
KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 1 , PAGES 5 0 – 8 2

PROBABILISTIC PROPERTIES OF THE CONTINUOUS
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In this paper we formulate a general model of the continuous double auction. We (recur-
sively) describe the distribution of the model. As a useful by-product, we give a (recursive)
analytic description of the distribution of the process of the best quotes (bid and ask).
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1. INTRODUCTION

Currently, the continuous double auction (c.d.a.) is one of the most common trading
mechanisms used at financial markets.

Trading according to the c.d.a. is asynchronous, i. e., agents may take their actions
at any instant during the trading hours. Three types of actions may be performed:

• putting a limit order, i. e., an offer to buy (or sell) a certain amount of the traded
commodity for no more (no less) than a certain limit price

• putting a market order, i. e., the instruction to buy (sell) a certain amount of the
commodity for the best available price(s)

• cancelling a (previously submitted) pending (i. e., still unexecuted) limit order.

The collection of all pending buy (sell) limit orders is called a buy (sell) limit order book,
the best available buying (selling) price is referred to as the best bid (best ask).

In the most recent decade, several papers on modelling the continuous double auction
have appeared: from a number of similar models, let us mention the simple one by [5]
with Poisson orders’ arrivals and the bounded uniform relative limit prices, the static
model by [4] with non-uniform continuous absolute limit prices, a discrete-price uniform
model by [11] and, finally, the recent generalisation of the last model by [6] incorporating
several properties of real-life limit order markets.

Even if the statistical properties of the models have been extensively researched by
means of simulations and approximations (see, e. g., [11]), their rigorous probabilistic
descriptions have not yet been developed.
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The present paper makes a step toward this goal: a general model, covering the
models by [4, 5] and [11], is formulated and a rigorous (recurrent) description of its
distribution is provided.

Similarly to the covered models, unit order sizes are assumed in the general model.
The evolution of the market (i. e., of the order books) is assumed to (stochastically)
depend only on the history of the best quotes, which roughly corresponds to the reality in
which the order books are hidden to (the majority of) the participants. The (conditional)
distribution of the limit prices is assumed to be continuous; however, as demonstrated
further on, the model may be easily transformed to enable discrete prices (price ticks).

Our model allows both finite and infinite numbers of the orders in the order books.
Even if the assumption of infinite order books is clearly unrealistic, it brings several
advantages: First, the order books never become empty given the assumption which
simplifies the modelling, in cases when the probability of an empty order book is neg-
ligible anyway. Second, no arbitrary truncation point of the limit prices (as in [5]) has
to be set. Third and most importantly, the infinite order books are necessary to be as-
sumed for our model to cover the popular model by [11].1 Moreover, the assumption of
infinite books does not harm the predictions of the model much, because the probability
of executing the orders lying deep in the book before they are cancelled is so small that
their influence on the dynamics of the model is negligible.

The main theoretical result of the paper is the analytical description of the dis-
tribution of the market (i. e., the order books) at a given time. As a first step and
simultaneously a (very useful) by-product, the distribution of the best quotes (the bid
and the ask) is derived, allowing us, to some extent, to work with the model without the
knowledge of the (usually inaccessible) order book data. The distribution of the order
books is then described by means of the distribution of the quotes and the conditional
distribution of the order books given the history of the quotes.

There are many applications of our theoretical results. Having formulas at hand, we
can construct tests and/or estimators of the parameters of the model, we can design
algorithms for efficient Monte Carlo simulation or we can examine further theoretical
properties of the model; one of those applications may be found in the accompanying
paper [9] where the tails of the price increments in the model by [11] are examined: in
particular, it is proven that the tails are fat (as it was demonstrated by the simulations,
see [11] and the references therein) but, quite surprisingly, the tails become thin if an
initial call auction is held before the trading begins. Another theoretical application
of the model could be an algorithm for optimal purchase and/or liquidation of a large
amount of a stock, for instance.

This paper is organized as follows: First (Section 2), some notation and definitions
of mathematical objects, uncommon in financial literature, are introduced. Further
(Section 3), the general model is defined. Next (Section 4), the distribution of the
model is specified. Finally (Section 5), the paper is concluded. Descriptions of the
covered models by means of our notation, proofs and auxiliary theoretical results can
be found in the Appendix.

