) P u(max(a,b)).
3. On some advanced type inequalities

The present section aims to provide some advanced type inequalities for Sugeno integral.

Theorem 3.1. Let ðX;F ;lÞ be a nonadditive measure space and let U,V: [0,1] ? [0,1] be continuous strictly increasing functions
such that U(x) 6 V(x) for all x 2 [ 0,1]. If f 2 FþðXÞ is a measurable function, then the inequalityZ� � Z� �
U�1 ðSÞ
A

Uðf Þdl P V�1 ðSÞ
A

Vðf Þdl ð3:1Þ
holds for any A 2 F .
Proof. If ðSÞ
R

A Uðf Þdl ¼ 1, then for any M > 0; U�1 ðSÞ
R

A Uðf Þdl
� �

P U�1ðUðMÞÞ ¼ M. Thus U�1 ðSÞ
R

A Uðf Þdl
� �

¼ 1 and the
right-hand side equals to 1, hence (3.1) holds. If ðSÞ

R
A Vðf Þdl ¼ 1, then for any M, we have l(A \ FM}) =1. Then
lðA \ fxjUðf ðxÞÞP UðMÞgÞ ¼ lðA \ FMÞP UðMÞ:
Thus U�1 ðSÞ
R

A Uðf Þdl
� �

P M. Letting M ?1, we get the result as desired.
So, we can assume that both ðSÞ

R
A Uðf Þdl and ðSÞ

R
A Vðf Þdl are finite. Let U�1 ðSÞ

R
A Uðf Þdl

� �
¼ a and

V�1 ðSÞ
R

A Vðf Þdl
� �

¼ b. Then, Theorem 2.3(v), implies that
lðA \ fxjUðf ÞP UðaÞgÞ ¼ lðA \ FaÞP UðaÞ
and
lðA \ fxjVðf ÞP VðbÞgÞ ¼ lðA \ FbÞP VðbÞ:
Since U(x) 6 V(x) for all x 2 [0,1], then
U�1 ðSÞ
Z

A
Uðf Þdl

� �
P U�1ðUðbÞ ^ lðA \ FbÞÞP U�1ðUðbÞ ^ VðbÞÞP U�1ðUðbÞÞ ¼ b ¼ V�1 ðSÞ

Z
A

Vðf Þdl
� �

;

and the proof is completed. h
Corollary 3.2 [28]. Let ðX;F ;lÞ be a nonadditive measure space and let U: [0,1] ? [0,1] be continuous strictly increasing func-
tion such that U(x) 6 x for all x 2 [0,1]. If f 2 FþðXÞ is a measurable function, then the inequality
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ðSÞ
Z

A
Uðf Þdl P U ðSÞ

Z
A

f dl
� �

ð3:2Þ
holds for any A 2 F .
Corollary 3.3 [28]. Let ðX;F ;lÞ be a nonadditive measure space and let V: [0,1] ? [0,1] be continuous strictly increasing func-
tion such that x 6 V(x) for all x 2 [0,1]. If f 2 FþðXÞ is a measurable function, then the inequality
V ðSÞ
Z

A
f dl

� �
P ðSÞ

Z
A

Vðf Þdl ð3:3Þ
holds for any A 2 F .
Theorem 3.4. Fix a nonadditive measurable space ðX;F ;lÞ. Let a continuous non-decreasing u : [0,1] ? [0,1] satisfying u(x)
P x (or equivalently, composite u(u(x)) P u(x)) for all x 2 [0,1] and a non-decreasing n-place function H:[0,1]n ? [0,1] such
that H be continuous and bounded from below by maximum be given. Then for any system U1, . . . ,Un : [0,1] ? [0,1] of continuous
strictly increasing functions and any comontone system f1, f2, . . . , fn from FþðXÞ it holds
U�1 ðSÞ
Z

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdl

� �
6 H uðU�1

1 ððSÞ
Z

A
U1ðf1ÞdlÞÞ; . . . ;u U�1

n ððSÞ
Z

A
UnðfnÞdlÞ

� �� �
; ð3:4Þ
where U = max(U1,U2, . . . ,Un).
Proof. Let ðSÞ
R

A UkðfkÞdl ¼ pk for any k = 1, . . . ,n. Two cases can be considered:

(Case 1) Suppose that there exist
fkjpk ¼ 1; k ¼ 1; . . . ;ng:
For example, let ðSÞ
R

A U1ðf1Þdl ¼ 1. Then for any M; U�1
1 ðSÞ

R
A U1ðf1Þdl

� �
P U�1

1 ðU1ðMÞÞ ¼ M. Therefore U�1
1 ðSÞ

R
A

�
U1ðf1Þ

dlÞ ¼ 1. Since u : [0,1] ? [0,1] is continuous and non-decreasing such that u(x) P x for all x 2 [0,1] and H : [0,1]n

