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The Choquet integral and the Sugeno integral provide a useful tool in many problems in en-
gineering and social choice where the aggregation of data is required. In this paper, previous
results of Hong (Nonlinear Analysis 2011 74:7296–7303) are improved by relaxing some of their
requirements. Carlson’s, Sandor’s, Bushell–Okrasinski’s type inequalities and Fatou’s lemma for
universal integral are studied in a rather general form, thus generalizing some recent results. C©
2012 Wiley Periodicals, Inc.

1. INTRODUCTION

The Choquet integral1–3 and the Sugeno integral4 provide a useful tool for
many problems in engineering and social choice, where the aggregation of data is
required. However, their applicability is restricted because of the special operations
used in the construction of these integrals. Therefore, Klement et al.5 provided a
universal integral generalizing both the Choquet and the Sugeno cases.

Recently, Hong7 proposed a Liapunov-type inequality for the Lebesgue
measure-based Sugeno integral.
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THEOREM 1.1. Suppose that f is a nonincreasing concave function on [0, 1] and
that μ is the Lebesgue measure on R. Then for 0 < t < s < r , the inequality

(
t

t − tα + sα

)t(r−s)

Sur−t (μ, f s) ≤ (Sur−s(μ, f t ))(Sus−t (μ, f r )) (1.1)

holds where α satisfies the following equation:

(
t(1 − α)

t − tα + sα

)t

× α
t
s

(1 − α)t
= sα

t − tα + sα
.

Unfortunately, the results of Hong7 are based on concavity of f and some
constant

(
t

t−tα+sα

)t(r−s)
, but according to probability theory the classical Liapunov

inequality8 is free of these conditions. Our results improve recent results that ap-
peared in Ref. 7.

Also, Caballero and Sadarangani6 proved a Carlson inequality for the Lebesgue
measure–based Sugeno integral, and then Xu and Ouyang9 further generalized it to
comonotone functions and arbitrary nonadditive measure–based Sugeno integrals.

THEOREM 1.2.9 Let (X,F , μ) be a nonadditive measure space, let A ∈ F , and
let fi : X → R, i = 1, 2, 3 be measurable functions such that Su(μ, fi) ≤ 1, i =
1, 2, 3. If any two functions of fi, i = 1, 2, 3 are comonotone, then, for any p, q ≥ 1,
we have

Su(μ, f1) ≤ 1√
C

(
Su

1
2p (μ, (f1f2)p)

) (
Su

1
2q (μ, (f1f3)q)

)
(1.2)

where C = (Su(μ, f2))(Su(μ, f3)).

Furthermore, the classical Sandor inequality for the Lebesgue measure–based
Sugeno integral was proposed in a special form by Caballero and Sadarangani.10

The aim of this contribution is to generalize the results of Refs. 6, 9–13 to the
frame of the universal integral on monotone measure.

The paper is organized as follows. In the next section, we briefly recall some
preliminaries and summarize some previous results. In Section 3, we will focus on
some inequalities related to Carlson, Sandor, Liapunov, Bushell–Okrasinski, and
Fatou’s lemma for universal integral.

2. UNIVERSAL INTEGRAL

In this section, we will review some well-known results from universal integral
(see Ref. 5). For the convenience of the reader, we provide in this section a summary
of the mathematical notations and definitions used in this paper.
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DEFINITION 2.1.5 A monotone measure m on a measurable space (X,A) is a
function m : A → [0, ∞] satisfying

(i) m (φ) = 0,
(ii) m(X) > 0,

(iii) m(A) ≤ m(B) whenever A ⊆ B.

Normed monotone measures on (X,A), i.e., monotone measures satisfying
m(X) = 1, are also called nonadditive measures,4, 14, 15 depending on the context.

For a measurable space (X,A), i.e., a nonempty set X equipped with a σ -
algebra A, recall that a function f : X → [0, ∞] is called A-measurable if, for each
B ∈ B ([0, ∞]), the σ -algebra of Borel subsets of [0, ∞], the preimage f −1(B) is
an element of A.

DEFINITION 2.2.5 Let (X,A) be a measurable space.

(i) F (X,A) denotes the set of all A-measurable functions f : X → [0, ∞];
(ii) For each number a ∈ (0, ∞], M(X,A)

a denotes the set of all monotone measures (in the
sense of Definition 2.1) satisfying m(X) = a; and we take

M(X,A) =
⋃

a∈(0,∞]

M(X,A)
a .

Let S be the class of all measurable spaces, and take

D[0,∞] =
⋃

(X,A)∈S
M(X,A) × F (X,A).

