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Summary

In this work we present the concept of
penalty function over a Cartesian product of
lattices. To build these mappings, we make
use of restricted dissimilarity functions and
distances between fuzzy sets. We also present
an algorithm that extends the weighted vot-
ing method for a fuzzy preference relation.
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1 INTRODUCTION

A multi-expert decision making problem can be de-
scribed as follows: we have a set of n alternatives
X = {x1, · · · , xp}, (p ≥ 2), and a set of n experts
U = E = {e1, · · · , en}, (n > 2) and each of the latter
provides his/her preferences on the former set of al-
ternatives. Find the alternative or set of alternatives
that is (are) the most accepted by the experts ([7]).

This kind of problems can be solved by trying to de-
termine, for each pair of the alternatives, a valuation
that is the least dissimilar with those provided by the
experts. That is, if we assume that the preference of
expert k of alternative i over alternative j is expressed
by a numerical value rk

ij , we can try to find a single
numerical value that is the least dissimilar to the n
values {r1

ij , . . . , r
n
ij} . In this way we arrive at a sin-

gle preference relation (matrix) from which the best
alternative can finally be chosen.

In this work we focus in the extension of penalty func-
tions ([5]) to a lattice setting in order to carry on the
selection of the least dissimilar value. In particular,
we are going to consider Cartesian products of lattices
and extend the idea of faithful penalty functions as

presented in [9] to lattices by means of the concepts
of restricted dissimilarity function ([3]) and distances
between fuzzy sets. In order to show the usefulness
of our theoretical approach, we present an algorithm
that, starting from a normalized fuzzy preference rela-
tion, extends the weighted voting method by allowing
the use of aggregation functions other than the arith-
metic for the evaluation of each of the alternatives.

The structure of this work is the following. In section
2 we give some preliminary definitions and results. In
Section 3 we introduce the concept of penalty func-
tion over a Cartesian product of lattices and we relate
it to restricted dissimilarity functions. In Section 4
we present a construction of penalty functions based
on distances. Section 5 is devoted to the Algorithm
making use of our theoretical developments. We finish
with some conclusions and references.

2 PRELIMINARIES

Definition 1 ([1, 4]) A mapping M : [a, b]n →
[a, b] is an aggregation function if it is monotone
non-decreasing in each of its components and sat-
isfies M(a) = M(a, a, · · · , a) = a and M(b) =
M(b, b, · · · , b) = b.

Definition 2 An aggregation function M is called av-
eraging or a mean if

min(x1, · · · , xn) ≤ M(x1, · · · , xn) ≤ max(x1, · · · , xn)

Any averaging aggregation function is idempotent, and
also the converse is true.

We introduce now the concept of penalty function.

Definition 3 A penalty function is a mapping P :
[a, b]n+1 → R

+ = [0,∞] such that:

1. P (x, y) = 0 if xi = y for all i = 1, · · · , n;
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2. P (x, y) is quasi-convex in y for any x; that is

P (x, λ ·y1 +(1−λ) ·y2) ≤ max(P (x, y1), P (x, y2))

for any λ ∈ [0, 1] and y1, y2 ∈ [a, b].

The penalty based function is

f(x) = arg min
y

P (x, y),

if y is the only minimum and y = c+d
2 if the set of

minimums is given by the interval [c, d].

Theorem 1 [5] Any averaging aggregation function
can be represented as a penalty based function in the
sense of Definition 3.

Finally we also introduce the concept of restricted dis-
similarity function.

Definition 4 [3] A mapping dR : [0, 1]2 → [0, 1] is a
restricted dissimilarity function if:

1. dR(x, y) = dR(y, x) for every x, y ∈ [0, 1];

2. dR(x, y) = 1 if and only if x = 0 and y = 1 or
x = 1 and y = 0; that is, {x, y} = {0, 1};

3. dR(x, y) = 0 if and only if x = y;

4. For any x, y, z ∈ [0, 1], if x ≤ y ≤ z, then
dR(x, y) ≤ dR(x, z) and dR(y, z) ≤ dR(x, z).

2.1 CARTESIAN PRODUCT OF
LATTICES

Definition 5 A poset (P,≤) is a set P with a relation
≤ which is reflexive, antisymmetric and transitive. A
chain in a poset is a totally ordered set. The length of
a chain is given by the cardinality of the chain minus
one.

