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Abstract

In this work we introduce the definition of restricted
dissimilarity functions and we link it with some
other notions, such as metrics. In particular, we
also show how restricted dissimilarity functions can
be used to build penalty functions.
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1. Introduction

Given a set of inputs, penalty functions (see [4, 5, 7])
allow us to determine the aggregation function Mj
that provides the output yj which is the least dis-
similar to the set of inputs {x1, · · · , xp}. On the
other hand, dissimilarity functions provide a way
to measure how dissimilar two inputs are. This
idea has led us to consider the use of restricted dis-
similarity functions [2] to build penalty functions.
To this end, we first investigate the conditions un-
der which we can build convex or quasi-convex re-
stricted dissimilarity functions, and then we ana-
lyze the relation of such functions with the so-called
faithful dissimilarity functions (see [7]).
The structure of this work is as follows. In the

next section we present some preliminaries. In Sec-
tion 3 we present the concept of restricted dissimi-
larity functions and some related results. In Section
4 we focus on convex and quasi-convex restricted
dissimilarity functions and their relation with met-
rics. In Section 5 we present some construction
methods. In Sections 6 and 7 we consider faithful
restricted dissimilarity functions and their relations
with penalty functions. We finish with some con-
clusions and references.

2. Preliminaries

Definition 1 A mapping M : [0, 1]n → [0, 1]
is an aggregation function if it is monotone non-
decreasing in each of its components and satisfies
M(0, 0, · · · , 0) = 0 and M(1, 1, · · · , 1) = 1.

Definition 2 An aggregation function M is called

averaging or a mean if

min(x1, · · · , xn) ≤M(x1, · · · , xn) ≤ max(x1, · · · , xn)

for all x1, . . . , xn ∈ [0, 1].

Any averaging aggregation function is idempo-
tent, and also the converse is true.

As stated in the Introduction, it is often necessary
to measure the difference or disagreement between
a set of inputs (x1, · · · , xp) and the corresponding
output y. A possible way of performing such a mea-
sure is by means of so-called penalty functions. The
idea is: given a penalty function, use it as a measure
of dissimilarity by finding the aggregation function
that minimizes the difference between inputs and
output.

Definition 3 A penalty function is a mapping P :
[0, 1]n+1 → R+ = [0,∞] such that:

1. P (x, y) ≥ 0 for all x ∈ [0, 1]n, y ∈ [0, 1];
2. P (x, y) = 0 if and only if xi = y for all i =

1, · · · , n;
3. P (x, y) is quasi-convex in y for any x; that is,

for each fixed x ∈ [0, 1]n the inequality

P (x, λ·y1+(1−λ)·y2) ≤ max(P (x, y1), P (x, y2))

holds for any λ ∈ [0, 1] and any y1, y2 ∈ [0, 1].

Definition 4 Let P be a penalty function. We as-
sign the name penalty function based function (or
function based on the penalty function P ) to the
mapping

f(x) = arg min
y
P (x, y),

if y is the only minimum and y = a+b
2 if the set of

minimums is given by the interval [a, b].

A penalty based aggregation function is always
averaging. The following theorem states that the
converse also holds.

Theorem 1 [4] Any averaging aggregation func-
tion can be represented as a penalty based function
in the sense of Definition 3.
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3. Restricted dissimilarity functions

In [2], the concept of restricted dissimilarity func-
tion was introduced as a tool to measure the dissim-
ilarity between two given data. Moreover, different
theorems of construction and characterization were
considered in that work. In particular, restricted
dissimilarity functions were also used to build dis-
tances between fuzzy sets in the sense of Liu [6].

Definition 5 [2] A mapping dR : [0, 1]2 → [0, 1] is
a restricted dissimilarity function if:

1. dR(x, y) = dR(y, x) for every x, y ∈ [0, 1];
2. dR(x, y) = 1 if and only if x = 0 and y = 1 or

x = 1 and y = 0; that is, if {x, y} = {0, 1};
3. dR(x, y) = 0 if and only if x = y;
4. For any x, y, z ∈ [0, 1], if x ≤ y ≤ z, then

dR(x, y) ≤ dR(x, z) and dR(y, z) ≤ dR(x, z).