The Choquet,1 Sugeno,4 and Shilkret16 integrals (see also Refs. 3, 17–19),
respectively, are given, for any measurable space (X,A), for any measurable function
f ∈ F (X,A) and for any monotone measure m ∈ M(X,A), i.e., for any (m, f ) ∈
D[0,∞], by

Ch(m, f ) =
∫ ∞

0
m({f ≥ t})dt, (2.1)

Su(m, f ) = sup {min (t, m ({f ≥ t})) | t ∈ (0, ∞]} , (2.2)

Sh(m, f ) = sup {t.m ({f ≥ t}) | t ∈ (0, ∞]} , (2.3)

where the convention 0.∞ = 0 is used. All these integrals mapM(X,A) ×F (X,A) into
[0, ∞] independently of (X,A). We remark that fixing an arbitrary m ∈ M(X,A),
they are nondecreasing functions from F (X,A) into [0, ∞], and fixing an arbitrary
f ∈ F (X,A), they are nondecreasing functions from M(X,A) into [0, ∞].
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We stress the following important common property for all three integrals from
(2.1), (2.2), to (2.3). Namely, these integrals does not make difference between the
pairs (m1, f1) , (m2, f2) ∈ D[0,∞] which satisfy, for all for all t ∈ (0, ∞],

m1({f1 ≥ t}) = m2({f2 ≥ t}).

Therefore, such equivalence relation between pairs of measures and functions was
introduced in Ref. 5.

DEFINITION 2.3. Two pairs (m1, f1)∈M(X1,A1)×F (X1,A1) and (m2, f2) ∈ M(X2,A2)

×F (X2,A2) satisfying

m1({f1 ≥ t}) = m2({f2 ≥ t}) for all t ∈ (0, ∞],

will be called integral equivalent, in symbols

(m1, f1) ∼ (m2, f2) .

To introduce the notion of the universal integral, we shall need instead of the
usual plus and product more general real operations.

DEFINITION 2.4.3, 20 A function ⊗: [0, ∞]2 → [0, ∞] is called a pseudomultiplica-
tion if it satisfies the following properties:

(i) it is nondecreasing in each component, i.e., for all a1, a2, b1, b2 ∈ [0, ∞] with a1 ≤ a2

and b1 ≤ b2 we have a1 ⊗ b1 ≤ a2 ⊗ b2;
(ii) 0 is an annihilator of ⊗, i.e., for all a ∈ [0, ∞] we have a ⊗ 0 = 0 ⊗ a = 0;

(iii) ⊗ has a neutral element different from 0, i.e., there exists an element e ∈ (0, ∞] such
that, for all a ∈ [0, ∞], we have a ⊗ e = e ⊗ a = a.

Restricting to the interval [0, 1], a pseudomultiplication and a pseudoaddition
with additional properties of associativity and commutativity can be considered as
the t-norm T and the t-conorm S (see Ref. 21), respectively.

In some constructions, for a given pseudomultiplication on [0, ∞], we suppose
the existence of a pseudoaddition ⊕: [0, ∞] 2 → [0, ∞], which is continuous,
associative, non-decreasing and has 0 as neutral element (then the commutativity of
⊕ follows, see Ref. 21), and which is left-distributive with respect to ⊗, i.e., for all
a, b, c ∈ [0, ∞] we have (a ⊕ b) ⊗ c = (a ⊕ c) ⊗ (b ⊕ c). The pair (⊕, ⊗) is then
called an integral operation pair; see Refs. 5, 17.

Each of the integrals mentioned in (2.1), (2.2), and (2.3) maps D[0,∞] into
[0, ∞], and their main properties can be covered by the following common integral
given in Ref. 5:
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DEFINITION 2.5. A function I:D[0,∞] → [0, ∞] is called a universal integral if the
following axioms hold:

(I1) For any measurable space (X,A), the restriction of the function I to M(X,A) ×F (X,A) is
nondecreasing in each coordinate;

(I2) there exists a pseudomultiplication ⊗: [0, ∞]2 → [0, ∞] such that for all pairs (m, c.1A)
∈ D[0,∞]

I(m, c.1A) = c ⊗ m(A);

(I3) for all integral equivalent pairs (m1, f1) , (m2, f2) ∈ D[0,∞], we have I (m1, f1) =
I (m2, f2) .

By Proposition 3.1 from Ref. 5, we have the following important characteriza-
tion:

THEOREM 2.6. Let ⊗: [0, ∞]2 → [0, ∞] be a pseudomultiplication on [0, ∞].
Then the smallest universal integral I and the greatest universal integral I based on
⊗ are given by

I⊗ (m, f ) = sup {t ⊗ m ({f ≥ t}) | t ∈ (0, ∞]} ,

I⊗ (m, f ) = essupmf ⊗ sup {m ({f ≥ t}) | t ∈ (0, ∞]} ,

where essupmf = sup {t ∈ [0, ∞] | m ({f ≥ t}) > 0} .

Specially, we have Su = IMin and Sh = IProd , where the pseudomultiplications
Min and Prod are given (as usual) by Min(a, b) = (a ∧ b) and Prod(a, b) = a.b.
Note that the nonlinearity of the Sugeno integral Su (see, e.g., Refs. 22, 23) implies
that universal integrals are also nonlinear, in general.

