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Abstract. After a short history of integration on real line, some exam-
ples of optimization tasks are given to illustrate the philosophy behind
some types of integrals with respect to monotone measures and related to
the standard arithmetics on real line. Basic integrals are then described
both in discrete case and general case. A general approach to integration
known as universal integrals is recalled, and introduced types of integrals
as universal integrals are discussed. A special stress is given to copula–
based universal integrals. Several types of integrals based on arithmetics
different from the standard one are given, too. Finally, some concluding
remarks are added.

Keywords: Choquet integral, monotone measure, Sugeno integral, uni-
versal integral.

1 Introduction and Historical Remarks

When asking a randomly chosen person whether he/she knowns something about
integrals, almost all positively reacting persons have in mind the Riemann in-
tegral. This integral is a background of the classical natural sciences, and it
acts on (possibly n–dimensional) real line equipped with the standard Lebesgue
measure. Obviously, the history of integration, at least till 1925, is related to the
Riemann integral and its genuine generalizations. As a first trace of construc-
tive approaches to integration can be considered a formula for the volume of a
frustum of a square pyramid proposed in ancient Egypt around 1850 BC (the
Moscow Mathematical Papyrus, Problem 14). The first documented systematic
technique allowing to determine integrals is the exhaustion method of the ancient
Greek astronomer Eudoxus (around 370 BC). This method was further devel-
oped by several Greek mathematicians, including Archimedes. Similar methods
were independently developed in China (Liu Hui around the third century, fa-
ther Zu Chogzhi and son Zu Geng in the fifth century describing the volume of
a sphere) and in India (Aryabhata in the fifth century). Only more than 1000
years later, several European scientists have done next important steps in the
integration area. We recall J. Kepler (his approach to computation of the volume
of barrels in now known as Simpson rule), Cavalieri (with his method of indivis-
ibles he was able to integrate polynomials till order 9), J. Wallis (algebraic law
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for integration), P. de Fermat (his was the first to use infinite series in his inte-
gration method). Modern notation for (indefinite) integral was introduced by G.
Leibniz in 1675. He adapted the integral symbol

∫
from the letter known as long

∫ , standing for “summa”. The modern notation for the definite integral was first
used by J. Fourier around 1820. In this period, A. Cauchy developed a method
for integration of continuous functions. All the roots and backgrounds for the
“integral”, including the fundamental work of I. Newton and G. Leibniz, were
known in the middle of the 19th century. It was B. Riemann in his Habilitation
Thesis at University of Göttingen [15] in 1854 who gave the first indubitable
access to integration. This integral, now called the Riemann integral, is the best
known integral, taught in each Calculus course. Its limitations (real line, stan-
dard Lebesgue measure) were challenging several scholars to generalize it. We
recall here H. Lebesgue [7] who in 1904 introduced a rather general integral,
acting on an arbitrary measurable space (X,A), and defined for an σ–additive
measurem : A → [0,∞]. Observe that this integral is a background of the proba-
bility theory, among others. The next words bring a quotation from H. Lebesgue
lecture held in May 8, 1926, in Copenhagen and entitled “The development of
the notion of the integral”: “... a generalization mode not for the vain pleasure of
generalizing, but rather for the solution of problems previously posed, is always
a fruitful generalization. The diverse applications which have already taken the
concepts which we have just examined prove this superabundantly” (for the full
text see [18]). Note that there is no concept of improper Lebesgue integral as it
is the case of Riemann integral. Therefore there is no guarantee that a Riemann
integrable function is also Lebesgue integrable. As a typical example consider
the function f : R → R given by

f(x) =

{
1 if x = 0
sin x
x else.

Then the Lebesgue integral
∫
R
f(x) dμ with μ being the standard Lebesgue

measure on Borel subsets of R does not exist (indeed,
∫
R
|f(x)| dμ = +∞), but

the (improper) Riemann integral can be computed to be finite.
All till now mentioned integrals were additive (as functionals) and defined with

respect to an (σ–) additive measure. The first known approach to integration
based on a monotone but not necessarily additive measure is due to Vitali [21]
from 1925. Approach of G. Vitali (dealing with inner and outer measures) is
a predecessor of the fundamental work of G. Choquet [4] yielding the Choquet
integral. Another fundamental integral defined for monotone measures is due to
M. Sugeno [20] in 1974.