Notice that, contrary to the case of dissimilarity
functions, restricted dissimilarity functions vanish if
and only if both inputs are equal.

We will say that dR is a strict restricted dissimi-
larity function if for any x, y, z ∈ [0, 1], if x < y < z,
then dR(x, y) < dR(x, z) and dR(y, z) < dR(x, z).

Example 1 The mapping dR(x, y) = |x − y| pro-
vides a simple example of a restricted dissimilarity
function which is strict. On the other hand, as an
example of a non-strict restricted dissimilarity func-
tion we can present the following. Take c ∈]0, 1[.
Then

dR(x, y) =


1 if {x, y} = {0, 1} ;
0 if x = y;
c otherwise.

is a restricted dissimilarity function. Observe that
this mapping is not even continuous.

Recall that a fuzzy negation is a non-increasing
mapping N : [0, 1]→ [0, 1] such that N(0) = 1 and
N(1) = 0. a fuzzy negation is called strict if N is
strictly decreasing. An involutive fuzzy negation is
called a strong negation.

Theorem 2 Let d : [0, 1]2 → [0, 1] be a function.
The following statements are equivalent.

(i) N : [0, 1] → [0, 1] is a strict negation and
d(x, y) = |N(x)−N(y)|;

(ii) d is a restricted dissimilarity function,
d(x, y) = |d(x, 1) − d(y, 1)| and d(1, x) is
strictly monotone;

(iii) d is a restricted dissimilarity function and for
all x, y, z ∈ [0, 1] with x ≥ y ≥ z, it holds that
d(x, y) + d(y, z) = d(x, z) and d(1, x) is strictly
monotone.

Proof. (i) ⇒ (ii): Suppose that d(x, y) = |N(x) −
N(y)|. Then, symmetry of d is obvious. More-
over, d(x, y) = 0 if and only if N(x) = N(y), and

since N is strict, this can happen if and only if
x = y. On the other hand, d(x, y) = 1 if and only
if {N(x), N(y)} = {0, 1}, and once again from the
strictness of N , this is equivalent to {x, y} = {0, 1}.
Finally, if x ≤ y ≤ z, then d(x, y) = |N(x)−N(y)| =
N(x) − N(y) ≤ N(x) − N(z) = |N(x) − N(z)|.
The case d(y, z) ≤ d(x, z) is analogous. Observe
that if x < y < z, then d(x, y) < d(x, z) and
d(y, z) < d(x, z), due again to the strictness of
d. Finally, N(x) = |N(x) − N(1)| = d(x, 1), so
d(x, y) = |d(x, 1)− d(y, 1)|, as stated.

(ii) ⇒ (iii) Take x > y > z. Then

d(x, y) + d(y, z) = |N(x)−N(y)|+ |N(y)−N(z)|
= N(y)−N(x) +N(z)−N(y) = N(z)−N(x)

= |N(x)−N(z)| = d(x, z) .

The strict monotonicity of d(1, x) follows from the
symmetry of d and the fact that d(x, y) = |d(1, x)−
d(1, y)| = 0 if and only if x = y.
(iii) ⇒ (i) Define N(x) = d(1, x). First of all,

since d(1, x) is strictly monotone, d(1, 1) = 0 and
d(1, 0) = 1, it follows that N is a strict negation.
Moreover, if 1 ≥ y ≥ z, it follows that

d(1, y) + d(y, z) = d(1, z)

so d(y, z) = d(1, z) − d(1, y), and since y > z,
d(y, z) = |d(1, y)− d(1, z)| = |N(y)−N(z)| �

The proof of the following result is direct.

