
Copula-Based Integration of Vector-Valued Functions

Erich Peter Klement1 and Radko Mesiar2

1 Department of Knowledge-Based Mathematical Systems
Johannes Kepler University, Linz, Austria

ep.klement@jku.at
2 Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering

Slovak University of Technology, Bratislava, Slovakia,
and Institute of Theory of Information and Automation
Czech Academy of Sciences, Prague, Czech Republic

radko.mesiar@stuba.sk

Abstract. A copula-based method to integrate a real vector-valued function, ob-
taining a single real number, is discussed. Special attention is paid to the case
when the underlying universe is finite. The integral considered here is shown to
be an extension of [0, 1]-valued copula-based universal integrals.
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1 Introduction

The concept of universal integrals was proposed in [4]. As a particular case, [0, 1]-
valued universal integrals were considered: these integrals assign to a measurable func-
tion f : X → [0, 1] a value from [0, 1], and the measure under consideration is a capacity
on the measurable space (X,A). The case of [0, 1]-valued universal integrals based on
some special(two-dimensional) copulas was proposed first in [2] in an attempt to find a
natural link between Choquet and Sugeno integral. General (two-dimensional) copulas
were considered in [3] (see also [4]).

We propose a copula-based integral for measurable functions with values in [0, 1]n,
i.e., for real vector-valued functions, with respect to some capacity, considering partic-
ularly the case of a finite universe.

2 Copulas and [0, 1]-Valued Integrals

Copulas were introduced in [6] in an attempt to describe the stochastic dependence
within random vectors. Recall that, for a fixed n ≥ 2, an n-dimensional copula
C : [0, 1]

n → [0, 1] provides a link between the joint probability distributionFZ : Rn →
[0, 1] of a random vector Z = (X1, X2, . . . , Xn) and the marginal probability distribu-
tions FX1 , FX2 , . . . , FXn : R → [0, 1] of the random variables X1, X2, . . . , Xn via

FZ(x1, x2, . . . , xn) = C (FX1 (x1), FX2(x2), . . . , FXn(xn)) .
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Definition 1. An (n-dimensional) copula is a function C : [0, 1]n → [0, 1] which is
n-increasing, i.e., for each n-dimensional interval [u,v] ⊆ [0, 1]

n we have

VC([u,v]) =
∑

a∈{0,1}n

(−1)

n∑

i=1
ai · C(wa) ≥ 0,

where

(wa)i =

{
vi if ai = 0,

ui if ai = 1,

and which satisfies the following two boundary conditions:

(i) 1 is a neutral element of C in the sense that C(u1, u2, . . . , un) = ui whenever
uj = 1 for all j �= i,

(ii) 0 is an annihilator of C in the sense that C(u1, u2, . . . , un) = 0 whenever 0 ∈
{u1, u2, . . . , un}.

As a consequence, each copula is non-decreasing in each coordinate and 1-Lipschitz
(with respect to the L1-norm). The set of n-dimensional copulas is convex.

Prototypical examples are the greatest copula M given by M(u1, . . . , un) =
min(u1, . . . , un) describing comonotone dependence, and the copula Π given by
Π(u1, . . . , un) =

∏n
i=1 ui describing independence. Note that, in the case n = 2, the

functionW : [0, 1]
2 → [0, 1] given by W (u1, u2) = max(u1+u2−1, 0) is the smallest

copula, describing countermonotone dependence, i.e., for each two-dimensional copula
C we have W ≤ C ≤ M . If n > 2, no smallest copula exists, but still the n-ary ex-
tension of the associative copula W provides a greatest lower bound for the set of all
n-dimensional copulas.

Note that n-dimensional copulas are in a one-to-one correspondence with probability
measures on the Borel subsets of [0, 1]n with uniform margins. This correspondence is
fully described by

PC([0, u1]× [0, u2]× · · · × [0, un]) = C(u1, u2, . . . , un).

For more details about copulas see [5].
Denote by S the class of all measurable spaces (X,A). For a given measurable

space (X,A), let F(X,A) be the set of all A-measurable functions from X to [0, 1], and
M(X,A) the set of all capacities m : A → [0, 1], i.e., the set of all monotone set func-
tions m satisfying the boundary conditions m(∅) = 0 and m(X) = 1. Following [4],
we can define [0, 1]-valued universal integrals.