? [0,1] is continuous and nondecreasing and bounded from below by maximum, there holds
H u U�1
1 ðSÞ

Z
A

U1ðf1Þdl
� �� �

; . . . ;u U�1
n ðSÞ

Z
A

UnðfnÞdl
� �� �� �

¼ 1;
and (3.4) holds.
(Case 2) Suppose that pk <1 for any k = 1, . . . ,n. Let
U�1
k ðSÞ

Z
A

UkðfkÞdl
� �

¼ ak for all k ¼ 1; . . . ;n:
And r = max{a1,a2, . . . ,an}. Denote Ak(a) = l (A \ {xjUk(fk)(x) P a}) and B(a) = l(A \ {xjU(H(u(f1),u(f2), . . . ,u(fn)))(x) P a}). By
Lemma 2.5 we have
ðSÞ
Z

A
UkðfkÞdl ¼ ðSÞ

Z r

0
AkðaÞdm ¼ UkðakÞ for all k ¼ 1; . . . ;n:
For each e > 0, we have Ak(Uk(ak) + e) 6 Uk(ak). Then
l A \ fxjfkðxÞP U�1
k ðUkðakÞ þ eÞg

� �
6 UkðakÞ:
Since u : [0,1] ? [0,1] is continuous and non-decreasing such that u(x) P x for all x 2 [0,1], by the monotonicity of H and
comonotonicity of f1, f2, . . . , fn as well as the fact that H P max we have
l A \ xjHðuðf1Þ; . . . ;uðfnÞÞP H u U�1
1 ðU1ða1Þ þ eÞ

� �
; . . . ;u U�1

n ðUnðanÞ þ eÞ
� �� �n o� �

6 l A \ xjf1 P U�1
1 ðU1ða1Þ þ eÞ

n o
[ � � � [ xjfn P U�1

n ðUnðanÞ þ eÞ
� �n o� �

6 lðA \ xjf1 P U�1
1 ðU1ða1Þ þ eÞ

n o
Þ _ � � � _ l A \ xjfn P U�1

n ðUnðanÞ þ eÞ
� �n o� �

6 A1ðU1ða1Þ þ eÞ _ � � � _ AnðUnðanÞ þ eÞ 6 U1ða1Þ _ � � � _ UnðanÞ 6 Uða1Þ _ � � � _ UðanÞ 6 UðHða1; . . . ; anÞÞ
6 UðHðuða1Þ; . . . ;uðanÞÞÞ:
Letting e ? 0, by the continuity of H and u we have
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lðA \ fxjHðuðf1Þ; . . . ;uðfnÞÞP Hðuða1Þ; . . . ;uðanÞÞþgÞ 6 UðHðuða1Þ; . . . ;uðanÞÞÞ;
and hence B(U(H(u(a1), . . . ,u(an)))+) 6 U(H(u(a1), . . . ,u(an))) and
lðA \ fxjUðHðuðf1Þ; . . . ;uðfnÞÞÞP UðHðuða1Þ; . . . ;uðanÞÞÞþgÞ 6 UðHðuða1Þ; . . . ;uðanÞÞÞ:
Then, Theorem 2.3(ii) implies that
U�1 ðSÞ
Z

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdl

� �
6 Hðuða1Þ; . . . ;uðanÞÞ

¼ H u U�1
10 ðSÞ

Z
A

U1ðf1Þdl
� �� �

; . . . ;u U�1
n ðSÞ

Z
A

UnðfnÞdl
� �� �� �

:

Hence, (3.4) is valid and the theorem is proved. h
Remark 3.5. Let n = 2, u(x) = x and U(x) = U1(x) = U2(x) = x. Then, we can use the same examples in [1] to show the necessi-
ties of H P max and the comonotonicity of f1, f2, and so we omit them here.

The following example shows that u(x) P x (or equivalently, composite u(u(x)) P u(x)) for all x 2 [0,1] in Theorem 3.4
is inevitable.