Definition 6 A lattice L = {L,≤,∧,∨} is a poset
with the partial ordering ≤ in L and operations ∧ and
∨ which satisfy the properties of absortion, idempo-
tency, commutativity, and associativity. That is, a
poset such that any two elements have a unique min-
imal upper bound and a unique maximal lower bound
in L.

In this work we only deal with bounded lattices, that
is, lattices for which there exist a maximal or greatest
element and a minimal or smallest element.

Proposition 1 Let L1 = {L1,≤1,∧1,∨1} and L2 =
{L2,≤2,∧2,∨2} be two lattices. The Cartesian product

L1 × L2 = {L1 × L2,≤,∧,∨}

with ≤ defined by

(x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2 and y1 ≤ y2

and
∧ ((x1, y1), (x2, y2)) = (∧1(x1, x2),∧2(y1, y2))
∨ ((x1, y1), (x2, y2)) = (∨1(x1, x2),∨2(y1, y2))

is a lattice.

In this work we consider the Cartesian product of fi-
nite chains C or the Cartesian product of intervals.
We must point out that if we make the Cartesian
product of m copies of lattice L, each element x =
(x1, · · · , xm) ∈ L × L · · · × L is such that xi ∈ L.
Moreover, all the finite chains of the same length
are isomorphic to each other. So we can always as-
sume that we are working with chains of the type
C = 0 ≤ 1 ≤ 2 ≤ · · · ≤ n − 1.

Theorem 2 Let Lk = {C1×· · ·×Ck,≤,∧,∨}. Let a, b
be two elements in Lk such that a ≤ b. Then all the
maximal chains joining a and b have the same length.

Proof. See [2] �

Corollary 1 Take a, b ∈ Lk = {C1×· · ·×Ck,≤,∧,∨}.
Then all the maximal chains joining ∧(a, b) and ∨(a, b)
are of the same length.

Taking into account the previous results, we have that
if L is the Cartesian product of m chains, then the
distance between x, y ∈ L can be defined as the length
of the chain C with minimal element a = ∧(x, y) and
maximal element b = ∨(x, y), minus one. That is,

d(x, y) = length(C) − 1.

This definition is equivalent to the following.

d(x, y) =
m∑

i=1

di(xi, yi) =
m∑

i=1

|xi − yi| (1)

where di is the distance in the i-th chain. Observe
that, in the case of a finite chain, the absolute value in
the last term corresponds to the usual absolute value
taking into account the aforementioned isomorphism
between a finite chain of n elements and the chain
C = 0 ≤ 1 ≤ 2 ≤ · · · ≤ n − 1. It is easy to see that Eq
(1) is a distance. It is called the natural distance.

2.2 PENALTY FUNCTIONS OVER A
CARTESIAN PRODUCT OF
LATTICES FROM LATTICE
DISSIMILARITY FUNCTIONS AND
DISTANCES

Consider the lattice Lm = {C1×· · ·×Cm,≤,∧,∨}. We
denote

1Lm = (1C1), · · · , 1Cm)),
0Lm = (0C1), · · · , 0C1)).
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Definition 7 Take Lm = {C1 × · · · × Cm,≤,∧,∨}. A
mapping

δR : Lm × Lm → Lm

is a lattice restricted dissimilarity function if

1. δR(x, y) = δR(y, x) for any x, y ∈ Lm;

2. δR(x, y) = 1Lm
if and only if for any i =

1, · · · , m,

xi = 1Ci
and yi = 0Ci

,

or
xi = 0Ci

and yi = 1Ci
;

3. δR(x, y) = 0Lm if and only if x = y;

4. If x ≤ y ≤ z then δR(x, y) ≤ δR(x, z) and
δR(y, z) ≤ δR(x, z).

From Def. 7 we can prove Proposition 2.

Proposition 2 Let each δRi
: Cm

i → Ci be a lattice
restricted dissimilarity function. Then the mapping
defined as

δR(x, y) = (δR1(x1, y1), · · · , δRm
(xm, ym)) (2)

for every x, y ∈ Lm is a lattice restricted dissimilarity
function.