1The reasons why [11] work with infinite order books, most likely, are the statistically-mechanical
analogies used by the authors.
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2. PRELIMINARIES

In the current Section, we discuss the mathematics we shall use to describe the model.
Since, in principle, there is no upper bound of the amount of pending limit orders,

the mathematical objects describing the order books have to be infinitely dimensional
(even in the case when we do not assume actually infinite order books). From several
equivalent representations of the shapes of the order books, we have chosen (simple) point
processes,2 whose definition and basic properties are summarized in Subsection 2.1.

Since we use conditional distributions extensively in the present paper, we could not
avoid using conditional independence – in Subsection 2.2, we provide a brief introduction
into this notion.

Finally, we introduce some notation, specific to the present paper (Subsection 2.3).

2.1. Point Processes Basics

X is a k-dimensional (real) point process (p.p.) if it is a collection of random variables
(points) taking values in Rk such that each bounded3 set contains no more than finitely
many points. If the points are distinct with probability one (w.p.1) then the p.p. is
called simple.

Since simple point processes may be viewed as sets, we shall sometimes use set-theory
notation to describe their relationships.

Moreover, since point processes are equivalent to random σ-finite atomic measures,
we shall also adopt some notation from measure theory: By |X| we shall denote the
total number of the points of X. Under XS, where S is a Borel set, we shall understand
the number of points belonging to S. By X|S we denote the restriction of a p.p. (or a
measure) X to the sub-space S.

We say that a p.p. X is finite if |X| <∞.
If there exists a value mi ∈ RM , assigned to each point of xi of a p.p. X defined on

RN , i ≤ |X|, then we say that X is a marked point process (m.p.p.) with marks in RM ;
in that case, the collection (xi)i≤|X| is called a ground process of X. Note that X may
be viewed as a p.p. on RM+N – we shall view m.p.p.’s that way in the sections that
follow.

A p.p. X is a Poisson (point) process (P.p.p.) on Rk with an intensity measure µ if

(i) XS ∼ Poisson (µS) for any bounded S ∈ B(Rk) (here, B(M) denotes Borel sets
of M)

(ii) XS1, XS2, . . . XSn are independent for any disjoint collection of Borel sets S1,
S2,. . . , Sn,

(iii) µS <∞ for any bounded Borel set S.

It easily follows from the definition of a P.p.p. and from the additive property of the
Poisson distribution that, whenever X1, . . . , Xn are mutually independent P.p.p.’s with

2The point processes seem to be the most suitable for us because the theory describing them is
the most developed and intuitive among other equivalent representations, e. g., stepwise functions or
infinitely dimensional vectors.

3I.e., contained in a hypercube of a finite volume.
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intensities µ1, . . . , µn, X1 +X2 + · · ·+Xn is a P.p.p. with the intensity
∑

i µi (here, the
sum of the point processes means the p.p. comprising of all the points of the summed
processes).

2.2. Conditional Independence

The present Subsection is devoted to the notion of conditional independence which is in
fact nothing else but the (ordinary) independence of conditional distributions. While the
ordinary independence of random variables U1 and U2 may be interpreted as the non-
existence of any information based on U2 which could help us forecast U1, the conditional
independence of U1 and U2 given V means that all the information common to U1 and
U2 may be explained by V . By analogy with ordinary independence, the conditional one
is usually defined by means of (conditional) probabilities as follows: we say that random
elements4 U1, . . . , Un are conditionally independent given a random element V if

P[U1 ∈ A1, . . . , Un ∈ An|V ] =
n∏

i=1

P[Ui ∈ Ai|V ] w.p.1

for any collection of measurable sets A1, . . . , An. In the sequel, we shall repeatedly
exploit the fact that the conditional independence introduced above holds if and only if

L (Ui |U1, . . . , Ui−1, V ) = L (Ui |V ) , 1 ≤ i ≤ n

where L (X |Y ) denotes the conditional distribution of X given Y (see [3], Propositions
6.6 and 6.8).