All mentioned integrals consider the (non-negative) real values of both func-
tions and measures. There are numerous kinds of integrals defined on more
general structures. In this contribution, we consider only the framework of al-
ready mentioned integrals, i.e., we will deal with measurable spaces (X,A)
from the class S of all measurable spaces (X is a non–empty set, universe,
and A ⊆ 2X is a σ–algebra of subsets of X), with A–measurable functions
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f : X → [0,∞] from the class F(X,A) of all such functions, and with monotone
m : A → [0,∞], m(∅) = 0,m(X) > 0, from the class M(X,A) of all such
measures. Integral is then a mapping

I :
⋃

(X,A)∈S

(M(X,A) ×F(X,A)

) → [0,∞]

with some special properties we will discuss in the next sections.
The aim of this paper is to discuss some approaches to integration with respect

to monotone measures. In the next section, we bring an optimisation problem
under different constraints, illustrating the philosophy of several such integrals
linked to the standard summation and multiplication of reals. These integrals
are then properly defined and further discussed, including the study of their
relationship. Section 3 is devoted to the introduction of a framework of universal
integrals recently proposed in [5]. We introduce here some universal integrals,
including copula based integrals (here we restrict our considerations to the unit
interval [0, 1]). In Section 4, pseudo-arithmetical operations based integrals are
discussed. Finally, several concluding remarks are added.

2 Optimisation of a Global Performance and Integrals

Consider a group X = {a, b, c} of three workers with working capacity f : X →
[0,∞] given in hours by f(a) = 5, f(b) = 4, f(c) = 3. A performance per hour
of a group of our workers is given by a set function m : 2X → [0,∞],

m(∅) = 0, m({a}) = 2, m({b}) = 3, m({c}) = 4,
m({a, b}) = 7, m({b, c}) = 5, m({a, c}) = 4, m({a, b, c}) = 8.
Our aim is to find a strategy to reach the optimal total performance of our

workers under given work constraints:

(1) only one group can work for a fixed time period;
(2) several disjoint groups can work (fixed working time in each group may

differ);
(3) one group starts to work, once a worker stops to work, he cannot start to

work again;
(4) several disjoint groups can start to work, in each group after some working

time we can split a working group into smaller groups, and a worker after
stopping to work cannot start again;

(5) there are no constraints.

We formalize the optimal total performances under these five constraints settings
and give the solution for our example. Hence the optimal total performance Ti

under constraints (i) is:

T1 = max {k ·m(A) | k · 1A ≤ f} = min {f(a), f(b)} ·m({a, b}) = 4 · 7 = 28;

T2 = max
{∑

ki ·m(Ai) |
∑

ki · 1Ai ≤ f, (Ai)i is disjoint system
}
=

= min {f(a), f(b)} ·m({a, b}) + f(c) ·m({c}) = 4 · 7 + 3 · 4 = 40;
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T3 = max
{∑

ki ·m(Ai) |
∑

ki · 1Ai ≤ f, (Ai)i is a chain
}
=

= min {f(a), f(b), f(c)}·m({a, b, c})+min {f(a)− f(c), f(b)− f(c)}·m({a, b})+
+(f(a)− f(b)) ·m({a}) = 3 · 8 + 1 · 7 + 1 · 2 = 33;

T4 = max
{∑

ki ·m(Ai) |
∑

ki · 1Ai ≤ f,Ai ∩ Aj ∈ {∅, Ai, Aj} for each i,j
}
=

= min {f(a), f(b)} ·m({a, b}) + (f(a)− f(b)) ·m({a}) + f(c) ·m({c}) =
= 4 · 7 + 1 · 2 + 3 · 4 = 42;

T5 = max
{∑

ki ·m(Ai) |
∑

ki · 1Ai ≤ f
}
= T4 = 42.

From the constraints settings it is obvious that the following inequalities always
hold, independently of f and m:

T1 ≤ Ti, i ∈ {1, 2, 3, 4, 5} ;

T5 ≥ Ti, i ∈ {1, 2, 3, 4, 5} ;
T4 ≥ Ti, i ∈ {1, 2, 3, 4} ,

i.e., we have the following Hasse diagram (see Figure 1).