There is neither a smallest nor a greatest pseudomultiplication on [0, ∞]. But,
if we fix the neutral element e ∈ (0, ∞], then the smallest pseudomultiplication ⊗e

and the greatest pseudomultiplication ⊗e with neutral element e are given by

a ⊗e b =
⎧⎨
⎩

0 if (a, b) ∈ [0, e)2,

max(a, b) if (a, b) ∈ [e, ∞]2,

min (a, b) otherwise,

and

a ⊗e b =
⎧⎨
⎩

min(a, b) if min(a, b) = 0 or (a, b) ∈ (0, e]2,

∞ if (a, b) ∈ (e, ∞]2,

max(a, b) otherwise.

Then by Proposition 3.2 from Ref. 5, there exists the smallest universal integral I⊗e
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among all universal integrals satisfying the conditions

(i) for each m ∈ M(X,A)
e and each c ∈ [0, ∞], we have I(m, c.1X) = c and

(ii) for each m ∈ M(X,A) and each A ∈ A, we have I(m, e.1X) = m(A), given by

I⊗e
(m, f ) = max {m ({f ≥ e}) , essinfmf }

where essinfmf = sup {t ∈ [0, ∞] | m ({f ≥ t}) = m (X)}. Restricting now to the
unit interval [0, 1], we shall consider functions f ∈ F (X,A) satisfying Ran(f ) ⊆
[0, 1] (in which case, we shall write shortly f ∈ F (X,A)

[0,1] ). Observe that, in this case,
we have the restriction of the pseudomultiplication ⊗ with neutral element e = 1
to [0, 1]2 (called a semicopula or a conjunctor, i.e., a binary operation �: [0, 1]2 →
[0, 1], which is nondecreasing in both components, has 1 as neutral element and
satisfies a � b ≤ min(a, b) for all (a, b) ∈ [0, 1]2; see Refs. 24, 25), and universal
integrals are restricted to the class D[0,1] = ⋃

(X,A)∈S M
(X,A)
1 × F (X,A)

[0,1] . In a special
case, for a fixed strict t-norm T , the corresponding universal integral IT is the so-
called Sugeno–Weber integral.26 The smallest universal integral I� on the [0, 1]
scale related to the semicopula � is given by

I� (m, f ) = sup {t � m ({f ≥ t}) | t ∈ [0, 1]} .

This type of integral was called the seminormed integral in Ref. 27.
Before starting our main results, we need the following definitions:

DEFINITION 2.7. Functions f, g: X → R are said to be comonotone if for all x, y ∈
X,

(f (x) − f (y))(g(x) − g(y)) ≥ 0,

and f and g are said to be countermonotone if for all x, y ∈ X,

(f (x) − f (y))(g(x) − g(y)) ≤ 0.

The comonotonicity of functions f and g is equivalent to the nonexistence of
points x, y ∈ X such that f (x) < f (y) and g(x) > g(y), or f (x) > f (y) and g(x) <

g(y). Similarly, if f and g are countermonotone then f (x) < f (y) and g(x) <

g(y) (f (x) > f (y) and g(x) > g(y)) cannot happen. Observe that the concept of
comonotonicity was first introduced in Ref. 28.

DEFINITION 2.8. Let A, B: [0, ∞]2 → [0, ∞] be two binary operations. Recall that
A dominates B (or B is dominated by A), denoted by A � B, if

A(B(a, b), B(c, d)) ≥ B(A(a, c), A(b, d))

International Journal of Intelligent Systems DOI 10.1002/int
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holds for any a, b, c, d ∈ [0, ∞]. For a deeper investigation of complete domination
of aggregation functions, the reader is referred to Ref. 29.

DEFINITION 2.9. Let �: [0, ∞]2 → [0, ∞] be a binary operation and consider � :
[0, ∞] → [0, ∞]. Then we say that � is subdistributive over � if

�(x � y) ≤ �(x) � �(y)

for all x, y ∈ [0, ∞]. Analogously, we say that � is superdistributive over � if

�(x � y) ≥ �(x) � �(y)

for all x, y ∈ [0, ∞].

Now, our results can be stated as follows:

3. MAIN RESULTS

This section provides some inequalities related to Carlson, Bushell–Okrasinski,
Liapunov, and Fatou’s lemma for universal integral, thus generalizing the results of
Refs. 6, 9–13.

3.1. Carlson’s and Bushell–Okrasinski’s Inequality

Before stating Carlson’s inequality for universal integral, we need two lemmas.

LEMMA 3.1. Let a fixed s ∈ [1, ∞). And let f ∈ F (X,A) be a measurable function
and ⊗e: [0, ∞]2 → [0, ∞] be the smallest pseudomultiplication on [0, ∞] with
neutral element e ∈ (0, ∞] and m ∈ M(X,A) be a monotone measure such that
I⊗e

(m, f ) < ∞ and x ≥ xs for all x ∈ [0, ∞). Then the inequality

I⊗e

(
m, f s

) ≥ Is
⊗e

(m, f ) (3.1)

holds whenever (.)s is subdistributive over ⊗e.