2.3. Special Notation

At this Subsection, let us introduce the notation specific for the present work.
For any sequence η0, η1, . . . we put ∆ηi

4
= ηi − ηi−1, i ∈ N (the symbol

4
= means

definition),

For any process (xt)t≥0 and each t ∈ R+, we shall write x̄t
4
= (xs)s≤t (i. e., its history

up to t).
By writing X = [x1, x2, . . .] we shall say that a simple p.p. X consists of the points

x1 < x2 < . . . .
By saying that X is a P.p.p. with the density ν we shall mean that X is a P.p.p.

with the intensity whose density (with respect to the Lebesgue measure) is ν.
Generalising a widely used notion, we shall say that Y is a heterogeneous thinning

(h-thinning) of a simple p.p. X = [x1, x2, . . .] with parameters p1, p2, . . . if Y ⊆ X and,
for any n ∈ N and any distinct i1, i2, . . . in ∈ N, ij ≤ |X|, j ≤ n,

P[xi1 ∈ Y, . . . xin ∈ Y |X] =
n∏

j=1

pij .
5

4By random element we mean any measurable mapping from an underlying probability space into
a measurable space.

5Note that, for the definition to make sense, p1, p2, . . . have to be σ(X)-measurable.



54 M. ŠMÍD

3. MODEL DEFINITION

We describe the state of the market at a time t ∈ R+ by a couple

Ξt = (At, Bt)

where At and Bt are (finite or infinite) simple point processes with values in R; naturally,
each point of At or Bt stands for a limit order with a limit price equal to the location
of the point.6

Let us agree to write at,i for the ith least point of At and bt,i for the ith greatest
point of Bt with the convention that at,i = ∞ if |At| < i and bt,i = −∞ if |Bt| < i.
Specially, let us denote

at
4
= at,1, bt

4
= bt,1,

the (best) ask and (best) bid, respectively, and we naturally require that

bt < at. (1)

3.1. Dynamics of Ξ

To handle models with infinite order books, we cannot define the dynamics of Ξ “jump-
by-jump” due to the possibly infinite number of jumps; instead, we do it (slightly less
intuitively) by means of the process of the best quotes, the jumps of the quotes into the
spread and the in-book order flows.

Before we formulate the definition of the dynamics of the model, let us note that
the impact of an arrival of a market order is identical to that of a cancellation of the
ask hence we may treat both these actions jointly, calling them effective buy market
orders7 – the definition of the effective sell market order is symmetric.8 Further, it will
be useful for us to distinguish the in-spread limit orders and in-book limit orders, the
first being those whose limit prices lie between the current bid and ask, the latter being
the remaining ones. Finally, let us agree to abbreviate “buy market order” as “b.m.o.”,
“buy limit order” as “b.l.o.”, etc.

Starting with the dynamics, let the following objects be given:

• The initial value Ξ0 = (A0, B0), where A0 and B0 are simple p.p.’s on R fulfilling
(1) for t = 0.

• The collection of variables
0 = τ0 < τ1 < . . .

such that limν τν = ∞ standing for jump times of the process of the best quotes.

6Since we allow for working with log-prices, we allow negative values of the points.
7Our results will not be changed if we distinguish those events; however, we handle them jointly here

for notational simplicity; otherwise, two additional possible values of χ should be considered and two
additional processes should be added to ξ; see the sequel for the definition of χ and ξ.

8We do not specifically model the crossing limit orders, i. e., those whose limit pricecrosses the
opposite best quote (which may be submitted by mistake, for instance, see [11]) because they can be
regarded as market orders (their effect is exactly the same).
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• The collection of variables

χi ∈ {a+, a−, b+, b−}, i ∈ N,

denoting, for each i ∈ N, the type of the event happening at τi, where the meaning
of the symbols is given according to the following list:

a+ — an arrival of an effective b.m.o.

a− - an arrival of an in-spread s.l.o.

b+ — an arrival of an in-spread b.l.o.

b− — an arrival of an effective s.m.o.

• The collection of variables
(yi)i∈N, (zi)i∈N;

each yi, zi, respectively, i ∈ N, denoting the relative limit price of an in-spread
s.l.o., b.l.o., respectively (if χi 6= a− then yi equals to zero, analogously for b+ and
zi).