Definition 2. A function I :
⋃

(X,A)∈S(M(X,A) × F(X,A)) → [0, 1] is called a [0, 1]-
valued universal integral if it satisfies the following axioms:

(I1) I is non-decreasing in each component;
(I2) I(m,1E) = m(E) for each (X,A) ∈ S, m ∈ M(X,A) and E ∈ A;
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(I3) I(m, c · 1X) = c for each (X,A) ∈ S, m ∈ M(X,A) and c ∈ [0, 1];
(I4) I(m1, f1) = I(m2, f2) whenever (m1, f1) ∈ M(X1,A1) × F(X1,A1) and

(m2, f2) ∈ M(X2,A2) × F(X2,A2) satisfy m1({f1 ≥ t}) = m2({f2 ≥ t}) for
all t ∈ [0, 1].

The special class of copula-based [0, 1]-valued universal integrals was proposed in [3]
(see also [4]).

Proposition 1. Let C : [0, 1]
2 → [0, 1] be a two-dimensional copula. Then the function

IC :
⋃

(X,A)∈S(M(X,A) ×F(X,A)) → [0, 1] given by

IC(m, f) = PC({(u1, u2) ∈ [0, 1]
2 | u2 ≤ m({f ≥ u1})})

is a [0, 1]-valued universal integral.

Observe that IΠ coincides with the Choquet integral [1], and that IM is the Sugeno
integral [7].

3 Vector-Valued Functions and Copula-Based [0, 1]-Valued
Universal Integrals

For fixed n ∈ N and (X,A) ∈ S, let F (n)
(X,A) be the set of all A-measurable functions

from X to [0, 1]
n.

Definition 3. A function I(n) :
⋃

(X,A)∈S
(
M(X,A) × F (n)

(X,A)

)
→ [0, 1] is called a

[0, 1]-valued n-universal integral if it satisfies the following axioms:

(In1) I(n) is non-decreasing in each component;

(In2) I(n)(m,1
(n)
E ) = m(E) for each (X,A) ∈ S, m ∈ M(X,A) and E ∈ A,

where 1(n)
E : X → [0, 1]n is given by

1
(n)
E (x) =

{
(1, 1, . . . , 1) if x ∈ E,

(0, 0, . . . , 0) otherwise;

(In3) I(n)(m, c(i,n)) = c for each (X,A) ∈ S, m ∈ M(X,A), i ∈ {1, 2, . . . , n} and

c ∈ [0, 1], where c(i,n) ∈ F (n)
(X,A) is given by c(i,n)(x) = (c1,i, . . . , cn,i) with

ci,i = c and cj,i = 1 whenever j �= i;

(In4) I(n)(m1, f1) = I(n)(m2, f2) whenever (m1, f1) ∈ M(X1,A1)×F (n)
(X1,A1)

and

(m2, f2) ∈ M(X2,A2) × F (n)
(X2,A2)

satisfy m1({f1 ≥ u}) = m2({f2 ≥ u}) for

all u ∈ [0, 1]n.

Evidently, this generalizes the concept of [0, 1]-valued universal integrals given in Def-
inition 2 which are obtained here if n = 1.
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Theorem 1. For each n ∈ N and each (n + 1)-dimensional copula C the function

I
(n)
C :

⋃
(X,A)∈S

(
M(X,A) ×F (n)

(X,A)

)
→ [0, 1] given by

I
(n)
C (m, f)

= PC({(u1, . . . , un, v) ∈ [0, 1]
n+1 | v ≤ m({f ≥ (u1, . . . , un)})}) (1)

is a [0, 1]-valued n-universal integral.

Observe that, because of the A-measurability of f , the set

{(u1, . . . , un, v) ∈ [0, 1]
n+1 | v ≤ m({f ≥ (u1, . . . , un)})}

is a Borel subset of [0, 1]n+1, implying that I(n)C is well-defined.