Fig. 1. Hasse diagram for relationships between functionals T1 – T5

As another example, consider f : X → [0,∞] given by f(a) = 8, f(b) =
3, f(c) = 6, and m : 2X → [0,∞] given by,

m(∅) = 0, m({a}) = 2, m({b}) = 3, m({c}) = 4 and m(A) = 10 in all other
cases. Then:

T1 = 60, T2 = 69, T3 = 64, T4 = 73, T5 = 84,

(for more details see [19]).
All introduced functionals can be seen as special instances of decomposition

integral proposed recently by Event and Lehrer [2], and some of them are, in fact,
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famous integrals introduced in past decades. We recall them now in a general
setting, considering an arbitrary measurable space (X,A) ∈ S, as a mappings

Ii :
⋃

(X,A)∈S

(M(X,A) ×F(X,A)

) → [0,∞], i ∈ {1, 2, 3, 4, 5} .

The first optimal performance T1 is linked to the Shilkret integral [17],

I1(m, f) = sup {k ·m(A) | k · 1A ≤ f} .
Note that all sets considered in this paper are supposed to be measurable, A ∈ A.
Evidently, our T1 = I1(m, f) for m, f given on X = {a, b, c} and A = 2X .

Concerning the second optimal performance, T2 is linked to the PAN–integral
introduced by Yang in [23],

I2(m, f) =

= sup

{
n∑

i=1

ki ·m(Ai)|n ∈ N,
n∑

i=1

ki · 1Ai ≤ f, (Ai)
n
i=1 is a disjoint system

}

.

The third optimization task describes the philosophy of the Choquet integral [4],

I3(m, f) = sup

{
n∑

i=1

ki ·m(Ai) |n ∈ N,

n∑

i=1

ki · 1Ai ≤ f, (Ai)
n
i=1 is a chain

}

.

Note that due to the definition of the classical Riemann integral it holds

I3(m, f) =

∫ ∞

0

m({f ≥ t}) dt.

The fourth approach to optimization constraints brings a new integral I4 pro-
posed recently by Stupňanová [19],

I4(m, f) = sup

{
n∑

i=1

ki ·m(Ai)|n ∈ N,
n∑

i=1

ki · 1Ai ≤ f,Ai ∩ Aj ∈ {∅, Ai, Aj}

for any i, j ∈ {1, · · · , n}} .
Finally, another recent integral is linked to T5, namely the concave integral
introduced by Lehrer [8],

I5(m, f) = sup

{
n∑

i=1

ki ·m(Ai) |n ∈ N,

n∑

i=1

ki · 1Ai ≤ f

}

.

The Hasse diagram in Figure 2 depicts the relationships between these integrals.
Each of these integrals is linked to the standard arithmetical operations on real
line, and for each of them it holds

Ii(k · 1{x}) = k ·m({x}), k ∈ [0,∞[,
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Fig. 2. Hasse diagram for relationships between integrals I1 – I5

if the singleton {x} ∈ A. However, considering a general A ∈ A, Ii(k · 1A) =
k ·m(A) holds only for i ∈ {1, 3}, in general. Consequently, integrals I2, I4 and I5
have a failure admitting the existence of m1 �= m2 such that I(m1, f) = I(m2, f)
for each f ∈ F(X,A). Note also that each introduced integral is homogeneous,
i.e., Ii(k · f) = k · Ii(f) for each k ∈ [0,∞[ and i ∈ {1, 2, 3, 4, 5}.

Considering special types of monotone measures, we have the next equalities
valid for any measurable function f ∈ F(X,A):

– if m ∈ M(X,A) is supermodular then

I5(m, ·) = I3(m, ·),

i.e., then the concave integral coincide with the Choquet integral, see [8];
– if m is subadditive then

I5(m, ·) = I2(m, ·),
i.e., then the concave integral coincide with the PAN–integral, see [19];

– if m is an unaminity measure, i.e., there is A ∈ A, A �= ∅, so that m(B) ={
1 if A ⊆ B,
0 else

, then all introduced integrals coincide, and then

Ii(m, f) = inf {f(x)|x ∈ A} , i = 1, · · · , 5,

see [19].

Obviously, if X is finite and m is additive then

Ii(m, f) =
∑

x∈X

f(x) ·m({x}), i ∈ {2, 3, 4, 5} .