• A collection of marked point processes describing the flows of in-book limit orders
between τi−1 and τi

(Yi)i∈N, (Zi)i∈N

defined on (0,∆τi)×R+, (0,∆τi)×R−, respectively, with marks in R+ where each
point (θ, p, c) of Yi stands for a s.l.o. submitted at the time τi−1 + θ with a limit
price aτi−1 +p and with lifetime c, i. e., c < ∆τi− θ is interpreted as a cancellation
of the order at the time τi−1 + θ+ c while c ≥ ∆τi− θ means that the order is still
uncancelled at τi. Symmetrically, a point (θ, p, d) of Zi means a b.l.o. submitted
at the time τi−1 + θ with a limit price bτi−1 + p and lifetime d.

• For each i ∈ N, the collections of positive variables

ei = (ei,ν+1)ν∈N, fi = (fi,ν+1)ν∈N,

where, for each i, ν ∈ N, the variable ei,ν stands for the lifetime of the ν-th least
s.l.o (including the ask) present in the order book at time τi−1 and where the
lifetimes are measured from τi−1. Similarly, fi,ν denotes the lifetime of the νth
greatest b.l.o. (including the bid) present in the order book at time τi−1.

The dynamics itself is defined as follows: for any i ∈ N and any t ∈ (τi−1, τi),

At = {aτi−1} ∪ {aτi−1 + p : ∃(θ, p, c) ∈ Yi, τi−1 + θ < t < τi−1 + θ + c}
∪ {aτi−1,ν : ν > 1, t < τi−1 + ei,ν}

Bt = {bτi−1} ∪ {bτi−1 + p : ∃(θ, p, d) ∈ Zi, τi−1 + θ < t < τi−1 + θ + d}
∪ {bτi−1,ν : ν > 1, t < τi−1 + fi,ν}
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and, for any i ∈ N,

Aτi =


Aτ−i

∪ {aτi−1 + yi} if χi = a−

Aτ−i
\ {aτi−1} if χi = a+

Aτ−i
otherwise

Bτi =


Bτ−i

∪ {bτi−1 + zi} if χi = b+

Bτ−i
\ {bτi−1} if χi = b−

Bτ−i
otherwise

where At− is the left limit of A at t,9 symmetrically for B.
Clearly, for the definition to be correct, it has to be

aτi−1 + yi > bτi−1 , bτi−1 + zi < aτi−1 , i ∈ N. (2)

3.2. Stochastic Properties of Ξ

Denote by
ξt = (at, bt), t ∈ R+,

the process of the best quotes and assume that, for each i ∈ N, the conditional distribu-
tion of

xi
4
= (∆τi, χi, yi, zi)

given ξ̄τi−1 is arbitrary10 but fulfils (2).
In the present Section, we shall postulate the stochastic properties of Ξ which, in

fact, are consequences of the following two assumptions:

(i) The values of the quotes (i. e., ξ) are public information while the order books
(i. e., Ξ except of ξ) are hidden.

(ii) The participants of the market interpret the history of the public data (i. e., the
quotes ξ) only up to their last jump (which means that they do not take into
account the time elapsed since the last jump of ξ).

To justify the assumptions, note that (i) roughly corresponds to the present reality
in which the information about the quotes, including their detailed history, is easily
accessible while it is difficult to obtain data of the waiting limit orders.11 Assumption (ii),
on the other hand, has no other motivation than a tractability of the further calculations.
However, it may be partly justified by the fact that the changes of ξ are very frequent
in practice, hence the intervals on which we require the “constant” behaviour of the
participants are very short.

9Such a limit may be correctly defined by means of restrictions of A to bounded sets.
10We let these distributions to be “exogenous” to our model since, contrary to the limit order books,

xi may usually be observed and modelled by standard econometric techniques; hence, it is useful to
assume xi to be “brought from outside” to the model. The jumps out of the spread are, on the other
hand, equal to the distance between the first and second best quotes just before the jump, i. e., they
depend on the state of the order books, hence they are “endogenous” to our model.

