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Abstract: In this note we consider Markov decision chains with finite state space and compact
actions spaces where the stream of rewards generated by the Markov processes is evaluated
by an exponential utility function (so-called risk-sensitive model) with a given risk sensitivity
coefficient. If the risk sensitivity coefficient equals zero (risk-neutral case) we arrive at a standard
Markov decision chain. Necessary and sufficient optimality conditions along with equations for
average optimal policies both for risk-neutral and risk-sensitive models will be presented and
connections and similarity between these approaches will be discussed.
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1 Introduction and Notation

In this note, we consider Markov decision processes with finite state and compact action spaces
where the stream of rewards generated by the Markov processes is evaluated by an exponen-
tial utility function (so-called risk-sensitive model) with a given risk sensitivity coefficient, and
slightly extend some of the results reported in [1,2,9–12]. To this end, let us consider an expo-
nential utility function, say ūγ(·), i.e. a separable utility function with constant risk sensitivity
γ ∈ R, where the utility assigned to the (random) outcome ξ is given by

ūγ(ξ) :=

{
(sign γ) exp(γξ), if γ ̸= 0,

ξ for γ = 0 (the risk-neutral case).
(1)

For what follows let uγ(ξ) := exp(γξ), hence ūγ(ξ) = (sign γ)uγ(ξ). Then for the correspond-
ing certainty equivalent, say Zγ(ξ), since ūγ(Zγ(ξ)) = E[ūγ(ξ)] (E is reserved for expectation),
we immediately get

Zγ(ξ) =

{
γ−1 ln{Euγ(ξ)}, if γ ̸= 0

E[ξ] for γ = 0.
(2)

In what follows, we consider at discrete time points Markov decision process X = {Xn, n =
0, 1, . . .} with finite state space I = {1, 2, . . . , N}, and compact set Ai = [0,Ki] of possible
decisions (actions) in state i ∈ I. Supposing that in state i ∈ I action a ∈ Ai is chosen, then
state j is reached in the next transition with a given probability pij(a) and one-stage transition
reward rij will be accrued to such transition.

A (Markovian) policy controlling the decision process is given by a sequence of decisions at
every time point. In particular, policy controlling the process, π = (f0, f1, . . .), is identified
by a sequence of decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1 × . . . × AN for every
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n = 0, 1, 2, . . ., and fn
i ∈ Ai is the decision (or action) taken at the nth transition if the chain

X is in state i. Policy π which selects at all times the same decision rule, i.e. π ∼ (f), is called
stationary. We shall assume that the stream of transition rewards generated by the considered
Markov decision process is evaluated by an exponential utility function (1). To this end, let
ξnX0

(π) =
∑n−1

k=0 rXk,Xk+1
be the (random) total reward received in the n next transitions of the

considered Markov chain X if policy π = (fn) is followed and the chain starts in state X0.
Supposing that X0 = i, on taking expectation we have (Eπ

i denotes the expectation if X0 = i
and policy π = (fn) is followed)

Ūγ
i (π, n) := Eπ

i (ū
γ(ξn)) = (sign γ)Eπ

i e
γ
∑n−1

k=0 rXk,Xk+1 if γ ̸= 0 (3)

Vi(π, n) := Eπ
i (ū(ξ

n)) = Eπ
i

n−1∑
k=0

rXk,Xk+1
if γ = 0, the risk neutral case. (4)

2 Risk-neutral Case: Optimality Equations

To begin with, (cf. [6, 8]) first observe that if the discrepancy function

φ̄ij(w, ḡ) := rij − ḡ + wj − wi, for arbitrary ḡ, wi ∈ R, i, j ∈ I (5)

then by (4)

Vi(π, n) = ḡ + wi +
∑
j∈I

pij(f
0
i ){φ̄ij(w, ḡ) + Vj(π

1, n− 1)− wj} (6)

= nḡ + wi + Eπ
i

n−1∑
k=0

φ̄Xk,Xk+1
(w, ḡ)− Eπ

i wXn (7)

For what follows we introduce matrix notation. We denote by P (f) = [pij(fi)] the N ×
N transition probability matrix of the chain X. Recall that the limiting matrix P ∗(f) =
lim

m→∞
m−1

∑m−1
n=0 Pn(f) exists, in particular, if P (f) is unichain (i.e. P (f) contains a single class

of recurrent states) the rows of P ∗(f), denoted p∗(f), are identical.