Example 3.6. Let X = [0,1], f1(x) = f2(x) = x, u(x) = x2, U(x) = U1(x) = U2(x) = x and H(x,y) = min{1,x + y}. If the nonadditive
measure l is defined as l(A) = m2(A), where m denotes the Lebesgue measure on R, then
ðSÞ
Z 1

0
Hðuðf1Þ;uðf2ÞÞdl ¼

_
a2½0;1�

a ^ 1�
ffiffiffiffiffiffi
2a
p

2

 ! !
¼ 6� 4

ffiffiffi
2
p
¼ 0:34315:
But
u ðSÞ
Z 1

0
f1 dl

� �
¼ u ðSÞ

Z 1

0
f2 dl

� �
¼ 3�

ffiffiffi
5
p

2

 !2

¼ 0:1459:
Then
ðSÞ
Z 1

0
Hðuðf1Þ;uðf2ÞÞdl ¼ 0:34315 > H uððSÞ

Z 1

0
f1 dlÞ;u ðSÞ

Z 1

0
f2 dl

� �� �
¼ 0:2918;
which violates Theorem 3.4.
Corollary 3.7. Fix a nonadditive measurable space ðX;F ;lÞ. Let a non-decreasing n-place function H:[0,1]n ? [0,1] such that H
be continuous and bounded from below by maximum be given. Then for any system U1, . . . ,Un : [0,1] ? [0,1] of continuous
strictly increasing functions and any comontone system f1, f2, . . . , fn from FþðXÞ it holds
U�1 ðSÞ
Z

A
UðHðf1; . . . ; fnÞÞdl

� �
6 H U�1

1 ðSÞ
Z

A
U1ðf1Þdl

� �
; . . . ;U�1

n ðSÞ
Z

A
UnðfnÞdl

� �� �
; ð3:5Þ
where U = max(U1,U2, . . . ,Un).
Corollary 3.8. Let l be an arbitrary nonadditive measure and w : [0,1]2 ? [0,1] be continuous and nondecreasing in both argu-
ments and bounded from below by maximum. And let U1, U2 : [0,1] ? [0,1] be continuous strictly increasing functions. If
f ; g 2 FþðXÞ are comonotone, then the inequality
U�1 ðSÞ
Z

A
Uðf H gÞdl

� �
6 U�1

1 ðSÞ
Z

A
U1ðf Þdl

� �
H U�1

2 ðSÞ
Z

A
U2ðf Þdl

� �
ð3:6Þ
holds where U = max(U1,U2).
Corollary 3.9 [2]. Let l be an arbitrary nonadditive measure and w : [0,1]2 ? [0,1] be continuous and nondecreasing in both
arguments and bounded from below by maximum. And let u : [0,1] ? [0,1] be continuous and strictly increasing function. If
f ; g 2 FþðXÞ are comonotone, then the inequality
u�1 ðSÞ
Z

A
uðf H gÞdl

� �
6 u�1 ðSÞ

Z
A
uðf Þdl

� �
H u�1 ðSÞ

Z
A
uðgÞdl

� �
ð3:7Þ
holds.
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Remark 3.10. In [2], it also requires that ðSÞ
R

A uðf H gÞdl <1. But, as is shown in Theorem 3.4, this condition can be
abandoned.
Corollary 3.11 [1]. Let f ; g 2 FþðXÞ and l be an arbitrary nonadditive measure. And let w : [0,1]2 ? [0,1] be continuous and
nondecreasing in both arguments and bounded from below by maximum. If f, g are comonotone, then the inequality
ðSÞ
Z

A
ðf H gÞsdl

� �1
s

6 ðSÞ
Z

A
f s dl

� �1
s

H ðSÞ
Z

A
gs dl

� �1
s

ð3:8Þ
holds for all 0 < s <1.
Corollary 3.12 [19]. Let f ; g 2 FþðXÞ and l be an arbitrary nonadditive measure. And let w : [0,1]2 ? [0,1] be continuous and
nondecreasing in both arguments and bounded from below by maximum. If f, g are comonotone, then the inequality
ðSÞ
Z

A
ðf H gÞdl 6 ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
ð3:9Þ
holds.
When V(x) = x, U1(x) = xp and U2(x) = xq for all p, q P 1, by Corollary 3.8 and Theorem 3.1, we have the Hölder inequality.
Corollary 3.13. Let f,g :X ? [0,1] and l be an arbitrary nonadditive measure. And let w : [0,1]2 ? [0,1] be continuous and
nondecreasing in both arguments and bounded from below by maximum. If f, g are comonotone, then the inequality
ðSÞ
Z

A
ðf H gÞdl 6 ðSÞ

Z
A

f pdl
� �1

p

H ðSÞ
Z

A
gqdl

� �1
q

ð3:10Þ
holds for all p,q P 1.
Remark 3.14. If w : [0,1]2 ? [0,1] is a t-conorm [12], then In Eq. (3.10) works for any comonotone functions f, g with
ðSÞ
R

