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Abstract. The elliptical stable distributions represent a symmetric subfamily
of the stable distributions. Their advantage contrary to the general stable dis-
tributions consists in their easy-to-use property and the highest resemblance to
the normal distribution. They enable an easy representation of the dependence
structure of the margins by means of a matrix Q the same as in case of the
normal distribution. In general, the dependence structure between margins is
given in form of a spectral measure which can be even continuous. The compu-
tations and approximations require so much time that it justi�es the fact that
many practitioners avoid using general stable distributions. The general stable
distributions possess so many additional properties that they barely take af-
ter the multivariate normal distribution. But the multi-variate elliptical stable
distributions can be easily simulated and the estimation of their parameters
can be obtained by methods whose preciseness is almost the same as the one
of the maximum likelihood methodology.
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Introduction

The stable distributions represent a exible parametric family of distributions capable of generalizing
the normal distribution and �tting larger amounts of data preserving convolution and limit properties of
the normal distribution. Under normality assumption, many real phenomena that we can often observe
in practice are almost impossible, in other words their probability is so low that from practical point
of view their frequency of appearance should be once in millions or even more years. That is why the
practitioners and theorists try to replace the normal distribution by another distributions with heavy tails
to make the model closer to reality. The stable distributions represent an ideal candidate because under
the stability assumption, it is not necessary to completely rule out normality. Sometimes it happens that
an unexpected jump or drop occurs not being accompanied with any important economic news nor any
important technical signal, e.g. the October crush. Such situations can be explained only by appearance
of an outlier in the model ruling the prices and it is a next argument favoring using the heavy tailed
distributions. The fact that most of time the prices spend in at justi�es using the symmetric stable
distributions which represent a sub-family of the elliptical stable distributions.
De�nition. The random variable X has a univariate elliptical stable distribution if its characteristic
function is of the form:

ψ(t) = exp (iµt) exp (−σα|t|α)

where α ∈ (0, 2], µ ∈ (−∞,∞) and σ > 0. Note that if α = 2 we have a characteristic function of the
normal distribution. If α < 2 then any moment EXa with a ≥ α is in�nite. If a < α then EXa is �nite.
Hence follows that if α < 2 then the variance varX is in�nite.
De�nition. The multivariate elliptical stable distribution is the distribution whose characteristic func-
tion is of the form:

ψ(t) = exp(i · tTµ) exp
(
−

∣∣tTQt∣∣α/2
)

where µ is the mean vector provided that α > 1 and Q is the matrix determining the dependence
structure between the margins. Q is a positively de�nite matrix and in case of α equal to 2 we have the
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multivariate normal distribution whose covariance matrix is Q. In �nancial practice α is always larger
than 1 therefore, µ is a mean vector. A very important property of the stable distribution is the fact the
linear combination of the random variables with the same α has also a stable distribution with the same
α parameter. In other words, if X1, X2,...,Xn, X are i.i.d. elliptical stable distributions with zero mean,
i.e. Xi ∼ ψ(t) = exp

(
−

∣∣tTQt∣∣), i = 1, 2, ... then

X1 +X2 + ...+Xn =d
1

n1/α
X

This property can be used as a statistical test of stability by exploring if this convolutional property
holds. A general univariate stable distribution is denoted as Sα(σ, β, µ), where µ and β are location and
skewness parameters respectively. The elliptical stable distributions are a sub-family of the general stable
distributions of the form Sα(σ, 0, 0).

1 Simulation of the stable elliptical distributions

If Z ∼ r.v. with ch.f. exp(−{tTQt}α/2
) then

Z =
√
sG

where s ∼ Sα/2

((
cos

(
πα
4

))2/α
, 1, 0

)
and G ∼ N(0,Q). G = CTY, C ·CT = Q, Y = (Y1, Y2, ..., Yn)

T
,

Yi ∼ N(0, 1), i = 1, 2, .., n. [5] If we want to simulate a sample from Sα(1, β, 0) we can do it as follows:

X = Sα,β ·
sin{α(V +Bα,β)}

{cos(V )}α

[
cos{V − α(V +Bα,β)}

W

] 1−α
α

,

where

Bα,β =
arctan

(
β tan πα

2

)
α

, Sα,β =
{
1 + β tan2

(πα
2

)}1/2α

;

W ∼ exp(1), V ∼ U(−π/2, π/2). [2] If X ∼ Sα(1, β, 0) then for all σ > 0 and ν ∈ R we have
Y = σX + µ ∼ Sα(σ, β, µ). Thus, we can simulate any elliptical stable distribution. The simulating
of a general multivariate stable distribution is a more complicated task and requires numerical techniques
to conduct it. That is another reason of preference of this sub-family.