Proposition 1 Let dR be a restricted dissimilarity
function. Then

1. N(x) = dR(1, x) for all x ∈ [0, 1] is a fuzzy
negation;

2. N(x) = dR(1, x) is an involutive negation if
and only if dR(1, dR(1, x)) = x for all x ∈ [0, 1];

3. If N(x) = dR(1, x) and dR(x, y) =
dR(N(x), N(y)) for all x, y ∈ [0, 1], then
N(x) = dR(0, N(x)) for all x ∈ [0, 1];

4. If N(x) = dR(1, x) and dR(x, y) =
dR(N(x), N(y)) for all x, y ∈ [0, 1], then
d(1, d(1, x)) = x for all x ∈ [0, 1]; that is, N
is an involutive negation.

Item 1) in Proposition 1 can be extended as fol-
lows.

Proposition 2 Let dR be a restricted dissimilarity
function. Then, for any y ∈]0, 1], the mapping

N(x) = dR(yx, y)
dR(0, y)

is a negation.

Proof. N is well defined since we are taking y ∈]0, 1]
and if y 6= 0, then dR(0, y) 6= 0. Moreover

0 ≤ yx ≤ y so dR(yx, y) ≤ dR(0, y)

and 0 ≤ N(x) ≤ 1. To conclude, observe that

N(0) = dR(0, y)
dR(0, y) = 1

80



and

N(1) = dR(y, y)
dR(0, y) = 0 �

Regarding the relation with automorphisms, we
can state the following.

Proposition 3 Let dR be a restricted dissimilarity
function which is continuous and strict. Then, for
each y 6= 1 the mapping

ϕ(x) = dR((1− y)x+ y, y)
dR(1, y)

is an automorphism on the unit interval.

Proof. It is an easy calculation. Notice that the
denominator never vanishes �

4. Convex and quasi-convex restricted
dissimilarity functions: Relation between
restricted dissimilarity functions and
metrics

Since we are going to relate restricted dissimilar-
ity functions and penalty functions, convexity and
quasi-convexity is a crucial property to be taken into
account.

Theorem 3 Let dR : [0, 1]2 → [0, 1] be a restricted
dissimilarity function. Then dR is quasi-convex in
one variable; that is, for all x, y1, y2, λ ∈ [0, 1]

dR(x, λ ·y1 +(1−λ) ·y2) ≤ max(dR(x, y1), dR(x, y2))

Proof. Take x, λ ∈ [0, 1]. We know that, for all
y1, y2 ∈ [0, 1]

min(y1, y2) ≤ λ · y1 + (1− λ) · y2 ≤ max(y1, y2)

There are three possibilities.
i) x ≤ min(y1, y2). Then dR(x, λ ·y1 +(1−λ) ·y2) ≤
dR(x,max(y1, y2)) ≤ max(dR(x, y1), dR(x, y2));
ii) min(y1, y2) ≤ x ≤ max(y1, y2). In this situation
two things can happen:
a) min(y1, y2) ≤ x ≤ λ·y1+(1−λ)·y2 ≤ max(y1, y2),
so dR(x, λ · y1 + (1−λ) · y2) ≤ dR(x,max(y1, y2)) ≤
max(dR(x, y1), dR(x, y2)), or
b) λ · y1 + (1 − λ) · y2 ≤ x ≤ max(y1, y2), so
dR(x, λ · y1 + (1 − λ) · y2) ≤ dR(x,min(y1, y2)) ≤
max(dR(x, y1), dR(x, y2));
iii) max(y1, y2) ≤ x, can be treated as item i) �

Corollary 1 Let dR : [0, 1]2 → [0, 1] be a restricted
dissimilarity function. If λ0, λ1 ∈ [0, 1], then

dR(λ0 · x1 + (1− λ0) · x2, λ1 · y1 + (1− λ1) · y2) ≤
max(dR(x1, y1), dR(x1, y2), dR(x2, y1), dR(x2, y2))

for all x1, x2, y1, y2 ∈ [0, 1].