Moreover, if m is a σ–additive measure, then integrals Ii(m, ·), i ∈ {2, 3, 4, 5}
coincide with the standard Lebesgue integral,

Ii(m, f) =

∫

X

f dm.
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3 Universal Integrals

To capture the idea of the majority of integrals proposed as functionals on ab-
stract measurable spaces, Klement et al. [5] have recently proposed the concept
of universal integrals.

Definition 1. A mapping I :
⋃

(X,A)∈S
(M(X,A) ×F(X,A)

) → [0,∞] is called a
universal integral whenever it satisfies the next properties:

(UI1) I is nondecreasing in both components, i.e., I(m1, f1) ≤ I(m2, f2) when-
ever there is (X,A) ∈ S such that m1,m2 ∈ M(X,A) and m1 ≤ m2, f1, f2 ∈
F(X,A) and f1 ≤ f2;

(UI2) there is an operation ⊗ : [0,∞]2 → [0,∞] (called a pseudo–multiplication)
with annihilator 0 (i.e., a⊗ 0 = 0⊗ a = 0 for each a ∈ [0,∞]) and a neutral
element e ∈]0,∞] (i.e., a⊗ e = e⊗ a = a for each a ∈ [0,∞]) so that

I(m, k · 1A) = k ⊗m(A)

for any (X,A) ∈ S,m ∈ M(X,A), A ∈ A and k ∈ [0,∞];

(UI3) for any two pairs (m1, f1) ∈ (X1,A1), (m2, f2) ∈ (X2,A2) such that
m1 ({f1 ≥ t}) = m2 ({f2 ≥ t}) for each t ∈]0,∞] (such pairs are called inte-
gral equivalent) it holds

I(m1, f1) = I(m2, f2).

Similarly we can introduce the concept of universal integrals on the unit interval
[0, 1] (compare the concepts of measure theory and probability theory). In such
a case, we deal with normed monotone measures, m(X) = 1 (these measures are
also called fuzzy measures or capacities), measurable functions f : X → [0, 1],
and the considered pseudo-multiplication ⊗ is defined on [0, 1]2, ⊗ : [0, 1]2 →
[0, 1], with neutral element e = 1 (then ⊗ is called a semicopula, or conjuctor,
or weak t–norm, depending on the literature). For more details we recommend
[5]. Here we recall only two distinguished classes of universal integrals.

Proposition 1. Let ⊗ : [0, 1]2 → [0, 1] be a fixed pseudo-multiplication. Then
the mapping I⊗ :

⋃
(X,A)∈S

(M(X,A) ×F(X,A)

) → [0,∞] given by

I⊗(m, f) = sup {t⊗m ({f ≥ t}) |t ∈ [0,∞]}

is a universal integral which is the smallest one linked to ⊗ through the axiom
(UI2).

Note that the Shilkret integral I1 is related to the standard product ·, I1 = I·,
while ⊗ = ∧ (min) yields the famous Sugeno integral [20],

I1(m, f) = Su(m, f) = sup {t ∧m ({f ≥ t}) |t ∈ [0,∞]} .
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The second type of universal integrals we recall is defined on [0, 1] and it is linked
to copulas.

Observe that a copula C : [0, 1]2 → [0, 1] is a pseudo-multiplication on [0, 1]
which is supermodular, i.e., for all x,y ∈ [0, 1]2 it holds C(x ∧ y) + C(x ∨
y) ≥ C(x) +C(y). Copulas are in a one-to-one correspondence with probability
measures on the Borel subsets of [0, 1]2 with uniformly distributed margins. This
link is fully characterized by the equality

PC ([0, u]× [0, v]) = C (u, v)

valid for all u, v ∈ [0, 1]. For more details we recommend [14].

Proposition 2. Let C : [0, 1]2 → [0, 1] be a fixed copula. Then the mapping

I(C) :
⋃

(X,A)∈S
(
M1

(X,A) ⊗F1
(X,A)

)
→ [0, 1], where

M1
(X,A) =

{
m ∈ M(X,A)|m(X) = 1

}
, F1

(X,A) =
{
f ∈ F(X,A)| Ran f ⊆ [0, 1]

}
,

given by
I(C)(m, f) = PC

({
(u, v) ∈ [0, 1]2|v ≤ m({f ≥ u})})

is a universal integral on [0, 1].