Proof. Let e ∈ (0, ∞] be the neutral element of ⊗e. If I⊗e
(m, f ) = q < ∞ , then

for any ε > 0, there exist qε such that M = μ(A ∩ {f ≥ qε}), where (qε ⊗e M) ≥
q − ε. Since (.)s is subdistributive over ⊗e and x ≥ xs for all x ∈ [0, ∞) and s ≥ 1,

then

I⊗e
(m, f s) = sup{t ⊗ m({f s ≥ t}) | t ∈ (0, ∞]} ≥ qs

ε ⊗e μ
(
A ∩ {f s ≥ qs

ε

})
= qs

ε ⊗e M ≥ qs
ε ⊗e Ms ≥ (qε ⊗e M)s ≥ (q − ε)s .

whence I⊗e
(m, f s) ≥ Is

⊗e
(m, f ) follows from the arbitrariness of ε. �

International Journal of Intelligent Systems DOI 10.1002/int
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LEMMA 3.2.30 Let f, g ∈ F (X,A) be two comonotone measurable functions and
⊗e: [0, ∞]2 → [0, ∞] be the smallest pseudomultiplication on [0, ∞] with neutral
element e ∈ (0, ∞] and m ∈ M(X,A) be a monotone measure such that I⊗e

(m, f )
and I⊗e

(m, g) are finite. Let �: [0, ∞)2 → [0, ∞) be continuous and nondecreasing
in both arguments. If

[(a � b) ⊗e c] ≥ [(a ⊗e c) � b] ∨ [a � (b ⊗e c)] , (3.2)

then the inequality

I⊗e
(m, (f � g)) ≥ (

I⊗e
(m, f )

)
�
(
I⊗e

(m, g)
)

(3.3)

holds.

Remark 3.3. If (x � e) ∨ (e � x) ≤ x for any x ∈ [0, ∞) and ⊗e dominates �, then
(3.2) holds readily. Indeed,

[(a � b) ⊗e c] ≥ (a � b) ⊗e (c � e) ≥ [(a ⊗e c) � (b ⊗e e)] = [(a ⊗e c) � b] ,

and [(a � b) ⊗e c] ≥ [a � (b ⊗e c)] follows similarly, i.e.,

[(a � b) ⊗e c] ≥ (a � b) ⊗e (c � e) ≥ [(a ⊗e e) � (b ⊗e c)] = [a � (b ⊗e c)] .

Lemmas 3.1 and 3.2 help us to reach the following results:

THEOREM 3.4 (Carlson-type inequality for universal integral (I)). Let a fixed s ∈
[1, ∞). And let fi ∈F (X,A), i = 1, 2, 3 be measurable functions and ⊗e: [0, ∞]2 →
[0, ∞] be the smallest pseudomultiplication on [0, ∞] with neutral element e ∈
(0, ∞] and m ∈ M(X,A) be a monotone measure such that I⊗e

(m, fi) < ∞, i =
1, 2, 3 and x ≥ xs for all x ∈ [0, ∞). Let �: [0, ∞]2 → [0, ∞] be continuous and
nondecreasing in both arguments and bounded from above by minimum such that
⊗e dominates �. If any two functions of fi, i = 1, 2, 3 are comonotone, then, for
any p, q ≥ 1, we have

([I⊗e
(m, f1)] � [I⊗e

(m, f2)]) � ([I⊗e
(m, f1)] � [I⊗e

(m, f3)])

≤
[
I

1
p

⊗e
(m, (f1 � f2)p)

]
�
[
I

1
q

⊗e
(m, (f1 � f3)q)

]
, (3.4)

where (.)p, (.)q are subdistributive over ⊗e.

Proof. Let I⊗e
(m, fi) < ∞, i = 1, 2, 3. Since � is bounded from above by mini-

mum (� ≤ min), it is easy to show that I⊗e
(m, f1 � f2) < ∞, I⊗e

(m, f1 � f3) < ∞.
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By Lemma 3.1, we have

Ip
⊗e

(m, f1 � f2) ≤ I⊗e
(m, (f1 � f2)p),

Iq
⊗e

(m, f1 � f3) ≤ I⊗e
(m, (f1 � f3)q).

Then

[I⊗e
(m, f1 � f2)] � [I⊗e

(m, f1 � f3)]

≤
[
I

1
p

⊗e
(m, (f1 � f2)p)

]
�
[
I

1
q

⊗e
(m, (f1 � f3)q)

]
. (3.5)

Since ⊗e dominates � and � ≤ min, then Lemma 3.2 implies that

I⊗e
(m, f1 � f2) ≥ [I⊗e

(m, f1)] � [I⊗e
(m, f2)],

I⊗e
(m, f1 � f3) ≥ [I⊗e

(m, f1)] � [I⊗e
(m, f3)]. (3.6)

Therefore, (3.5) and (3.6) imply that

([I⊗e
(m, f1)] � [I⊗e

(m, f2)]) � ([I⊗e
(m, f1)] � [I⊗e

(m, f3)])

≤
[
I

1
p

⊗e
(m, (f1 � f2)p)

]
�
[
I

1
q

⊗e
(m, (f1 � f3)q)

]
,

and the proof is completed. �

Since ⊗ is minimum and � is the usual product (·) such that ·|[0,1]2 ≤ min, then
the following result holds (see Refs. 6, 9 for similar results).