11Even though they are partially published in some cases, still there is a phenomenon of hidden orders
here.
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Now let us translate our informal assumptions to the language of mathematics.
The fact that the participants do not interpret the time elapsed since the last jump of

ξ clearly leads to their “constant” behaviour between the jumps of ξ, i. e., (conditionally)
constant arrival and cancellation rates of the in-book orders and their identically (con-
ditionally) distributed, mutually (conditionally) independent limit prices. This implies
(see, e. g., [1], Lemma 6.4.VI) the conditionally Poisson (i. e., Cox) distribution of order
flows and conditionally exponential lifetimes.12

Additionally, since the participants interpret solely the public information up to τi−1

during (τi−1, τi), the order flow Yi may depend on the history of Ξ only by means of ξ̄τi−1

(i. e., the history of the quotes up to τi−1) and, moreover, xi should be (conditionally)
independent of Yi given ξ̄τi−1 .

Clearly, analogous relations should hold for Zi with an addition stemming from (i)
and (ii): all the dependence between Zi and the opposite order flow has to be completely
explained by ξ̄τi−1 , i. e., Zi and Yi should be conditionally independent given ξ̄τi−1 (we
express this equivalently by including Yi in the condition, see the end of the Subsection
2.2 for an explanation why).

Denote by Yi and Zi the ground processes of Yi and Zi, respectively. Summarising
our previous discussion, (i) and (ii) may be written as:

(α) Yi|Ξ̄τi−1 , xi is a Poisson point process on (0,∆τi]×R+ with intensity `⊗Fi, where
` denotes the Lebesgue measure and Fi is an absolutely continuous random mea-
sure13 on R+ depending only on ξ̄τi−1 .
Zi|Ξ̄τi−1 , xi,Yi is Poisson on (0,∆τi] × R− with intensity ` ⊗ Gi, where Gi is an
absolutely continuous random measure on R− depending solely on ξ̄τi−1

(β) Denoting by (ti,ν , pi,ν)ν∈N the collection of the points of Yi, and (ci,ν)ν∈N their
corresponding lifetimes,

P(∩n
j=1[ci,j > sj ]|Ξ̄τi−1 , xi, Yi) =

n∏
j=1

exp{−ρi(pi,j)sj},

for any n ∈ N and 0 ≤ sj < ∆τi − ti,j , 1 ≤ j ≤ n, where ρi is an integrable real
non-negative random function,14 depending solely on ξ̄τi−1 i. e.,

ρi(•) = ρ(•; ξ̄i)

for some (deterministic)
ρ : R⊗S → R+

where S is the space of truncated trajectories of ξ.
Symmetrically, if (ti,ν , pi,ν , ci,ν)ν∈N are the points of Zi then

P(∩n
j=1[di,j > sj ]|Ξ̄τi−1 , xi,Yi, Zi) =

n∏
j=1

exp{−σi(pi,j)sj},

12The fact that constant rates imply exponential jump times is well-known from the basic theory of
Markov processes.

13Even if we require the absolute continuity of the limit prices here, later we show how to model the
markets with discrete prices. See [3], Ch. 6, for the definition of random measure.

14i. e., a random element from the space L1
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for any 0 ≤ sj < ∆τi − ti,j , j ≤ n where σi(•) = σ(•; ξ̄τi−1) for some measurable
σ : R− ×S → R+.

(γ) For any n ∈ N and 0 ≤ sj ≤ ∆τi, 2 ≤ j ≤ n,

P(∩n
j=1[ei,j > sj ]|Ξ̄τi−1 , xi,Yi,Zi) =

n∏
j=1

exp{−ρi(aτi−1,j − aτi−1)sj},

and

P(∩n
j=1[fi,j > sj ]|Ξ̄τi−1 , xi,Yi,Zi, ei) =

n∏
j=1

exp{−σi(bτi−1,j − bτi−1)sj}.

Having defined the stochastic properties of Ξ, let us denote, for each i ∈ N, the densities
of Fi, Gi by φi and ψi, respectively and note that, similarly to the cancellation rates,
there exist mappings φ : R+ ⊗S → R+, ψ : R− ⊗S → R+ such that

φi(•) = φ(•; ξ̄τi−1), ψi(•) = ψ(•; ξ̄τi−1).

Since φ and ρ fully describe each L
(
Yi

∣∣Ξ̄τi , xi

)
and since ψ and σ do the same for

L
(
Yi

∣∣Ξ̄τi
, xi,Yi,Zi

)
, it follows (from Disintegration Theorem, [3], 6.6.4) that the dis-

tribution of Ξ is uniquely determined by

L (Ξ0) ,L (x1 |ξ0 ) ,L
(
x2

∣∣ξ̄[1] ) , . . .
and by φ, ψ, ρ, σ (here, L (U) denote the distribution of U).