Proof. From the symmetry of dR we have dR(λ0 ·
x1 +(1−λ0) ·x2, λ1 ·y1 +(1−λ1) ·y2) ≤ max(dR(λ0 ·
x1 + (1−λ0) · x2, y1), dR(λ0 · x1 + (1−λ0) · x2, y2)),
and the result follows from the quasi-convexity in
each variable. �

For the remainder of this paper, whenever we say
that dR is convex or quasi-convex (concave or quasi-
concave) we mean that it is so in both variables.
Otherwise, we will state it explicitly.

Theorem 4 Let dR : [0, 1]2 → [0, 1] be a restricted
dissimilarity function which is concave in one coor-
dinate. Then dR is a metric on [0, 1].

Proof. We have to check the triangle inequality of
dR only, as the other properties of metrics are triv-
ially fulfilled by dR. The only non-trivial case to be
checked is when 0 ≤ x < z < y ≤ 1. Then the con-
cavity in one coordinate ensures for each λ ∈ [0, 1]
that

dR(x, λx+ (1− λ)y) ≥ λdR(x, x) + (1− λ)dR(x, y)
= (1− λ)dR(x, y) .

Similarly,

dR(λx+ (1− λ)y, y) ≥ λdR(x, y) .

Thus

dR(x, y) = y−z
y−xdR(x, y) + z−x

y−xdR(x, y)
≤ d(x, z) + d(y, z) ,

proving that dR is a metric �
Remark

(i) dR satisfying Theorem 4 is necessarily strict.
(ii) dR(x, y) = (x − y)2 is a strict dissimilarity re-

stricted function which is not a metric (note
that it is nor concave in one coordinate).

5. Some construction methods of restricted
dissimilarity functions

Proposition 4 Let ϕ : [0, 1] → [0, 1] be an au-
tomorphism and dR1 : [0, 1]2 → [0, 1] be a re-
stricted dissimilarity function. Then dR(x, y) =
dR1(ϕ(x), ϕ(y)) is a restricted dissimilarity func-
tion. Moreover, if dR1(x, 1) is strictly monotone,
dR(x, y) = dR1(x, y) for all x, y ∈ [0, 1] if and only
if ϕ(x) = x for all x ∈ [0, 1].

Proof. The fact that dR as defined in the Proposi-
tion as a restricted dissimilarity function is clear. To
see the last point, assume that dR1(x, y) = dR(x, y).
Then, in particular, dR1(1, y) = dR(1, ϕ(y)), and
the result follows from the monotonicity of dR1(1, x)
�

Proposition 5 If ϕ1, ϕ2 are two automorphisms of
the unit interval, then

d(x, y) = ϕ1(|ϕ2(x)− ϕ2(y)|)

is a strict dissimilarity function.
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Proposition 6 Let ϕ be an automorphism and K :
[0, 1]→ [0, 1] a mapping such that:

1. K(x) = 0 if and only if x = 0;
2. K(x) = 1 if and only if x = 1;
3. K is increasing.

Then

dR(x, y) = K(|ϕ(x)− ϕ(y)|)

is a restricted dissimilarity function.

Proof. Direct �

Corollary 2 Let dR be a continuous and strict re-
stricted dissimilarity function. Then the mapping

d′R(x, y) = dR(0, |dR(x, 1)− dR(y, 1)|)

is also a continuous and strict restricted dissimilar-
ity function.

Proposition 7 Let dR and d′R be defined as in the
previous corollary. Then, dR(x, y) = d′R(x, y) for
every x, y ∈ [0, 1] if and only if

dR(x, y) = |dR(x, 1)− dR(y, 1)|

holds.

Proof. Necessity is quite easy. Just observe that, if
dR(x, y) = dR(0, |dR(x, 1) − dR(y, 1)|), then, for all
x ∈ [0, 1], dR(x, 1) = dR(0, dR(x, 1)). Since ϕ(x) =
dR(0, x) is an automorphism on the unit interval
and dR is continuous and strict, we see that ϕ(x) =
x for all x ∈ [0, 1]. The converse is straightforward
�
Taking y = 1 we see that

d′R(x, 1) = dR(0, dR(x, 1))

Other construction methods of restricted dissim-
ilarity functions can be found in [2].