COROLLARY 3.5. Let fi ∈ F (X,A), i = 1, 2, 3 be measurable functions and m ∈
M(X,A) be a monotone measure such that Su(m, fi) ≤ 1, i = 1, 2, 3. If any two
functions of fi, i = 1, 2, 3 are comonotone, then, for any p, q ≥ 1, we have

Su(m, f1)≤ 1√
C

(
Su

1
2p (m, (f1f2)p)

) (
Su

1
2q (m, (f1f3)q)

)
(3.7)

where C = (Su(m, f2))(Su(m, f3)).

Remark 3.6. We can use an example in Ref. 9 to show that the condition Su(m, fi) ≤
1, i = 1, 2, 3 in Corollary 3.5 (and thus in Theorem 3.4) cannot be abandoned, and
so we omit it here.

Remark 3.7. If ⊗ is the standard product in Theorem 3.4, then we have the Carlson-
type inequality for the Shilkret integral.

International Journal of Intelligent Systems DOI 10.1002/int
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Notice that when working on [0, 1] in Theorem 3.4, we mostly deal with e = 1,
then ⊗ = � is semicopula (t-seminorm) and the following result holds:

COROLLARY 3.8. Let fi ∈ F (X,A)
[0,1] , i = 1, 2, 3 be measurable functions and m

∈ M(X,A)
1 be a monotone measure. Let �: [0, 1]2 → [0, 1] be continuous and non-

decreasing in both arguments and bounded from above by minimum such that the
semicopula � dominates �. If any two functions of fi, i = 1, 2, 3 are comonotone,
then, for any p, q ≥ 1, we have

([I�(m, f1)] � [I�(m, f2)]) � ([I�(m, f1)] � [I�(m, f3)])

≤
[
I

1
p

�(m, (f1 � f2)p)
]

�
[
I

1
q

�(m, (f1 � f3)q)
]
, (3.8)

where (.)p, (.)q are subdistributive over �.

We get the following theorems with an analogous proof as the proof of Theo-
rem 3.4:

THEOREM 3.9 (Carlson-type inequality for universal integral (II)). Let a fixed s ∈
[1, ∞). And let fi ∈F (X,A), i = 1, 2, 3 be measurable functions and ⊗e: [0, ∞]2 →
[0, ∞] be the smallest pseudomultiplication on [0, ∞] with neutral element e ∈
(0, ∞] and m ∈ M(X,A) be a monotone measure such that I⊗e

(m, fi) < ∞, i =
1, 2, 3 and x ≥ xs for all x ∈ [0, ∞). Let �: [0, ∞]2 → [0, ∞] be continuous and
nondecreasing in both arguments and bounded from above by minimum such that
⊗e dominates �. If any two functions of fi, i = 1, 2, 3 are comonotone, then, for
any p, q ≥ 1, we have

([I⊗e
(m, f1)] � [I⊗e

(m, f2)])p � ([I⊗e
(m, f1)] � [I⊗e

(m, f3)])q

≤[I⊗e
(m, (f1 � f2)p)] � [I⊗e

(m, (f1 � f3)q)], (3.9)

where (.)p, (.)q are subdistributive over ⊗e.

Remark 3.10. If ⊗ is minimum and � is the usual product (·) such that ·|[0,1]2 ≤ min
in Theorem 3.9 (similar to Corollary 3.5), then we have the Carlson-type inequality
for the Sugeno integrals, which were obtained by Wang and Bai.13

THEOREM 3.11 (Carlson-type inequality for universal integral (III)). Let ϕi :[0,∞)→
[0, ∞), i = 1, 2 be continuous and strictly increasing functions. And let fi ∈
F (X,A), i = 1, 2, 3 be measurable functions and ⊗e: [0, ∞]2 → [0, ∞] be the small-
est pseudomultiplication on [0, ∞] with neutral element e ∈ (0, ∞] and m∈ M(X,A)

be a monotone measure such that I⊗e
(m, fi) < ∞, i = 1, 2, 3 and ϕi (x) ≤ x, i =

1, 2 for all x ∈ [0, ∞). Let �: [0, ∞]2 → [0, ∞] be continuous and nondecreasing
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in both arguments and bounded from above by minimum such that ⊗e dominates �.
If any two functions of fi, i = 1, 2, 3 are comonotone, then we have

([I⊗e
(m, f1)] � [I⊗e

(m, f2)]) � ([I⊗e
(m, f1)] � [I⊗e

(m, f3)])

≤[ϕ−1
1 (I⊗e

(m, ϕ1(f1 � f2)))
]
�
[
ϕ−1

2 (I⊗e
(m, ϕ2(f1 � f3)))

]
, (3.10)

where ϕi, i = 1, 2 are subdistributive over ⊗e.