A f dl 6 1 and ðSÞ
R

A g dl 6 1.
Now, we construct some extensions of Minkowski, Chebyshev and Hölder type inequalities for Sugeno integral and relate

them to S-evaluators.
Theorem 3.15. Let a fixed k 2 (0,1). And let a continuous non-decreasing u : [0,k] ? [0,k] satisfying u(x) P x (or equivalently,
composite u(u(x)) P u (x)) for all x 2 [0,k] and a non-decreasing n-place function H:[0,1]n ? [0,1] such that H be continuous
and bounded from below by maximum be given. Then for any system U1, . . . ,Un : [0,1] ? [0,1] of continuous strictly increasing
functions and any comontone system f1, f2, . . . , fn from F kðXÞ and any nonadditive measure l it holds
U�1 ðSÞ
Z

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdl

� �
6 H u U�1

1 ðSÞ
Z

A
U1ðf1Þdl

� �� �
; . . . ;u U�1

n ðSÞ
Z

A
UnðfnÞdl

� �� �� �
; ð3:11Þ
where U = max(U1,U2, . . . ,Un).
Proof. This is similar to the proof of Theorem 3.4 (case 2). h
Theorem 3.16. Let a fixed k 2 (0,1). And let a non-decreasingn-place function H:[0,1]n ? [0,1] such that H be continuous and
bounded from below by maximum be given. Then for any system U1, . . . ,Un : [0,1] ? [0,1] of continuous strictly increasing func-
tions and any comontone system f1, f2, . . . , fn from F kðXÞ and any nonadditive measure l it holds
U�1 ðSÞ
Z

A
UðHðf1; . . . ; fnÞÞdl

� �
6 H U�1

1 ðSÞ
Z

A
U1ðf1Þdl

� �
; . . . ;U�1

n ðSÞ
Z

A
UnðfnÞdl

� �� �
; ð3:12Þ
where U = max(U1,U2, . . . ,Un).
Corollary 3.17 [3]. Let a fixed k 2 (0,1). For any continuous and non-decreasing u : [0,k] ? [0,k] satisfying u(x) P x for all x 2
[0,k] and any non-decreasing n-place function H:[0,1)n ? [0,1) such that H be continuous and bounded from below by maxi-
mum and any comonotone system f1,f2, . . . , fn from F kðXÞ and any nonadditive measure l it holds
ðSÞ
Z

A
Hðuðf1Þ;uðf2Þ . . . ;uðfnÞÞdl 6 H u ðSÞ

Z
A

f1 dl
� �

;u ðSÞ
Z

A
f2 dl

� �
; . . . ;u ðSÞ

Z
A

fn dl
� �� �

: ð3:13Þ
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Remark 3.18. If H(0, . . . ,0) for a function H required in Corollary 3.17 holds, then H is a disjunctive (continuous) aggregation
function on [0,k], see [10]. Typical examples in the case k = 1 of such aggregation functions are continuous t-conorms, cocop-
ulas, etc.
Corollary 3.19. Let ðX;F ;lÞ be a nonadditive measure space and f,g :X ? [0,1] two comonotone measurable functions. And let
U1,U2 : [0,1] ? [0,1] be continuous strictly increasing functions. If S is a continuous t-conorm and u is continuous S-evaluator
on X such that u(x) P x, then the inequality
U�1 ðSÞ
Z

A
UðSðuðf Þ;uðgÞÞÞdl

� �
6 S u U�1

1 ðSÞ
Z

A
U1ðf Þdl

� �� �
;u U�1

2 ðSÞ
Z

A
U2ðgÞdl

� �� �� �
ð3:14Þ
holds for any A 2 F , where U = max(U1,U2).
Specially, when U1(x) = U2(x) = xs for all s > 0, we have the Minkowski inequality for S-evaluator.

Corollary 3.20. Let ðX;F ;lÞ be a nonadditive measure space and f,g:X ? [0,1] two comonotone measurable functions. If S is a
continuous t-conorm and u is continuous S-evaluator on X such that u(x) P x, then the inequality
ðSÞ
Z

A
ðSðuðf Þ;uðgÞÞÞsdl

� �1
s

6 S u ðSÞ
Z

A
f s dl

� �1
s

 !
;u ðSÞ

Z
A

gs dl
� �� �1

s
 !

ð3:15Þ
holds for any A 2 F and 0 < s <1.
Again, we get an inequality related to the Chebyshev type for S-evaluator whenever s = 1.

Corollary 3.21 [3]. Let ðX;F ;lÞ be a nonadditive measure space and f,g :X ? [0,1] two comonotone measurable functions. If S is
a continuous t-conorm and u is continuous S-evaluator on X such that u(x) P x, then the inequality
ðSÞ
Z

A
Sðuðf Þ;uðgÞÞdl

� �
6 S u ðSÞ

Z
A

f dl
� �

;u ðSÞ
Z

A
g dl

� �� �
ð3:16Þ
holds for any A 2 F .
And, when V(x) = x,U1(x) = xp and U2(x) = xq for all p,q P 1, by Corollary 3.19 and Theorem 3.1, we have the Hölder

inequality for S-evaluator.