5.1. Construction of convex or quasi-convex
restricted dissimilarity functions

A practical method to build penalty functions is
by means of convex functions. As we intend to
use restricted dissimilarity functions to get penalty
functions, it is natural to consider methods for con-
structing convex or quasi-convex restricted dissimi-
larity functions. Regarding convexity, the last con-
dition in the definition of restricted dissimilarity
functions can be seen as a weak form of convexity.

Proposition 8 Let dR : [0, 1]2 → [0, 1] be a sym-
metric quasi-convex function such that

1. dR(x, y) = 0 if and only if x = y;
2. dR(x, y) = 1 if and only if {x, y} = {0, 1}.

Then dR is a restricted dissimilarity function.

Proof. Take x ≤ y ≤ z. Then there exists λ ∈ [0, 1]
such that y = λx+ (1−λ)z. From the symmetry of
dR,

dR(y, z) = dR(λx+ (1− λ)z, z)
≤ max(dR(x, z), dR(z, z)) = dR(x, z) .

Moreover, we also have that

dR(x, y) = dR(x, λx+ (1− λ)z)
≤ max(dR(x, x), dR(x, z)) = dR(x, z)�

Corollary 3 Let dR be a symmetric convex func-
tion such that

1. dR(x, y) = 0 if and only if x = y;
2. dR(x, y) = 1 if and only if {x, y} = {0, 1}.

Then, dR is a strict restricted dissimilarity function.

Proof. Since any convex function is also quasi-
convex, dR is a restricted dissimilarity function. To
see strictness, take x < y < z. Then there exists
λ ∈]0, 1[ such that y = λx+ (1− λ)z. So

dR(y, z) = dR(λx+ (1− λ)z, λz + (1− λ)z)
≤ λdR(x, z) + (1− λ)dR(z, z) < dR(x, z)

where the last inequality follows from dR(x, z) > 0,
x 6= z and λ ∈]0, 1[ �

Corollary 4 Let dR be a symmetric and strictly
convex function such that

1. dR(x, x) = 0 for all x ∈ [0, 1];
2. dR(x, y) = 1 if and only if {x, y} = {0, 1}.

Then, dR is a strict restricted dissimilarity function.

Proof. If y > x, we have that x < x+y
2 < y, and

0 ≤ dR(x+ y

2 , y) < 1
2dR(x, y)+1

2dR(y, y) ≤ dR(x, y)

so dR(x, y) > 0 as long as x 6= y. The result follows
from Corollary 3 �

6. Faithful restricted dissimilarity functions

In [4, 5, 7] the following concept is introduced to
build penalty functions.

Definition 6 The function p : X2 → R+ is called
a faithful penalty function if it satisfies p(x, y) = 0
if and only if x = y and it can be represented
as p(t, s) = K(h(t), h(s)), where h : X → R is
some continuous monotone function (scaling func-
tion) and K : R2 → R+ is convex.

Here X = [a, b]n ⊆
−
R = [−∞,+∞]. In this paper

we will take p : [0, 1]2 → [0, 1], h : [0, 1]→ [0, 1] and
K : [0, 1]2 → [0, 1].
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Proposition 9 In the setting of Proposition 4, if
dR1 is convex, then the restricted dissimilarity func-
tion dR is a faithful penalty function.

Proof. Direct �
A special class of faithful penalty functions are

the faithful dissimilarity functions defined in [7].
Faithful dissimilarity functions p are expressed as

p(x, y) = K(h(x)− h(y))

where K : R → R is convex with the unique min-
imum K(0) = 0 and h is a strictly monotone con-
tinuous function h : X → R. Observe that these
functions are continuous. In this work, we take
K : [−1, 1]→ [0, 1].

We will use the term faithful restricted dissimi-
larity functions for faithful dissimilarity functions
which are also restricted dissimilarity functions.