Proof. Direct from the Definition �
In this work we denote by FS(U)m the set of sets A =
(A1, · · · , Am) with Ai : U → Ci such that A(ui) =
(A1(ui), · · · , Am(ui)) for every ui ∈ U . Notice that
each of the Ai is an L-fuzzy set in the sense of Goguen
[8]; i.e., each Ai is a fuzzy set defined over the lattice
{Ci,≤i,∧i,∨i}.
The construction methods for restricted dissimilarity
functions described in [3] can be easily adapted to lat-
tice restricted dissimilarity functions, so we do not de-
velop them here.

Definition 8 Take Lm = {C1 × · · · × Cm,≤,∧,∨}. A
mapping

Ω : FS(U)m ×FS(U)m → Lm

is a lattice distance in FS(U)m if

1. Ω(A,B) = Ω(B,A) for every A,B ∈ FS(U)m;

2. Ω(A,B) = 0Lm
if and only if Ai = Bi for every

i = 1, · · · , m;

3. Ω(A,B) = 1Lm if and only if for every i =
1, · · · , m, Ai and Bi are sets such that for every
uj

Ai(uj) = 1Ci and Bi(uj) = 0Ci

or

Ai(uj) = 0Ci and Bi(uj) = 1Ci ;

4. If A ≤ A′ ≤ B′ ≤ B, then Ω(A,B) ≥ Ω(A′,B′)
where A = (A1, · · · , Am) ≤ (A′

1, · · · , A′
m) = A′ if

Ai ≤ A′
i for every i.

Definition 9 Let L be a bounded lattice. An aggrega-
tion function over the lattice L is a mapping:

M : Lm → L (3)

such that

i) M(0L, 0L) = 0L and M(1L, 1L) = 1L;

ii) M is increasing with respect to ≤.

Proposition 3 Let M1, · · · , Mm be aggregation func-
tions

Mi : Ci × Ci → Ci

Then the mapping

F : Lm × Lm → Lm given by
F (x,y) = (M1(x1, y1), · · · , Mm(xm, ym))

is an aggregation function over Lm.

Proof. Direct �

Proposition 4 Let δR1 , · · · , δRm be a lattice re-
stricted dissimilarity function δRi

: Ci × Ci → Ci. Let
M1, · · · , Mm be aggregation functions Mi : Cn

i → Ci

such that

(L1) Mi(x1, · · · , xn) = 1Ci
if and only if xi =

1Ci
for every i = 1, · · · , n

(L2) Mi(x1, · · · , xn) = 0Ci if and only if xi =
0Ci for every i = 1, · · · , n

Then Ω(A,B) defined as
(

n

M1
i=1

(δR1(A1(ui), B1(ui))), · · · ,
n

Mm
i=1

(δRm
(Am(ui), Bm(ui)))

)

is a lattice distance in FS(U)m.

Proof. Direct �
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3 PENALTY FUNCTIONS FROM
LATTICE DISTANCES
BETWEEN SETS OVER
CARTESIAN PRODUCTS OF
LATTICES

In this subsection we present a construction method
of penalty functions in a Cartesian product of lattices
from lattice distances between fuzzy sets.

We know that the arithmetic mean of convex functions
is also a convex function. Next, we consider aggrega-
tion functions such that applied to convex functions we
obtain another convex function, as in the arithmetic
mean case. Observe that here and in the following,
whenever we talk of convexity, we are dealing with
chains that are in fact real intervals.