2 Parameter estimation of the multivariate elliptical stable distributions

If we want to estimate parameters of the multivariate elliptical stable distribution with parameters α and
Q we can do it in two phases:

• Estimation of α parameter
• Estimation of the matrix Q

The former task can be conducted from the observations of the marginal distributions because all the
margins have the same α parameter. Having estimated α, we can put its estimate α̂ into the formula
of the characteristic function to estimate the matrix Q. Both estimation procedures will be conducted
based on the methodology of projections.
Remark. Due to the fact that the estimation of the tail index α is the most important we will conduct
the estimation of α in univariate case under assumption that σ = 1. But it is easy to transform this
method to the general case and this point of issue is considered in the part about estimation of the Q
parameter.



2.1 Estimation of the α parameter.

If X has a d-variate elliptical stable distribution with the parameters α and Q then any of its margins
Xi, i = 1, 2, .., d has a stable distribution Sα(σi, 0, 0) with the characteristic function of the form:

ψ(t) = exp(−σα
i |t|

α
)

The idea of this method is based on the properties of the maximum likelihood estimator:
If p(x, α) is a density function of the stable distribution then:

I(α) =

∫ ∞

−∞
J2(x, α)p(x, α)dx, J(x, α) =

(
∂p(x,α)

∂α

)
p(x, α)

, α̂
ML

=

α :

n∑
j=1

J(Xj , α) = 0


where I(α) is the Fisher information and X1, X2, ..., Xn is the vector of observations. The methodology
of projections enables to approximate the function J(x, α) which will enable us to obtain the estimates
of almost the same preciseness as the ML-estimators and to calculate the Fisher information. We want
to project the function J(x, α) to the space {1, exp(it1x), exp(it2x), ..., exp(itkx)}, (The �rst to use such
methodology was Kagan [4], but he used projections with powers. But the powers cannot be used for
the stable distributions due to their in�nity of the variance) i.e. to represent its approximation in form
Jk(x, α) where

Jk(x, α) =
k∑

j=0

exp(itjx) =
k∑

j=0

cos(itjx) + i
k∑

j=0

sin(itjx)

where aj j = 0, 2..., k are unknown parameters and t0, t1, ..., tk are known points in the vicinity of 0. One
of possible choices of tj , j = 0, 1, ..., k is tj = j/k. We project to the space with scalar product given as
follows:

X ∼ Sα(1, 0, 0), 〈exp(itmX), exp(itnX)〉 = E exp(itmX) exp(itnX) =

= E exp(iX(tm + tn)) =

∫ ∞

−∞
p(x, α) exp(ix(tm + tn))dx = exp (−|tm + tn|α)

For any projection Jk(x, α) holds:

(Jk(x, α)− J(x, α)) ⊥ exp(itjx), j = 1, 2, .., k

or
〈(Jk(X,α)− J(X,α)), exp(itjX)〉 = 0, j = 1, 2, .., k

hence ∫ ∞

−∞
Jk(x, α)p(x, α) exp(itjx)dx =

∫ ∞

−∞
J(x, α)p(x, α) exp(itjx)dx.

Hence, the calculation of both integrals yields:

k∑
v=0

av exp (−|tv + tj |α) = exp (−|tj |α) · |tj |α · ln |tj |, j = 0, 1, 2, .., k.

Notation

• A(α) = {eti+tj , i, j = 0, 1, 2, ..., k},
• b(α) = (0,−|t1|α ln |t1|e−|t1|

α

, ..,−|tk|α ln |tk|e−|tk|α)T

• t = (0, t1, t2, ..., tk)
T

• F (t, x) = (1, 2 cos(t1), 2 cos(t2), ..., 2 cos(tk))
T

In this notation, Jk(x, α) can be represented as follows:

Jk(x, α) = (A(α))−1b(α)F (t, x)

and if we have n observations X1, X2, ..., Xn i.i.d. ∼ Sα(1, 0, 0) then

α̂ =

α : (A(α))−1b(α)
n∑

j=1

F (t, Xj) = 0

 .