Proposition 10 In the setting of Proposition 6, if
K is convex, then dR is a faithful restricted dissim-
ilarity function.

Proof. Direct �

Example 2 1. If K(x) = x2, then dR(x, y) =
(h(x)− h(y))2,

2. If K(x) = |x|, then dR(x) = |h(x)− h(y)|.

Next we characterize a particular case of faithful
restricted dissimilarity functions.

Lemma 1 Let dR be a faithful restricted dissimi-
larity function such that

dR(x, y) = K(h(x)− h(y))

with K : [−1, 1] → [0, 1] convex with a unique min-
imum at K(0) = 0 and h : [0, 1] → [0, 1] contin-
uous and strictly monotone. Then there exists a
convex K0 : [−1, 1] → [0, 1] with a unique mini-
mum at K(0) = 0 such that if 0 < x < y, then
K0(x) < K0(y) in such a way that

dR(x, y) = K0(h(x)− h(y)) .

Proof. For the mapping K : [−1, 1] → [0, 1] in the
statement it holds that for 0 < x < y,K(x) < K(y),
there is nothing to prove. So assume that this is not
the case and h is increasing (the decreasing case is
analogous). The mapping

F : [0, h(1)− h(0)]→ [0, 1] given by
x→ K(h(x)− h(0))

is a bijection since:
a) F is continuous, since K is convex and h is con-
tinuous;
b) F (0) = K(h(0)− h(0)) = K(0) = 0;
c) F (1) = K(h(1)− h(0)) = dR(1, 0) = 1;
d) From continuity and items b) and c) F is surjec-
tive;

e) If F (x) = F (y), then K(h(x)−h(0)) = K(h(y)−
h(0)); that is;

x = dR(x, 0) = dR(y, 0) = y .

So injectivity follows.
Consider the function:

r : [0, 1]→ [0, h(1)− h(0)] given by
t→ (h(1)− h(0))t

where r is increasing and K ◦ r is convex. More-
over, r is continuous and bijective, so K ◦ r is also
continuous and bijective. Defining K0 = K ◦ r and
taking into account that K must be symmetric, the
proof is complete �

Theorem 5 Take dR : [0, 1]2 → [0, 1]. Then the
following items are equivalent.

i) dR is a faithful restricted dissimilarity function
that satisfies dR(x, y) = dR(N(x), N(y)) with
N(x) = dR(1, x).

ii) There exists a concave automorphism ϕ on the
unit interval such that

dR(x, y) = ϕ−1(|ϕ(x)− ϕ(y)|)

Proof. i)⇒ ii) As dR is a faithful restricted dissimi-
larity function, there is a convex K : [−1, 1]→ [0, 1]
such thatK(x) = 0 if and only if x = 0 (unique min-
imum at x = 0) and there exists h : [0, 1] → [0, 1]
continuous and strictly monotone such that

dR(x, y) = K(h(x)− h(y))

On the other hand, N(x) = dR(1, x) is a strong
negation. So there exists an automorphism ϕ :
[0, 1]→ [0, 1] such that

N(x) = dR(1, x) = ϕ−1(1− ϕ(x))

and
dR(1, x) = K(h(1)− h(x)) .

We also know that N(x) = dR(1, x) =
dR(N(1), N(x)) = dR(0, N(x)). As N is a strong
negation, x = dR(0, x) for all x ∈ [0, 1]. Whence

x = dR(0, x) = dR(x, 0) = K(h(x)− h(0)) .

Taking x = 1 we have 1 = K(h(1)− h(0))
On the other hand, from Lemma 1 if 0 < x < y,

then K(x) 6= K(y).
If K is strictly convex, h(1)− h(0) = 1. So:

a) either h is an automorphism or
b) h is a strict negation.

a) If h is an automorphism, then x = dR(x, 0) =
K(h(x)−h(0)) = K(h(x)). AsK is injective in [0, 1]
it holds that K−1(x) = h(x) is an automorphism
and as K is convex, K−1 is concave.