Also, it is easy to prove the following theorems.

THEOREM 3.12 (the Bushell–Okrasinski-type inequality for universal integral (I)).
Let g ∈F (X,A)

[0,1] be nonincreasing measurable function and � the semicopula on [0, 1]

and m ∈ M(X,A)
1 be a monotone measure. Let �: [0, 1]2 → [0, 1] be continuous and

nondecreasing in both arguments and bounded from above by minimum. For any
s ≥ 2, we have

I�(m, (1 − t)s−1 � gs(t))

≥
[

1

s
� m

(
[0, 1] ∩

{
t | t ≤ 1 −

(
1

s

) 1
s−1

})]
� Is

�(m, g(t)). (3.11)

THEOREM 3.13 (the Bushell–Okrasinski-type inequality for the universal integral
(II)). Let g ∈ F (X,A)

[0,1] be a nondecreasing measurable function and � the semi-

copula on [0, 1] and m ∈ M(X,A)
1 be a monotone measure. Let �: [0, 1]2 → [0, 1]

be continuous and nondecreasing in both arguments and bounded from above by
minimum. For any s ≥ 2, we have

I�(m, ts−1 � gs (t)) ≥
[

1

s
� m

(
[0, 1] ∩

{
t | t ≥

(
1

s

) 1
s−1

})]
� Is

�(m, g (t)).

(3.12)

Remark 3.14. If � = ∧ in Theorems 3.12, and 3.13, and � is the usual product (·)
such that ·|[0,1]2 ≤ min, then we obtain the Bushell–Okrasinski-type inequality for
the Sugeno integral (specially, when m is the Lebesgue measure on R and s ≥ 2,
then the fact of

m

(
[0, 1] ∩

{
t | t ≤ 1 −

(
1

s

) 1
s−1

})
=m

(
[0, 1] ∩

{
t | t ≥

(
1

s

) 1
s−1

})

= 1 −
(

1

s

) 1
s−1

≥ 1

s
,
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implies the Bushell–Okrasinski-type inequality for a Lebesgue measure-based
Sugeno integral, which was obtained by Román-Flores et al. 12).

3.2. Liapunov’s Inequality

LEMMA 3.15.30 Let f, g ∈ F (X,A)
[0,1] be two comonotone measurable functions. Let

�: [0, 1] 2 → [0, 1] be continuous and nondecreasing in both arguments. If the
t-semiconorm S satisfies

S((a � b) , c) ≤ [(S (a, c)) � b] ∧ [a � (S(b, c))] , (3.13)

then the inequality

IS (m, (f � g)) ≤ (IS (m, f )) � (IS (m, g)) (3.14)

holds for any m ∈ M(X,A)
1 .

Lemmas 3.1 and 3.15 help us to reach the following result:

THEOREM 3.16 (Liapunov’s inequality for universal integral). Let s, r, t ∈ (0, ∞),
β ∈ (0, 1) and f ∈ F (X,A)

[0,1] be a measurable functions. If the t-semiconorm S domi-
nates the usual product (·), then the inequality

Ir−t
S (m, f s) ≤ (IS(m, f t ))r−s · (IS(m, f r ))s−t (3.15)

holds for any m ∈ M(X,A)
1 where 1

s
= β

t
+ 1−β

r
.

Proof. Let r1 = r
s(1−β) and t1 = t

sβ
. Then 1

r1
+ 1

t1
= 1, t1 > 1. Thus, by Lemmas 3.1

and 3.15

Ir−t
S (m, f s) = Ir−t

S (m, f sβ+s(1−β)) ≤ [(IS(m, f sβ)) · (IS(m, f s(1−β)))]r−t

≤
[
(IS(m, f sβt1 ))

1
t1 · (IS(m, f s(1−β)r1 ))

1
r1

]r−t

≤
[
(IS(m, f t ))

sβ

t · (IS(m, f r ))
s(1−β)

r

]r−t

=
[
(IS(m, f t ))

sβ(r−s)
t(r−s) · (IS(m, f r ))

s(1−β)(s−t)
r(s−t)

]r−t

≤ (IS(m, f t ))
(r−s)sβ(r−t)

t(r−s) · (IS(m, f r ))
(s−t)s(1−β)(r−t)

r(s−t) . (3.16)
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Since 1
s

= β

t
+ 1−β

r
, then we have

sβ(r − t)

t(r − s)
= s(1 − β)(r − t)

r(s − t)
= 1. (3.17)

Therefore, (3.16) and (3.17) imply that

Ir−t
S

(
m, f s

) ≤ (
IS

(
m, f t

))(r−s) · (IS

(
m, f r

))(s−t)
,

and the proof is completed. �

Notice that if the semiconorm S is maximum (i.e., for the Sugeno integral),
then the following result holds:

COROLLARY 3.17. Let s, r, t ∈ (0, ∞), β ∈ (0, 1) and f ∈ F (X,A)
[0,1] be a measurable

functions. Then the inequality

Sur−t
(
m, f s

)≤ (Su
(
m, f t

))r−s · (Su
(
m, f r

))s−t
(3.18)

holds for any m ∈ M(X,A)
1 , where 1

s
= β

t
+ 1−β

r
and the usual product (·) dominates

min.