Corollary 3.22. Let ðX;F ;lÞ be a nonadditive measure space and f,g :X ? [0,1] two comonotone measurable functions. If S is a
continuous t-conorm and u is continuous S-evaluator on X such that u(x) P x, then the inequality
ðSÞ
Z

A
Sðuðf Þ;uðgÞÞdl

� �
6 S u ðSÞ

Z
A

f pdl
� �1

p
 !

;u ðSÞ
Z

A
gqdl

� �� �1
q

 !
ð3:17Þ
holds for any A 2 F and p,q P 1.
4. On reverse previous inequalities

In this section, we provide reverse previous inequalities for Sugeno integral.

Theorem 4.1. Fix a nonadditive measurable space ðX;F ;lÞ. Let a continuous non-decreasing u:[0,1] ? [0,1] satisfying u(x) 6 x
(or equivalently, composite u(u(x)) 6 u(x)) for all x 2 [0,1] and a non-decreasing n-place function H:[0,1]n ? [0,1] such that
H be continuous and bounded from above by minimum be given. Then for any system U1, . . . ,Un : [0,1] ? [0,1] of continuous
strictly increasing functions and any comontone system f1, f2, . . . , fn from FþðXÞ it holds
U�1 ðSÞ
Z

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdl

� �
P H u U�1

1 ðSÞ
Z

A
U1ðf1Þdl

� �� �
; . . . ;u U�1

n ðSÞ
Z

A
UnðfnÞdl

� �� �� �
; ð4:1Þ
where U = min(U1,U2, . . . ,Un).
Proof. Let ðSÞ
R

A UkðfkÞdl ¼ pk for any k = 1, . . . ,n and let T = {kjpk =1, i = 1, . . . ,n}. Three cases can be considered: (Case 1)
Suppose that T = n, then pk =1 for any k = 1, . . . ,n. Then for any M
lðA \ fxjfkðxÞP MgÞ ¼ 1:
Since u : [0,1] ? [0,1] is continuous and non-decreasing such that u(x) 6 x for all x 2 [0,1], by comonotonicity of
f1, f2, . . . , fn and the monotonicity of H we have
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lðA \ fxjUðHðuðf1Þ; . . . ;uðfnÞÞÞP UðHðuðMÞ; . . . ;uðMÞÞÞgÞP lðA \ fxjHðuðf1Þ; . . . ;uðfnÞÞP HðuðMÞ; . . . ;uðMÞÞgÞ
P lðA \ fxjf1 P MgÞ ^ lðA \ fxjf2 P MgÞ ^ � � � ^ lðA \ fxjfn P MgÞP UðHðM; . . . ;MÞÞ
P UðHðuðMÞ; . . . ;uðMÞÞÞg:
Then, Theorem 2.3(i) implies thatZ� �

U�1 ðSÞ

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdl P HðuðMÞ; . . . ;uðMÞÞ:
Letting M ?1, by the continuity of H and u, we get the desired inequality (4.1).
(Case 2) Suppose that 0 < T < n, then there exist
fkjpk ¼ 1; k ¼ 1; . . . ;ng:
Without loss of generality, in this case we can assume that, T = 1 and the other subcases can be proved similarly. For exam-
ple, let ðSÞ

R
A U1ðf1Þdl ¼ 1 and ðSÞ

R
A UrðfrÞdl ¼ UrðprÞ <1; r ¼ 2; . . . ;n, for some pr then
lðA \ fxjfr P prgÞP UrðprÞ and lðA \ fxjf1ðxÞP MgÞ ¼ 1 for any M:
Thus the monotonicity of H and the comonotonicity of f1, f2, . . . , fn imply that
lðA \ fxjHðuðf1Þ;uðf2Þ; . . . ;uðfnÞÞP HðuðMÞ;uðp2Þ; . . . ;uðpnÞÞgÞP lðA \ fxjf1ðxÞP Mg \ fxjf2ðxÞ
P p2g \ � � � \ fxjfnðxÞP pngÞ ¼ lðA \ fxjf1ðxÞP MgÞ ^ lðfxjf2ðxÞ
P p2gÞ ^ � � � ^ lðfxjfnðxÞP pngÞP U2ðp2Þ ^ U3ðp3Þ ^ � � � ^ UnðpnÞ:
Therefore
ððSÞ
Z

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdlÞP

UðHðuðMÞ;uðp2Þ;uðp3Þ; . . . ;uðpnÞÞÞ

^U2ðp2Þ ^ U3ðp3Þ ^ � � � ^ UnðpnÞ

 !