Observe that for the product copula Π one have IΠ = T3 (restricted to [0, 1]),
i.e., the Choquet integral is obtained. Similarly, for the greatest copula Min (i.e.,
for ∧), the Sugeno integral on [0, 1] is obtained, I(Min) = Su.

Finally note that integrals I2 (PAN-integral), I4 (Stupňanová integral) and I5
(concave integral of Lehrer) introduced in the previous section are not universal
integrals.

4 Integrals and Pseudo-Arithmetical Operations

In Section 2, we have tried to answer the question how to integrate under differ-
ent constraint settings, utilizing as a basic tool for our processing the standard
arithmetical operations on the real line. There are possible several modifications
of these operations, yielding new types of integrals. First of all, we can rescale
our original scale [0,∞] by means of some automorphism ϕ : [0,∞] → [0,∞]
(i.e., ϕ is an increasing bijection). Then the standard addition + becomes a
pseudo-addition ⊕ : [0,∞]2 → [0,∞] given by

u⊕ v = ϕ−1 (ϕ(u) + ϕ(v)) .

Similarly, pseudo-multiplication ⊗ : [0,∞]2 → [0,∞] is given by

u⊗ v = ϕ−1 (ϕ(u) · ϕ(v)) .
Modifying I1 (Shilkret integral) into

I1,ϕ(m, f) = sup {k ⊗m(A) | k · 1A ≤ f}
one gets the universal integral I⊗. However, I⊗(m, f) = ϕ−1 (I1(ϕ ·m,ϕ · f)),
i.e., we have a ϕ-transform of I1 only. Similarly, the remaining integrals Ii, i =
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2, 3, 4, 5, can be transformed. Note that the transformed Choquet integral I3,ϕ
is a special instance of Choquet-like integrals introduced by Mesiar [9].

Pseudo-addition ⊕ and pseudo-multiplication ⊗ can be introduced axiomati-
cally, see e.g. [1]. Not going more deeply into details, recall only that for ⊕ = ∨
(max, supremum), and any pseudo-multiplication ⊗ as given in Definition 1,
when replacing + by ∨ and · by ⊗, in the definition of integrals Ii, i = 1, · · · , 5,
all of them collapse into the universal integral I⊗ characterized in Proposition 1.
For a deeper overview of integrals based on pseudo-arithmetical operations (on
finite spaces) we recommend [11].

5 Concluding Remarks

We have discussed the integrals, first from historical point of view, and then
as optimization procedures when considering different constraints settings. The
concept of universal integrals on [0,∞] and on [0, 1] was also given, and several
positive and negative examples were added.

Note that the axiomatic approach to several of introduced integrals was in-
troduced several years after their constructive introduction. This is not the case
of Riemann integral only, but for example the Choquet integral was axiomatized
by Schmeidler in 1986 [16]. For an overview of axiomatic approaches to integrals
we recommend [6].

Adding some constraints on monotone measures, one can get some distin-
guished aggregation functions. So, for example, when considering universal in-
tegrals on [0, 1] and symmetric monotone measure on finite space X (i.e., m(A)
depends on the cardinality of A only), then the Choquet integral becomes OWA
operator [22], [3], and copula-based integral I(C)(m, ·) becomes OMA operator
[10] (i.e., ordered modular average).

Integrals can be also combined. So, for example, any convex combination I =
λ I(1) + (1 − λ) I(2), of two universal integrals related to pseudo-multiplications
⊗1 and ⊗2 with the same neutral element e is a universal integral related to
the pseudo-multiplication ⊗ = λ ⊗1 +(1 − λ)⊗2, independently of λ ∈ [0, 1].
For two copulas C1, C2, also C = λC1 + (1− λ)C2 is a copula, and then I(C) =
λ IC1 + (1 − λ) IC2 . Another approach to combine integrals was proposed by
Narukawa and Torra [12], and multidimensional integrals were introduced and
discussed by the same authors in [13].

As we see, though we have touched the problem how to integrate, this area
is an expanding field attracting an intensive research and we believe to see not
only many new theoretical results soon, but first of all numerous applications in
several engineering and human reasoning connected branches.
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