Remark 3.18. Let r = 2, t = 1
3 , β = 1

2 , s = 4
7 and m be the Lebesgue measure on

R. Then we can use a same example presented in Ref.7 (Example 1) to show that
the condition of “the usual product (·) dominates min” in Corollary 3.17 (and thus
in Theorem 3.16) cannot be abandoned, and so we omit it here.

Remark 3.19. Let r = 2, s = 1, β = t = 1
2 and m be the Lebesgue measure on

R. Then we can use the same example as in Ref.7 (Example 1) to show that the
condition of 1

s
= β

t
+ 1−β

r
in Corollary 3.17 (and thus in Theorem 3.16) cannot be

abandoned, and so we omit it here.

Also, in a similar way, we can prove the following theorem, and then the
Liapunov-type inequalities for the Sugeno integral appear as its corollaries (thus
improving the results of Ref.7).

THEOREM 3.20. Let f ∈ F (X,A) be a measurable function and m ∈ M(X,A) be a
monotone measure such that Su (m, f ) ≤ 1. For any s, r, t ∈ (0, ∞), β ∈ (0, 1), we
have

Sur−t
(
m, f s

)≤ (Su
(
m, f t

))r−s · (Su
(
m, f r

))s−t
(3.19)
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where 1
s

= β

t
+ 1−β

r
and the usual p roduct (·) dominates min.

Remark 3.21. In Ref. 7, it requires that f be a concave function. But, in Theo-
rem 3.20, this condition can be abandoned.

3.3. Sandor’s Inequality and Fatou’s Lemma

THEOREM 3.22 (Sandor’s inequality for universal integral). Let f ∈ F ([a,b],A) be a
convex function. If ⊗e is a smallest pseudomultiplication and ⊗e is a greatest pseu-
domultiplication on [0, ∞] with neutral element e ∈ (0, ∞], then for any monotone
measure m ∈ M(X,A), we have

(a) if f (a) < f (b), then

I⊗e
(m, f ) ≤

⎡
⎢⎢⎢⎣

(
(2Af (b)+A2)−

√
4A3f (b)+A4

2

)
⊗e

m

(
[a, b] ∩

{
x| x ≥ b + (b−a)

f (b)−f (a)

(√
(2Af (b)+A2)−

√
4A3f (b)+A4

2 − f (b)

)})
⎤
⎥⎥⎥⎦

where A = b−a

f (b)−f (a) .

(b) if f (a) = f (b), then

I⊗e
(m, f ) ≤ [f (a) ⊗e m([a, b])] .

(c) if f (a) > f (b), then

⎡
⎢⎢⎢⎣

(
2[(b−a)−Af (b)]+A2−

√
4A2(b−a−Af (b))+A4

2

)
⊗e

m

(
[a, b] ∩

{
x| x ≤ b + b−a

f (b)−f (a)

(√
2[(b−a)−Af (b)]+A2−

√
4A2(b−a−Af (b))+A4

2 − f (b)

)})
⎤
⎥⎥⎥⎦

where A = b−a

f (b)−f (a) .

Proof. Let f : [a, b] → [0, ∞) be a convex function. Suppose that g: [a, b] →
[0, ∞) is a linear function satisfying g(a) = f (a) and g(b) = f (b). Therefore,

g(x) = f (b) + f (b) − f (a)

b − a
(x − b).
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(a) If f (a) < f (b), then

I⊗e
(m, f 2)≤I⊗e

(m, g2)

≤
∨
α>0

(
α ⊗e m

(
[a, b] ∩

{
f (b) + f (b) − f (a)

b − a
(x − b) ≥ α

1
2

}))

=
∨
α>0

(
α ⊗e m

(
[a, b] ∩

{
x| x ≥ b + b − a

f (b) − f (a)

(√
α − f (b)

)}))

≤

⎡
⎢⎢⎢⎢⎢⎢⎣

(
(2Af (b)+A2)−

√
4A3f (b)+A4

2

)
⊗e

m

(
[a, b] ∩

{
x| x ≥ b + b−a

f (b)−f (a)

×
(√

(2Af (b)+A2)−
√

4A3f (b)+A4

2 − f (b)

)})

⎤
⎥⎥⎥⎥⎥⎥⎦

where A = b−a

f (b)−f (a) .
(b) If f (a) = f (b), then g (x) = f (a). Thus

I⊗e
(m, f 2) ≤ I⊗e

(m, g2) = I⊗e

(
m, f 2 (a)

) = [
f 2(a) ⊗e m([a, b])

]
.