P
UðHðuðMÞ;uðp2Þ;uðp3Þ; . . . ;uðpnÞÞÞ

^Uðp2Þ ^ Uðp3Þ ^ � � � ^ UðpnÞ

 !

P
UðHðuðMÞ;uðp2Þ;uðp3Þ; . . . ;uðpnÞÞÞ

^Uðuðp2ÞÞ ^ Uðuðp3ÞÞ ^ � � � ^ UðuðpnÞÞ

 !

¼ UðHðuðMÞ;uðp2Þ;uðp3Þ; . . . ;uðpnÞÞÞ;
i.e.,
U�1 ðSÞ
Z

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdl

� �
P HðuðMÞ;uðp2Þ;uðp3Þ; . . . ;uðpnÞÞ:
Letting M ?1, by the continuity of H and u, we get the desired inequality (4.1).
(Case 3) Suppose that T = 0, then pk <1 for any k = 1, . . . ,n. Let ðSÞ

R
A UkðfkÞdl ¼ UkðpkÞ <1 for any k = 1, . . . ,n and some

pk. By Theorem 2.3(v) we have
lðA \ fxjfkðxÞP pkgÞP UkðpkÞ for all k ¼ 1; . . . ;n:
Since u : [0,1] ? [0,1] is continuous and non-decreasing such that u(x) 6 x for all x 2 [0,1], by the monotonicity of H and
comonotonicity of f1, f2, . . . , fn as well as the fact that H 6min we have
lðA \ fxjHðuðf1Þ; . . . ;uðfnÞÞP Hðuðp1Þ; . . . ;uðpnÞÞgÞP lðA \ fxjf1 P p1g \ fxjf2 P p2g \ � � � \ fxjfn P pngÞ
¼ lðA \ fxjf1 P p1gÞ ^ lðA \ fxjf2 P p2gÞ ^ � � � ^ lðA \ fxjfn P pngÞ
P U1ðp1Þ ^ U2ðp2Þ ^ � � � ^ UnðpnÞP Uðp1Þ ^ Uðp2Þ ^ � � � ^ UðpnÞP UðHðp1; . . . ;pnÞÞ
P UðHðuðp1Þ; . . . ;uðpnÞÞÞ:
Therefore
U�1 ðSÞ
Z

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdl

� �
P U�1 UðHðuðp1Þ; . . . ;uðpnÞÞÞ ^ lðA \ fxjHðuðf1Þ; . . . ;uðfnÞÞ½

P Hðuðp1Þ; . . . ;uðpnÞÞgÞ�P U�1 UðHðuðp1Þ; . . . ;uðpnÞÞÞ ^UðHðuðp1Þ; . . . ;uðpnÞÞÞ½

¼ Hðuðp1Þ; . . . ;uðpnÞÞ ¼ H u U�1
1 ðSÞ

Z
A

U1ðf1Þdl
� �� �

; . . . ;

�

�u U�1
n ðSÞ

Z
A

Unþ1ðfnÞdl
� �� ��

:



H. Agahi et al. / Information Sciences 190 (2012) 64–75 73
Hence, (4.1) is valid and the theorem is proved. h
Remark 4.2. Let n = 2, u(x) = x and U(x) = U1(x) = U2(x) = x. Then, we can use the same examples in [15] to show the neces-
sities of H 6min and the comonotonicity of f1, f2, and so we omit them here.

The following example shows that u(x) 6 x (or equivalently, composite u(u(x)) 6u(x)) for all x 2 [0,1] in Theorem 4.1 is
inevitable.

Example 4.3. Let X 2 ½0; 1
2�; f 1ðxÞ ¼ x; f 2ðxÞ ¼ 1

2 ; uðxÞ ¼
ffiffiffi
x
p

; UðxÞ ¼ U1ðxÞ ¼ U2ðxÞ ¼ x and H(x,y) = x � y. If the nonadditive
measure l is defined as l(A) = m(A), where m denotes the Lebesgue measure on R, then
ðSÞ
Z 1

0
ðuðf1Þ �uðf2ÞÞdl ¼ 0:30902; u ðSÞ

Z 1

0
f1 dl

� �
¼ 1

2
and u ðSÞ

Z 1

0
f2 dl

� �
¼

ffiffiffi
1
2

r
:

But
0:30902 ¼ ðSÞ
Z 1

0
Hðuðf1Þ;uðf2ÞÞdl < H u ðSÞ

Z 1

0
f1dl

� �
;u ðSÞ

Z 1

0
f2 dl

� �� �
¼ 0:35355;
which violates Theorem 4.1.
Corollary 4.4. Fix a nonadditive measurable space ðX;F ;lÞ. Let a non-decreasing n-place function H:[0,1]n ? [0,1] such that H
be continuous and bounded from above by minimum be given. Then for any system U1, . . . ,Un : [0,1] ? [0,1] of continuous strictly
increasing functions and any comontone system f1, f2, . . . , fn from FþðXÞ it holds
U�1 ðSÞ
Z

A
UðHðf1; . . . ; fnÞÞdl

� �
P H U�1

1 ðSÞ
Z

A
U1ðf1Þdl

� �
; . . . ;U�1

n ðSÞ
Z

A
UnðfnÞdl

� �� �
; ð4:2Þ
where U = min(U1,U2, . . . ,Un).
Corollary 4.5. Let l be an arbitrary nonadditive measure and w: [0,1]2 ? [0,1] be continuous and nondecreasing in both argu-
ments and bounded from above by minimum. And let U1,U2 : [0,1] ? [0,1] be continuous strictly increasing functions. If
f ; g 2 FþðXÞ are comonotone, then the inequality
U�1 ðSÞ
Z

A
Uðf H gÞdl

� �
P U�1

1 ðSÞ
Z

A
U1ðf Þdl

� �
H U�1

2 ðSÞ
Z

A
U2ðf Þdl

� �
ð4:3Þ
holds where U = min(U1,U2).
Corollary 4.6 [2]. Let l be an arbitrary nonadditive measure and w : [0,1]2 ? [0,1] be continuous and nondecreasing in both
arguments and bounded from above by minimum. And let u : [0,1) ? [0,1) be continuous and strictly increasing functions. If
f ; g 2 FþðXÞ are comonotone, then the inequality
u�1 ðSÞ
Z

A
uðf H gÞdl

� �
P u�1 ðSÞ

Z
A
uðf Þdl

� �
H u�1 ðSÞ

Z
A
uðgÞdl

� �
ð4:4Þ
holds.
Remark 4.7. In [2], it also requires that ðSÞ
R

A uðf Þdl <1 and ðSÞ
R

A uðgÞdl <1. But, as is shown in Theorem 4.1, this con-
dition can be abandoned.
Corollary 4.8 [18]. Let f ; g 2 FþðXÞ and l be an arbitrary nonadditive measure. And let w : [0,1]2 ? [0,1] be continuous and
nondecreasing in both arguments and bounded from above by minimum. If f, g are comonotone, then the inequality
ðSÞ
Z

A
ðf H gÞsdl

� �1
s

P ðSÞ
Z

A
f s dl

� �1
s

H ðSÞ
Z

A
gs dl

� �1
s

ð4:5Þ
holds for all 0 < s <1.
Corollary 4.9 [15]. Let f ; g 2 FþðXÞ and l be an arbitrary nonadditive measure. And let w : [0,1]2 ? [0,1] be continuous and
nondecreasing in both arguments and bounded from above by minimum. If f, g are comonotone, then the inequality
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ðSÞ
Z

A
ðf H gÞdl P ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
ð4:6Þ
holds.
By Corollary 4.5 and Theorem 3.1, we have the following corollary.
Corollary 4.10. Let f, g :X ? [0,1] and l be an arbitrary nonadditive measure. And let w : [0,1]2 ? [0,1] be continuous and
nondecreasing in both arguments and bounded from above by minimum. If f, g are comonotone, then the inequality
ðSÞ
Z

A
ðf H gÞdl P ðSÞ

Z
A

f pdl
� �1

p

H ðSÞ
Z

A
gqdl

� �1
q

ð4:7Þ
holds for all p, q 6 1.
Now, we construct some extensions of reverse previous integral inequalities for Sugeno integral and relate them to T-

evaluators.
Theorem 4.11. Let a fixed k 2 (0,1). And let a continuous non-decreasing u : [0,k] ? [0,k] satisfying u(x) 6 x (or equivalently,
composite u(u(x)) 6 u(x) ) for all x 2 [0,k] and a non-decreasing n-place function H:[0,1]n ? [0,1] such that H be continuous
and bounded from above by minimum be given. Then for any system U1, . . . ,Un : [0,1] ? [0,1] of continuous strictly increasing
functions and any comontone system f1, f2, . . . , fn from F kðXÞ and any nonadditive measure l it holds
U�1 ðSÞ
Z