Proposition 2. Assume that for f = (f1, f2, . . . , fn) ∈ F (n)
(X,A) the set

{{fi ≥ t} | i ∈ {1, 2, . . . , n}, t ∈ [0, 1]}

forms a chain. Then for each m ∈ M(X,A) we have

I
(n)
Π (m, f) = IΠ

(
m,

n∏

i=1

fi

)
,

I
(n)
M (m, f) = IM

(
m,

n∧

i=1

fi

)
.

4 Discrete Copula-Based [0, 1]-Valued n-Universal Integrals

Given an (n + 1)-dimensional copula C, the function I
(n)
C in (1) is a copula-based

[0, 1]-valued n-universal integral and, therefore, can be defined on arbitrary measurable
spaces (X,A) ∈ S. In this section we consider finite sets X = {1, 2, . . . , k} only, and
A = 2X . Then the function hm,f : [0, 1]

n → [0, 1] given by hm,f (u) = m({f ≥ u})
is a piecewise constant function, with constant values on some n-dimensional intervals
determined by the function f : X → [0, 1]

n. The additivity of the probability measure
PC allows us to obtain the following simplification of (1) in this discrete situation.

Theorem 2. For each n ∈ N, for each X = {1, 2, . . . , k}, for each capacity
m : 2X → [0, 1], for each (n + 1)-dimensional copula C : [0, 1]n+1 → [0, 1], and for

each f = (f1, f2, . . . , fn) ∈ F (n)
(X,A) we have

I
(n)
C (m, f) =

∑

i∈Xn

V
D

(m,f)
i

([f1(σ1(i1 − 1)), . . . , fn(σn(in − 1))]

× [f1(σ1(i1)), . . . , fn(σn(in))]),
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Fig. 1. The three cases in Example1: f(1) ≤ f(2) (left), f(2) ≤ f(1) (center), and f(1), f(2)
incomparable

where the function D
(m,f)
i : [0, 1]

n → [0, 1] is given by

D
(m,f)
i (u) = C(u1, . . . , un, hm,f (f1(σ1(i1)), . . . , fn(σn(in)))),

and, for each j ∈ {1, 2, . . . , n}, σj : X → X is a permutation satisfying

fj(σj(1)) ≤ fj(σj(2)) ≤ · · · ≤ fj(σj(n)),

using the convention σj(0) = 0.

Observe that, in the case n = 1, the “vector” i = (i) has one column only, i.e.,

D
(m,f)
i (u) = C(u, hm,f (f(σ(i)))). Subsequently, we get

I
(n)
C (m, f)

=
∑

i∈X

(C(f(σ(i)), hm,f (f(σ(i)))) − C(f(σ(i − 1)), hm,f (f(σ(i))))),

which is exactly the formula for a discrete copula-based [0, 1]-valued universal integral
as discussed in [4].

Example 1. Consider n = k = 2, i.e., X = {1, 2}, a capacity m : 2X → [0, 1] deter-
mined by m({1}) = a and m({2}) = b, and the product copula Π : [0, 1]2 → [0, 1].

For an f = (f1, f2) ∈ F (2)
(X,A) the two values f(1) = (u1, v1) and f(2) = (u2, v2)

can be either comparable or incomparable. In Figure 1 all three cases (f(1) ≤ f(2),
f(2) ≤ f(1), and f(1), f(2) incomparable) are visualized, the values inside the areas
indicating the value of the corresponding function.

For the Π-based [0, 1]-valued 2-universal integral I(2)Π we obtain

I
(2)
Π (m, f)

=

⎧
⎪⎨

⎪⎩

u1v1 + b(u2v2 − u1v1) if f(1) ≤ f(2),

u2v2 + a(u1v1 − u2v2) if f(2) ≤ f(1),

au1v1 + bu2v2 + (1 − a− b)(u1 ∧ u2)(v1 ∧ v2) otherwise.
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Observe that f1 and f2 are comonotone whenever f(1) ≤ f(2) or f(2) ≤ f(1), and

then we have I
(2)
Π (m, f) = IΠ(m, f1 · f2), i.e., the standard Choquet integral of the

product of the component functions of f (see Proposition 2).
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