Obviously, ri(fi) :=
∑N

j=1 pij(fi)rij (resp. φi(fi, w, ḡ) :=
∑N

j=1 pij(fi)φ̄ij(w, ḡ)) is the ex-
pected one-stage reward (resp. expected discrepancy) obtained in state i ∈ I, and r(f) (resp.
φ(f, w, ḡ)) denotes the corresponding N -dimensional column vector of one-stage rewards (resp.
expected discrepancies). Then [P (f)]n · r (resp. [P (f)]n · φ(f, w, ḡ)) is the (column) vector of
expected rewards (resp. expected discrepancies) accrued after n transitions; its ith entry denotes
expectation of the reward (resp. discrepancy) obtained at time point n if the process X starts
in state i.

Similarly, the vector of total expected rewards earned up to the n-th transition

V (π, n) :=
n−1∑
k=0

k−1∏
j=0

P (f j)r(fk) = ng + w +
n−1∑
k=0

k−1∏
j=0

P (f j)φ(fk, w, ḡ)−
k−1∏
j=0

P (f j)w (8)

and its i-th element Vi(π, n) is the total expected reward if the process starts in state i. Observe
that for n → ∞ elements of V (π, n) can be typically infinite. Moreover, following stationary
policy π ∼ (f) for n tending to infinity there exist vector of average expected rewards, denoted
g(f) (with elements gi(f)) where g(f) = lim

n→∞
1
nV (f, n) = P ∗(π)r(f).
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Assumption A. There exists state i0 ∈ I that is accessible from any state i ∈ I for every
f ∈ F , i.e. for every f ∈ F the transition probability matrix P (f) is unichain.

The following facts are well-known to workers in stochastic dynamic programming (see e.g.
[4, 7]).

If Assumption A holds there exists decision vector f∗ ∈ F (resp. f̂ ∈ F) along with
(column) vectors w∗ = w(f∗), ŵ = w(f̂) with elements w∗

i , ŵi respectively, and g∗ = g(f∗)
(resp. ĝ = g(f̂)) (constant vector with elements ḡ(f) = p∗(f)r(f)) being the solution of the
(nonlinear) equation (I denotes the identity matrix)

max
f∈F

[
r(f)− g∗ + (P (f)− I) · w∗] = 0, min

f∈F

[
r(f)− ĝ + (P (f)− I) · ŵ

]
= 0 (9)

where w(f) for f = f∗, f̂ is unique up to an additive constant, and unique under the additional
normalizing condition P ∗(f) w(f) = 0. Then for

φ(f, f∗) := r(f)− g(f∗)+(P (f)−I)· w(f∗), φ(f, f̂) := r(f)− g(f̂)+(P (f)−I)· w(f̂) (10)

we have φ(f, f∗) ≤ 0, φ(f, f̂) ≥ 0 with φ(f, f∗) = φ(f̂ , f̂) = 0.

In particular, by (9)–(10) for every i ∈ I we can write

φi(f, f
∗) = ri(fi)− ḡ∗ +

∑
j∈I

pij(fi)w
∗
j −w∗

i ≤ 0, φi(f, f̂) = ri(fi)− ˆ̄g +
∑
j∈I

pij(fi)ŵj − ŵi ≥ 0.