A
UðHðuðf1Þ; . . . ;uðfnÞÞÞdl

� �
P H u U�1

1 ðSÞ
Z

A
U1ðf1Þdl

� �� �
; . . . ;u U�1

n ðSÞ
Z

A
UnðfnÞdl

� �� �� �
; ð4:8Þ
where U = min(U1,U2, . . . ,Un).
Proof. This is similar to the proof of Theorem 4.1 (case 3). h
Corollary 4.12 [3]. Let a fixed k 2 (0,1). For any continuous and non-decreasing u : [0,k] ? [0,k] satisfying u(x) 6 x for all x 2
[0,k] and any non-decreasing n-place function H:[0,1)n ? [0,1) such that H be continuous and bounded from above by mini-
mum and any comonotone system f1, f2, . . . , fn from F kðXÞ and any nonadditive measure l it holds
ðSÞ
Z

A
Hðuðf1Þ;uðf2Þ; . . . ;uðfnÞÞdl P H u ðSÞ

Z
A

f1 dl
� �

;u ðSÞ
Z

A
f2 dl

� �
; . . . ;u ðSÞ

Z
A

fn dl
� �� �

: ð4:9Þ
Remark 4.13. If H(k, . . . ,k) = k, then the function H required in Corollary 4.12 is a conjunctive (continuous) aggregation func-
tion on [0,k], compare [10]. Typical examples of such functions on [0,1] interval, i.e., if k = 1, are (continuous) t-norms, cop-
ulas, quasi-copulas, etc. Note also that the function u required in Corollary 4.12 can be seen as a (contracting) transformation
of the scale [0,k].
Corollary 4.14. Let ðX;F ;lÞ be a nonadditive measure space and f,g :X ? [0,1] two comonotone measurable functions. And let
U1,U2 : [0,1] ? [0,1] be continuous strictly increasing functions. If T is a continuous t-norm and u is continuous T-evaluator
on X such that u(x) 6 x, then the inequality
U�1 ðSÞ
Z

A
UðTðuðf Þ;uðgÞÞÞdl

� �
P T u U�1

1 ððSÞ
Z

A
U1ðf ÞdlÞ

� �
;u U�1

2 ððSÞ
Z

A
U2ðgÞdlÞ

� �� �
ð4:10Þ
holds for any A 2 F , where U = min(U1,U2).
Specially, when U1(x) = U2(x) = xs for all s > 0, we have the Minkowski inequality for T-evaluator.

Corollary 4.15. Let ðX;F ;lÞ be a nonadditive measure space and f,g :X ? [0,1] two comonotone measurable functions. If T is a
continuous t-norm and u is continuous T-evaluator on X such that u(x) 6 x, then the inequality
ðSÞ
Z

A
ðTðuðf Þ;uðgÞÞÞsdl

� �1
s

P T u ððSÞ
Z

A
f sdlÞ

1
s

� �
;u ðSÞ

Z
A

gsdl
� �� �1

s
 !

ð4:11Þ
holds for any A 2 F and 0 < s <1.
Again, we get an inequality related to the Chebyshev type for T-evaluator whenever s = 1.
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Corollary 4.16 [3]. Let ðX;F ;lÞ be a nonadditive measure space and f,g :X ? [0,1] two comonotone measurable functions. If T is
a continuous t-norm and u is continuous T-evaluator on X such that u(x) 6 x, then the inequality
ðSÞ
Z

A
Tðuðf Þ;uðgÞÞdl

� �
P T u ðSÞ

Z
A

fdl
� �

;u ðSÞ
Z

A
gdl

� �� �
ð4:12Þ
holds for any A 2 F .
And, by Corollary 4.14 and Theorem 3.1, we have the following corollary.

Corollary 4.17. Let ðX;F ;lÞ be a nonadditive measure space and f,g :X ? [0,1] two comonotone measurable functions. If T is a
continuous t-norm and u is continuous T-evaluator on X such that u(x) 6 x, then the inequality
ðSÞ
Z

A
Tðuðf Þ;uðgÞÞdl

� �
P T u ðSÞ

Z
A

f pdl
� �1

p
 !

;u ðSÞ
Z

A
gqdl

� �� �1
q

 !
ð4:13Þ
holds for any A 2 F and p, q 6 1.
5. Conclusion

In this paper, we have investigated strengthened versions of the Minkowski, Chebyshev, Jensen and Hölder type inequal-
ities for Sugeno integrals and we have related them to T-evaluators and S-evaluators. As an interesting open problem for
further investigation we pose the generalization of equality (2.3) for n-ary case. To be more precise, it is worth studying
the case when the inequalities (3.4) and/or (4.1) became equalities, independently of incoming functions f1, . . . , fn.
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[27] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, The fuzzy integral for monotone functions, Applied Mathematics and Computation 185 (2007)

492–498.
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