Theorem 3 Let Y = (y1, · · · , ym) ∈ Lm. For each yi

(i = 1, · · · , m) we consider the set

Byi
(uj) = yi for all uj ∈ U (4)

and let BY = (By1 , · · · , Bym
) ∈ FS(U)m. Let

M1, · · · , Mm be aggregation functions Mi : Cn
i →

Ci such that each of them when composed with
convex functions is also convex. Take the lat-
tice restricted dissimilarity function δR(x, y) =
(δR1(x1, y1), · · · , δRm

(xm, ym)) such that each δRi
with

i = 1, · · · , m is convex in one variable. Then

PΩ : FS(U)m+1 → Lm given by
PΩ(A, Y ) = Ω(A,BY )

=
(

n

M1
i=1

(δR1(A1(ui), y1)), · · · ,
n

Mm
i=1

(δRm
(Am(ui), ym))

)

(5)
satisfies:

1. PΩ(A, Y ) ≥ 0Lm ;

2. PΩ(A, Y ) = 0Lm
if Ak(uj) = yk for every k and

for every j;

3. Each of its components is convex with respect to
the corresponding yk (k = 1, · · · , m).

Proof. Direct �

Corollary 2 In the setting of Theorem 3 if
M1, · · · , Mm satisfy (L1) and (L2), then

1. PΩ(A, Y ) = 0Lm if and only if Ak(uj) = yk for
every k and for every j;

2. PΩ(A, Y ) = 1Lm
if and only if {Ak(ui), yk} =

{0L, 1L}.

Analogously to the real case (see [9, 6]), we use the
terminology lattice faithful restricted dissimilar-
ity functions to denote the following lattice restricted
dissimilarity functions:

δR(x, y) = K(d(x, y)) = K(
m∑

i=1

|xi − yi|) (6)

with K : C → C a convex with a unique minimum at
K(0) = 0.

Theorem 4 In the setting of Theorem 3, if
δR1 , · · · , δRm are lattice faithful restricted dissim-
ilarity functions, then the mapping

FLm : FS(U)m → Lm given by
FLm(A) = arg min

Y
PΩ(A, Y ) = arg min

Y
Ω(A,BY )

=
(

arg min
yj

(
n

Mj
i=1

(Kj(d(Aj(ui), yj)))
)

j=1,...,m

=
(

arg min
yj

(
n

M
i=1

(Kj(|Aj(ui) − y|)))
)

j=1,...,m

is such that each of its components is an averaging ag-
gregation function over FS(U) and FLm(A) is an av-
eraging aggregation function over the Cartesian prod-
uct FS(U)m.

Proof. Apply Theorem 1 for each component �
From now on we will denote by Byq

the fuzzy set over
U such that all its membership values are equal to
yq ∈ [0, 1]; that is, Byq (ui) = yq ∈ [0, 1] for all ui ∈ U .

Let Y = (y1, · · · , ym) and BY = (By1 , · · · , Bym
) ∈

FS(U)m. We will denote by C∗ a chain whose elements
belong to [0, 1] and by L∗

m the product such that L∗
m =

(C∗)m.

Theorem 5 Let Ki : R → R
+ be convex functions

with a unique minimum at Ki(0) = 0 (i = 1, · · · , m),
and take the distance between fuzzy sets defined as

D(A, B) =
n∑

i=1

|A(ui) − B(ui)| (7)

where A, B ∈ FS(U) and Cardinal(U) = n. Then the
mapping

P∇ : FS(U)m × L∗
m → R

+ given by
P∇(A, Y ) = D(A,BY )

=
m∑

q=1

Kq(D(Aq, Byq
)) =

m∑
q=1

Kq

( n∑
p=1

|Aq(up) − yq|
)

(8)
satisfies

1. P∇(A, Y ) ≥ 0;
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2. P∇(A, Y ) = 0 if and only if Aq = yq for every
q = 1, · · · , m;

3. is convex in yq for every q = 1, · · · , m.

Proof. Direct since the sum of convex functions is
convex �
Observe that P∇ is a penalty function defined over the
Cartesian product of lattices L∗n+1

m .

Example 1 • If we take Kq(x) = x2 for all q ∈
{1, · · · , m}, then

P∇(A, Y ) =
m∑

q=1

( n∑
p=1

|Aq(up) − yq|
)2

(9)

• If Kq(x) = x for all q ∈ {1, · · · , m}, then

P∇(A, Y ) =
m∑

q=1

n∑
p=1

|Aq(up) − yq| (10)

Theorem 6 In the setting of Theorem 5, the mapping

F (A) = μ = arg min
Y

P∇(A, Y ) (11)

where μ is the rounding to the smallest closest element,
is an averaging aggregation function.