Take ϕ(x) = K−1(x). Then h(x) = ϕ−1(x) and

dR(x, y) =
{
ϕ−1(ϕ(x)− ϕ(y)) if x ≥ y ;
ϕ−1(ϕ(y)− ϕ(x)) otherwise.

That is; dR(x, y) = ϕ−1(|ϕ(x)− ϕ(y)|).
b) can be proved analogously �
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7. Faithful restricted dissimilarity functions
and penalty based functions

Theorem 6 Let M : [0, 1]n → [0, 1] be an aggre-
gation function and dR : [0, 1]2 → [0, 1] a faithful
restricted dissimilarity function. Then

P : [0, 1]n+1 → [0, 1] given by

P (x, y) =
n

M
i=1
dR(xi, y)

is a penalty function.

Proof. (1) P (x, y) ≥ 0 for all x ∈ [0, 1]n and
y ∈ [0, 1]. (2) If y = xi for all i = 1, · · · , n,
then dR(xi, y) = 0, then P (x, y) = 0. (3) As
dR is a faithful restricted dissimilarity function, we
can write it as dR(xi, y) = K(h(xi) − h(y)) with
K : [−1, 1]→ [0, 1] a convex function with a unique
minimum at 0 (K(0) = 0) and h : [0, 1] → [0, 1]
continuous and strictly monotone. So dR is quasi-
convex.
If h is increasing (the decreasing case is analo-

gous)

P (x, λy1 + (1− λ)y2)

=
n

M
i=1
dR(xi, λy1 + (1− λ)y2)

=
n

M
i=1
K(h(xi)− h(λy1 + (1− λ)y2))

≤


MK(h(xi)− h(max(y1, y2)))
if h(xi)− h(λy1 + (1− λ)y2) ≤ 0;
MK(h(xi)− h(min(y1, y2)))
in other case.

An in any case, we have that this is less than
or equal to max(

n

M
i=1
K(h(xi)− h(y1)),

n

M
i=1
K(h(xi)−

h(y2))) �

Corollary 5 In the setting of Theorem 6, if M :
[0, 1]n → [0, 1] is an aggregation function such that
M(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0
and M(x1, . . . , xn) = 1 if and only if x1 = · · · =
xn = 1 holds, then

1. P (x, y) = 0 if and only if {xi, y} = {0, 1} for
all i = 1, · · · , n;

2. P (x, y) = 1 if and only if xi = y for all i =
1, · · · , n;

3. If x = (1, · · · , 1), then P (x, y) =
n

M
i=1
n(y) with

n(y) = dR(1, y);
4. P (x, 1) =

n

M
i=1
n(xi) with n(xi) = dR(1, xi) for

all i = 1, · · · , n;
5. If ϕ is a concave automorphism, then

P (x, y) =
n

M
i=1
ϕ−1(|ϕ(xi)− ϕ(y)|)

is a penalty function.

Proof. Direct �

Corollary 6 In the setting of Theorem 6, if M is
idempotent, then if x = (1, · · · , 1), P (x, y) = n(y)
with n(y) = dR(1, y).

Proof. Direct �

Proposition 11 Let M : [0, 1]n → [0, 1] be an
idempotent aggregation function and dR : [0, 1]2 →
[0, 1] a faithful restricted dissimilarity function.
Then the penalty based function

f(x) = arg min
y
P (x, y) = arg min

y

n

M
i=1
dR(xi, y)

is an idempotent function.

Proof. Direct �

8. Conclusions

In this work we have recalled the concept of re-
stricted dissimilarity functions and have related it
to penalty functions via faithful restricted dissimi-
larity functions. We have also shown some connec-
tions between restricted dissimilarity functions and
metrics.

In the future we intend to develop further the
theoretical aspects of this work, specially analyzing
what kinds of averaging aggregation functions can
be generated by the use of penalty functions built
from restricted dissimilarity functions.
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