3 Risk-Sensitive Models: Optimality Equations

For the risk-sensitive models, let Uγ
i (π, n) := Eπ

i (u
γ(ξn)) and hence Zγ

i (π, n) = 1
γ lnUγ

i (π, n)
be the corresponding certainty equivalent. In analogy to (6), (7) for expectation of the utility
function we get by (5) for arbitrary ḡ, wi ∈ R, i, j ∈ I

Uγ
i (π, n) = eγ(ḡ+wi)

∑
j∈I

pij(f
0
i )e

γ{φ̄ij(w,ḡ)−wj} · Uγ
j (π

1, n− 1) (11)

= eγ(2ḡ+wi)
∑
j∈I

∑
k∈I

pij(f
0
i )e

γ{φ̄ij(w,ḡ)−wj} · eγwjpjk(f
1
j )e

γ{φ̄jk(w,ḡ)−wk} · Uγ
k (π

2, n− 2)

...

= eγ(nḡ+wi)Eπ
i e

γ{
∑n−1

k=0 φ̄Xk,Xk+1
(w,ḡ)−wXn}. (12)

In particular, for stationary policy π ∼ (f) assigning numbers g(f), wi(f) by (5) we have

φ̄ij(w(f), ḡ(f)) := rij − ḡ(f) + wj(f)− wi(f) (13)

and (11),(12) take the form

Uγ
i (f, n) = eγ(ḡ(f)+wi(f))

∑
j∈I

pij(fi)e
γ{φ̄ij(w(f),ḡ(f))−wj(f)} · Uγ

j (f, n− 1)

= eγ(nḡ(f)+wi(f))Eπ
i e

γ{
∑n−1

k=0 φ̄Xk,Xk+1
(w(f),ḡ(f))−wXn (f)}.

In what follows we show that under certain assumptions there exist wi(f)’s, g(f) such that∑
j∈I

pij(fi)e
γrij · eγwj(f) = eγḡ(f) · eγwi(f), for i ∈ I. (14)
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Now let ρ(f) := eγg(f), zi(f) := eγwi(f), qij(fi) := pij(fi)e
γrij and introduce the follow-

ing matrix notation Uγ(π, n) = [Uγ
i (π, n)], z(f) = [zi(f)] ... N -column vectors, Q(f) =

[qij(fi)] ... N ×N nonnegative matrix.

Then by (14) for stationary policy π ∼ (f) we immediately have ρ(f)z(f) = Q(f)z(f). Since
Q(f) is a nonnegative matrix by the well-known Perron-Frobenius theorem ρ(f) equals the
spectral radius of Q(f) and z(f) can be selected nonnegative. Moreover, if P (f) is irreducible
then Q(f) is irreducible, and z(f) can be selected strictly positive (cf. [3]). Finally observe that
and if P (f) is unichain then z(f) can be selected strictly positive if the risk sensitivity coefficient
γ is sufficiently close to zero.

In (14) attention was focused only on a fixed stationary policy π ∼ (f). The above facts can
be extended to all admissible policies under the following

Assumption B. There exists state i0 ∈ I that for every f ∈ F is accessible from any state
i ∈ I, i.e. for every f ∈ F the transition probability matrix P (f) is unichain. Furthermore, if
for some f ∈ F the matrices P (f) and also Q(f) are reducible then state i0 belongs to the basic
class of Q(f) that is unique.

If Assumption B holds we can show existence of numbers w∗
i (i ∈ I), g∗, and some f∗ ∈ F such

that for all i ∈ I ∑
j∈I

pij(fi)e
γ{rij+w∗

j } ≤
∑
j∈I

pij(f
∗
i )e

γ{rij+w∗
j } = eγ[g

∗+w∗
i ] (15)

or equivalently ∑
j∈I

qij(fi)zj(f
∗) ≤

∑
j∈I

qij(f
∗
i )zj(f

∗) = ρ(f∗)zi(f
∗). (16)

Moreover, if Assumption B is fulfilled there also exist ŵi (i ∈ I), ĝ, and some f̂ ∈ F such that
for all i ∈ I ∑

j∈I
pij(fi)e

γ{rij+ŵj} ≥
∑
j∈I

pij(f̂i)e
γ{rij+ŵj} = eγ[ĝ+ŵi] (17)

or equivalently ∑
j∈I

qij(fi)zj(f̂) ≥
∑
j∈I

qij(f̂i)zj(f̂) = ρ(f̂)zi(f̂). (18)