Proof. Just observe that

arg min
(y1,···ym)

P∇(A, (y1, · · · , ym))

= arg min
(y1,···ym)

m∑
q=1

Kq

( n∑
p=1

|Aq(up) − yq|
)

=
m∑

q=1

arg min
y

Kq

( n∑
p=1

|Aq(up) − yq|
)

(12)

so it is enough to consider each of the mappings

arg min
y

Kq

( n∑
p=1

|Aq(up) − yq|
)

(13)

but each of these functions is an aggregation function
and since Kq is convex, the result follows. �
Remark Notice that FS(U)m with Zadeh’s order is a
bounded lattice.

4 AN APPLICATION TO
DECISION MAKING PROBLEMS

In this section we present a simple algorithm that
shows a possible application of our previous theoretical
developments to a decision making problem.

Assume that we have to choose between a set of p
alternatives. Suppose that the normalized preference
relation provided by an expert (or the collective nor-
malized preference relation in case we have several ex-
perts) is given by the following matrix:

r =

⎛
⎜⎝

− r12 ··· r1p

r21 − ··· r2p

··· ··· − ···
rp1 ··· ··· −

⎞
⎟⎠ (14)

The problem of how to obtain this matrix is not
trivial. Nevertheless, we will consider that it has
ben given in some way or another. Then, a widely
used method to determine the best alternative is the
weighted voting method, where the chosen alternative
is arg max

i=1,··· ,p
∑

1≤j �=i≤p rij . That is, the arithmetic

mean of each of the rows is considered, and the row
providing the highest output (vote) is selected.

The algorithm that we propose is the following:

1. Select a penalty function P∇ defined over the
product of p lattices.

2. Take a set of q ≤ p averaging aggregation func-
tions: {M1, · · · , Mq}.

3. Build all the variations with repetition of the q ag-
gregation functions taken in groups of p elements:
Mσ(i) = {M(σ(i),1), · · · , M(σ(i),p)}.

4. Build

A = ((r12, · · · , r1p), · · · , (rp1, · · · , rp(p−1)))

(with U = {u1, · · · , up} and rjl such that j 	= l)

5. FOR i:=1 to qp DO

Take: Mσ(i) = {M(σ(i),1), · · · , M(σ(i),p)}
FOR j:=1 to p DO

Calculate: M(σ(i),j)(rj1, · · · , rjp) =
y(σ(i),j) with rjl such that j 	= l

Build: B(σ(i),j)(uk) = y(σ(i),j) for all k :=
1, · · · , p

ENDFOR

ENDFOR

6. Between all the variations with repetition of of the
q aggregation functions in groups of p elements,
take: BY = (B∗

(σ(i),1), · · · , B∗
(σ(i),p)) which mini-

mizes:

P∇(A, Y ) = D(A,BY ) =
p∑

k=1

Kk(D(Aq, Byk
))

=
p∑

k=1

Kk

(
p∑

j = 1
k 	= j

|rkj − y(σ(i),k)|
)
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7. Take the alternative:

xi := arg max
j=1,··· ,p

B∗
(σ(i),j)

That is, in our algorithm we propose to replace the
arithmetic mean by other averaging aggregation func-
tions. These functions have to be picked beforehand
and, in order to select the best alternative, we use
a penalty function over a product of lattices to deter-
mine for which of the rows the output is less dissimilar
than the inputs in the row. Notice that since we have
not fixed a single aggregation function for each row
we have flexibility to represent each row in the most
suitable way.

5 CONCLUSIONS

In this work we have presented a possible extension of
the concept of penalty function to a Cartesian prod-
uct of lattices. To do so, we have made use of re-
stricted dissimilarity functions and distances between
fuzzy sets. We have also presented an algorithm for de-
cision making problems that, starting from a normal-
ized fuzzy preference relation, generalizes the weighted
voting method by allowing the use of aggregation
functions other than the arithmetic mean and uses a
penalty function over a Cartesian product of lattices
to determine the best alternative.

A drawback of this algorithm is the need of select-
ing beforehand both the aggregation functions and the
penalty functions. In future works we intend to deal
with this problem.
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