The Fisher information will be calculated by means of the formula Ik(α) = EJ2k (X,α). According to [4]
Ik(α)→ I(α) for α ∈ (0, 2] as k →∞.



2.2 Estimation of the Q parameter.

Jk(x, α) =
k∑

j=−k

aj exp
(
i · tTj x

)
where aj = a−j and t−j = −tj , tj ∈ Rd j = 1, 2, ..., k and t0 = 0. Then

Jk(x, α) = a0 + 2

k∑
j=1

aj cos
(
tTj x

)
〈exp(i · tTmX), exp(i · tTnX)〉 = E exp(i · tTmX) · exp(i · tTnX) = E exp(i · (tm + tn)

TX) =

=

∫
RK

p(x, α) exp
(
i · (tn + tm)Tx

)
dx = exp

(
−

∣∣(tn + tm)TQ(tn + tm)
∣∣α
2

)
Let us denote Jk = J i∗,j∗

k and J = J i∗,j∗. For any projection Jk(x,Q, α) holds:

(J(x,Q, α)− Jk(x,Q, α)) ⊥ exp
(
i · tTj x

)
Hence follows: ∫

RK

(J(x,Qα)− Jk(x,Q, α)) p(x, α) exp
(
i · tTj x

)
dx = 0, j = 1, 2, ..., k

Hence ∫
RK

(J(x,Q, α)) p(x, α) exp
(
i · tTj x

)
dx =

∫
RK

(Jk(x,Qα)) p(x, α) exp
(
i · tTj x

)
dx

for j=1,2,...,k. Let us calculate both integrals separately:∫
RK

(Jk(x, α)) p(x, α) exp
(
i · tTj x

)
dx =

∫
RK

k∑
l=−k

al exp
(
i · tTl x

)
p(x, α) exp

(
i · tTj x

)
dx =

=

k∑
l=−k

∫
RK

al exp
(
i · tTl x

)
p(x, α) exp

(
i · tTj x

)
dx =

k∑
l=−k

al

∫
RK

p(x, α) exp
(
i · (tTl + tTj )x

)
dx =

=

k∑
l=−k

al exp
(
−

∣∣(tl + tj)
TQ(tl + tj)

∣∣α
2

)

The second integral will be calculated as follows:

∫
RK

(J(x,Q, α)) p(x, α) exp
(
i · tTj x

)
dx =

∫
RK


(

∂p(x,α)
∂qi∗,j∗

)
p(x, α)

 p(x, α) exp
(
i · tTj x

)
dx

=

∫
RK

(
∂p(x, α)

∂qi∗,j∗

)
exp

(
i · tTj x

)
dx =

∂

∂qi∗,j∗

∫
RK

p(x, α) exp
(
i · tTj x

)
dx =

=
∂

∂qi∗,j∗
exp

(
−

∣∣tTj Qtj∣∣α
2

)
= −(tTj Qtj)α/2−1 exp

(
−

∣∣tTj Qtj∣∣α
2

) α
2
ti∗tj∗

Hence we will get the following sequence:

k∑
l=−k

al exp
(
−

∣∣(tl + tj)
TQ(tl + tj)

∣∣α
2

)
= −(tTj Qtj)α/2 exp

(
−

∣∣tTj Qtj∣∣α
2

) α
2
ti∗tj∗

In matrix form we get the following system of equations:
c0,0 c0,1 ... c0,k

c1,0 c1,1 ... c1,k

... ... ... ...

ck,0 ck,1 ... ck,k

 ·


a0

a1

...

ak

 =


b0

b1

...

bk





Figure 1: Graph of the Fisher information and the rate of convergence of Ik(α) to I(α) for α ∈ [1, 2], for
the blue line k = 200, for the rest k is lower.[6]

where cm,l = exp
(
−

∣∣(tm + tl)
TQ(tm + tl)

∣∣α
2

)
and bl = −(tTl Qtl)

α/2
exp

(
−

∣∣tTl Qtl∣∣α
2

)
α
2 ti∗tj∗ where

m, l = 1, 2, ..., k Note that cm,l = cm,l(Q) and bl = bl(Q). α is supposed to be known, because we can
determine it by analyzing univariate margins. Let us denote:

A(Q) = {ci,j , i, j = 0, 1, 2, .., k}

So the coe�cients will be determined as follows: a(Q) = A(Q)
−1
b(Q). Let us assume t0 = 0, i.e.

tt = (0, t1, t2, ..., tk)
T and denote

F (tt,x) = (2 cos(tT0 x), 2 cos(t
T
1 x)..2 cos(t

T
k x))

T

Jk(Q) = a(Q)TF (tt,x) and the estimate is: Q̂k = {Q : Jk(Q) = 0} This method gives us the estimate
of the whole matrix Q although we we were chasing the estimate qi∗,j∗ such that Q = {qi,j : i, j =
1, 2, .., d}. Therefore, we will take only the element (q̂k)i∗,j∗ as the estimate of qi∗,j∗ and having changed
the indexes, continue the estimations of other elements of the matrix Q.

3 Results

The Table 1. compares the quality of the estimation of the parameter α of the stable distribution
Sα(1, 0, 0). There are compared two methods:

• CFB means the methodology based on characteristic function when we compare theoretical and em-
pirical characteristic functions. This methodology is described in detail in [6] and the theory on which
this methodology is based is described in [3] and [6].
• The methodology based on projections is symbolically denoted by MLP.

There were simulated the samples with 1000 elements from the stable distribution Sα(1, 0, 0). And then
followed the estimation procedure by two just mentioned methodologies. From the table we can see that
the quality of the MLP is much higher than the one of its counterpart. The value of k was chosen to be
150. The similar methodology can be applied to estimate two parameters (σ, α) of the stable distribution
Sα(σ, 0, 0). Note that Q is a covariance matrix of some normal distribution. Therefore, �nding qi,i,
i = 1, 2, .., d enables us to deal with the correlation matrix. Moreover we will have that qi,j = qj,i,
i, j = 1, 2, .., d. But simple algebraic operations lead to the conclusion that qi,i = σi, i.e. σi,i can be
estimated in the �rst phase together with the α parameter. In other words it means that if we have to
estimate the matrix Qd×d it does not mean that we have to estimate d× d parameters.

Conclusion

The aim of this paper is to present methods of operating with the multivariate elliptical stable distri-
butions. By virtue of the Table 1. we showed that the methodology based on projections works even
better then the methodology based on comparing empirical and theoretical characteristic functions and
that such estimators converge to the MLP estimators. The calculations of the tail index was described



α Estimator Mean Var Mean±2σ
1.1 MLP 1.11584 0.00056 [1.0684,1.1632]

CFB 1.10255 0.00210 [1.0109,1.1942]

1.2 MLP 1.20275 0.00174 [1.1191,1.2863]

CFB 1.20260 0.00220 [1.1087,1.2964]

1.3 MLP 1.29915 0.00213 [1.2067,1.3915]

CFB 1.30260 0.00240 [1.2046,1.4005]

1.4 MLP 1.39966 0.00181 [1.3145,1.4847]

CFB 1.40230 0.00260 [1.3003,1.5042]

1.5 MLP 1.49584 0.00206 [1.4049,1.5867]

CFB 1.50310 0.00280 [1.3972,1.6089]

1.6 MLP 1.59134 0.00151 [1.5135,1.6691]

CFB 1.60300 0.00290 [1.4953,1.7107]

1.7 MLP 1.70204 0.00187 [1.6154,1.7886]

CFB 1.70120 0.00270 [1.5972,1.8051]

1.8 MLP 1.79173 0.00159 [1.7118,1.8717]

CFB 1.80120 0.00240 [1.7032,1.8991]

1.9 MLP 1.89991 0.00113 [1.8326,1.9671]

CFB 1.90220 0.00160 [1.8222,1.9822]

Table 1: Quality of the estimation. We compare mean, variance and µ ± 2σ intervals to �nd out which
estimator is more precise

in detail and the estimation of the dependence structure, i.e. Q, can be conducted in a similar way. The
ability to estimate the parameters of such distributions enables us to use them in multivariate models
e.g. in some modi�cations of MGARCH [1] model and to extend the normal models with new properties
making them closer to reality.
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