Observe that by (17), (18) it holds for any f ∈ F

Q(f)z(f∗) ≤ Q(f∗)z(f∗) = ρ(f∗)z(f∗), Q(f)z(f̂) ≥ Q(f̂)z(f̂) = ρ(f̂)z(f̂). (19)

Theorem. If Assumption B holds there exists decision vector f∗ ∈ F (resp. f̂ ∈ F) along
with column vector z(f∗) (resp. z(f̂)) and a positive number ρ(f∗), along with g(f∗) = ln ρ(f∗),
(resp. ρ(f̂), along with g(f̂) = ln ρ(f̂)) such that for any f ∈ F ρ(f̂) ≤ ρ(f) ≤ ρ(f∗) and also
g(f̂) ≤ g(f) ≤ g(f∗).

The proof (by policy iterations) based on ideas in [5] can be found in [12].
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4 Necessary and Sufficient Optimality Conditions

4.1 Risk-neutral case

To begin with, from Eq.(8) considered for decision vector f∗ maximizing the average reward
with g = g∗, w = w∗ we immediately have for policy π = (fn)

V (π, n) :=
n−1∑
k=0

k−1∏
j=0

P (f j)r(fk) = ng∗ + w∗ +
n−1∑
k=0

k−1∏
j=0

P (f j)φ(fk, f∗)−
k−1∏
j=0

P (f j)w∗. (20)

Hence for stationary policy π∗ ∼ f∗ maximizing average reward we immediately get

V (π∗, n) = ng∗ + w∗ −
k−1∏
j=0

P (f j)w∗ (21)

and (nonstationary) policy π = (fn) maximizes long run average reward if and only if

lim
n→∞

1

n

n−1∑
k=0

k−1∏
j=0

P (f j)φ(fk, f∗) = 0. (22)

4.2 Risk-sensitive case

From Eq.(12) considered for decision vector f∗ fulfilling conditions (17), (18) we immediately
have for policy π = (fn)

Uγ
i (π, n) = eγ(g

∗+w∗
i )
∑
j∈I

pij(f
0
i )e

γ{φ̄ij(w
∗,g∗)−w∗

j } · Uγ
j (π

1, n− 1) (23)

= eγ(ng
∗+w∗

i )Eπ
i e

γ{
∑n−1

k=0 φ̄Xk,Xk+1
(w∗,g∗)−w∗

Xn
}. (24)

Hence for stationary policy π∗ ∼ (f∗) with f∗ fulfilling conditions (17), (18) we immediately get

Uγ
i (f

∗, n) = eγ(ng
∗+w∗

i )Eπ
i e

{−γw∗
Xn

}. (25)

Since the state space I is finite, there exists number K > 0 such that |w∗
i | ≤ K for each i ∈ I.

Hence by (2), (24),(25) we immediately conclude that

Uγ
i (π, n) ≤ eγ(ng

∗+w∗
i ) · e|γ|K , Zγ

i (π, n) =
1

γ
lnUγ

i (π, n) (26)

In virtue of (17), (18), (19) from (26) we can conclude that for stationary policy π ∼ (f∗) or
π ∼ (f̂) and arbitrary policy π = (fn)

lim
n→∞

1

n
Zγ
i (π, n) = g∗ if and only if lim

n→∞

1

n
ln

{
Eπ
i e

γ
n−1∑
k=0

φ̄Xk,Xk+1
(w∗,g∗)}

= 0 (27)

lim
n→∞

1

n
Zγ
i (π, n) = ĝ if and only if lim

n→∞

1

n
ln

{
Eπ
i e

γ
n−1∑
k=0

φ̄Xk,Xk+1
(ŵ,ĝ)}

= 0. (28)
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[9] Sladký K.: On dynamic programming recursions for multiplicative Markov decision chains. Mathe-
matical Programming Study 6 (1976), 216–226.
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