(c) If f (a) > f (b), then

I⊗e
(m, f 2) ≤ I⊗e

(m, g2)

=
∨
α>0

(
α ⊗e m

(
[a, b] ∩

{
f (b) + f (b) − f (a)

b − a
(x − b) ≥ α

1
2

}))

=
∨
α>0

(
α ⊗e m

(
[a, b] ∩

{
x| x ≤ b + b − a

f (b) − f (a)

(√
α − f (b)

)}))

≤

⎡
⎢⎢⎢⎢⎢⎢⎣

(
2[(b−a)−Af (b)]+A2−

√
4A2(b−a−Af (b))+A4

2

)
⊗e

m

(
[a, b] ∩

{
x| x ≤ b + b−a

f (b)−f (a)

×
(√

2[(b−a)−Af (b)]+A2−
√

4A2(b−a−Af (b))+A4

2 − f (b)

)})

⎤
⎥⎥⎥⎥⎥⎥⎦

where A = b−a

f (b)−f (a) . And the proof is completed. �
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Remark 3.23.

(I) If ⊗e = ∧ in Theorem 3.22, then we obtain the Sandor-type inequality for the Sugeno
integral (specially, when m is the Lebesgue measure on R, then the fact of Su (m, f ) ≤
m ([a, b]) ,

⎡
⎢⎢⎢⎣
(

(2Af (b)+A2)−
√

4A3f (b)+A4

2

)

= m

(
[a, b] ∩

{
x| x ≥ b + (b−a)

f (b)−f (a)

(√
(2Af (b)+A2)−

√
4A3f (b)+A4

2 − f (b)

)})
⎤
⎥⎥⎥⎦,

⎡
⎢⎢⎢⎣
(

2[(b−a)−Af (b)]+A2−
√

4A2(b−a−Af (b))+A4

2

)

= m

(
[a, b] ∩

{
x| x ≤ b + b−a

f (b)−f (a)

(√
2[(b−a)−Af (b)]+A2−

√
4A2(b−a−Af (b))+A4

2 − f (b)

)})
⎤
⎥⎥⎥⎦ ,

and ⊗e = ∨ imply the Sandor-type inequality for a Lebesgue measure-based Sugeno
integral, which was obtained by Caballero and Sadarangani10).

(II) If ⊗e is the standard product in Theorem 3.22, then we have the Sandor type inequality
for Shilkret integral.

(III) When working on [0, 1] in Theorem 3.22, then we mostly deal with e = 1, then ⊗e = �
is semicopula (t-seminorm). Then we have a Sandor type inequality for seminormed
non-additive integrals.

We get the following theorem with an analogous proof as the proof of Theorem
3.22.

THEOREM 3.24 (Reverse Sandor-type inequality for universal integral). Let f ∈
F ([a,b],A) be a concave function. If ⊗e: [0, ∞]n → [0, ∞] is a smallest pseudo-
multiplication on [0, ∞] with neutral element e ∈ (0, ∞], then for any monotone
measure m ∈ M(X,A), we have

(a) if f (a) < f (b), then

I⊗e
(m, f ) ≥

⎡
⎢⎢⎢⎣

(
(2Af (b)+A2)−

√
4A3f (b)+A4

2

)
⊗e

m

(
[a, b] ∩

{
x| x ≥ b + (b−a)

f (b)−f (a)

(√
(2Af (b)+A2)−

√
4A3f (b)+A4

2 − f (b)

)})
⎤
⎥⎥⎥⎦ ,

where A = b−a

f (b)−f (a) .

(b) if f (a) = f (b), then

I⊗e
(m, f ) ≥ [f (a) ⊗e m([a, b])] .
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(c) if f (a) > f (b), then

I⊗e
(m, f ) ≥

⎡
⎢⎢⎢⎢⎢⎢⎣

(
2[(b−a)−Af (b)]+A2−

√
4A2(b−a−Af (b))+A4

2

)
⊗e

m

⎛
⎜⎜⎝[a, b] ∩

⎧⎪⎪⎨
⎪⎪⎩x| x ≤ b +

(b−a)

⎛
⎝
√

2[(b−a)−Af (b)]+A2−
√

4A2(b−a−Af (b))+A4

2 −f (b)

⎞
⎠

f (b)−f (a)

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where A = b−a

f (b)−f (a) .

Also, it is easy to prove the following theorem:

THEOREM 3.25 (Fatou’s lemma for universal integral). Let {fn} be a nonde-
creasing (nonincreasing) sequence of nonnegative and measurable functions. If
⊗e: [0, ∞] n → [0, ∞] is a smallest pseudomultiplication on [0, ∞] with neutral
element e ∈ (0, ∞], then for any finite monotone measure m ∈ M(X,A), we have

I⊗e

(
m, lim

n→∞ inf fn

)
≤ lim

n→∞ inf
(
I⊗e

(m, fn)
)
.

Remark 3.26.

(I) If ⊗e = ∧ in Theorem 3.25, then we obtain the Fatou’s lemma for the Sugeno integral,
which was obtained by Agahi et al.11).

(II) When working on [0, 1] in Theorem 3.25, then we mostly deal with e = 1, then ⊗e = � is
semicopula (t-seminorm). Then we have the Fatou’s lemma for seminormed nonadditive
integrals.
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