3.3. Discrete Version of the Model

It is surprisingly easy to get a satisfactory discrete version of our model: roughly speak-
ing, it suffices to round the prices.

To leave an open space for describing both prices and log-prices by our model, we
define the rounding function r : R → R generally so that

r(p) = πν , p ∈ [πν , πν+1), ν ∈ Z,

for some increasing (deterministic) sequence (πν)ν∈Z and we introduce a “next tick”
function n defined by

n(ν) = πν+1, ν ∈ Z.

Denote
Ξ̂t =

(
(Ât,ν)ν∈Z, (B̂t,ν)ν∈Z

)
Ât,ν

4
= At[πν , πν+1), B̂t,ν

4
= Bt[πν , πν+1)

and put

ât
4
= min{ν : Ât,ν > 0}, b̂t

4
= max{ν : B̂t,ν > 0},
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If we require y•, z• to be such that

b̂τi < âτi for any i ∈ N

then, as it could be easily checked, Ξ̂ follows the dynamics which we would expect from
of a limit order market with discrete prices (πν)ν∈Z; obviously, each Â•,ν is interpreted
as the number of waiting s.l.o.’s with the price ν; and symmetrically for B̂.

In particular, if . . . , φ̂i,−1, φ̂i,0, φ̂i,1, . . . is a random sequence for any i and if we want
the arrival rate of s.l.o.’s with the limit price πν between τi−1 and τi to be φ̂i,ν for each
i ∈ N, ν > âτi−1 , then it suffices to set

φi(p) =
∑

ν>âτi−1

(πν+1 − πν)−11[πν ,πν+1)(aτi−1 + p)φ̂i,ν.

Similarly, if we require the conditional cancellation rate of the s.l.o.’s with a limit price
ν ≥ âτi−1 to be ρ̂i,ν then we may put

ρi(p) =
∑

ν≥âτi−1

1[πν ,πν+1)(aτi−1 + p)ρ̂i,ν .

Clearly, symmetric relations hold for the b.l.o.’s.
As a discrete counterpart of ξ (note that rounding has made ξ unobservable) introduce

X̂
4
= (â, b̂, p̂, q̂), p̂t

4
= Ât,â, q̂t

4
= B̂t,b̂, t ≥ 0.

Denote
0 < τ̂0 < τ̂1 < . . .

the jump times of X̂ and note that such a jump happens if, in the underlying model,
either ξ jumps, a s.l.o. with a price between a and n(â) arrives or is cancelled or if a
b.l.o. with a price between r(b̂) and b arrives or is cancelled.

3.4. Basic Properties of Ξ

Finishing this Section, let us formulate several basic properties of the process Ξ, the
first two guaranteeing the correctness of our definition, the third one being important
in applications:

Proposition 3.1. (i) If A0, B0 are simple then both At and Bt are simple for any
t ∈ R+ with probability one.

(ii) The probability that two events, including

– jumps of ξ,

– arrivals of limit orders,

– cancellations of limit orders,

happen at the same time is zero.
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(iii) The process Ξ̇t
4
= (Ξt, ξ̄t) is Markov.

P r o o f . See Appendix, Section A.4. �

In the sections that follow, we shall assume, without a change of the distribution of
Ξ, that the order books are simple and the events’ times are exclusive not only with
probability one, but for any elementary event.

4. DISTRIBUTION OF Ξ

Even if the distribution of Ξ is fully described by L (Ξ0) and (α) – (γ), such a descrip-
tion is not very useful because it says nothing about the distribution at a (random or
fixed) horizon, which is required by most of the applications. Moreover, it would be
computationally demanding (for finite models) or even impossible (for infinite models)
to do any Monte Carlo simulation based directly on the definition (α) – (γ). Therefore,
it is very useful or even necessary to know the distribution of Ξθ, where 0 < θ <∞ is a
σ(ξt)t≥0-optional time (i. e., a random variable for which it suffices to know ξ̄t in order
to decide whether θ ≤ t for any t ∈ R. See [3], Chapter 7, for the definition and basic
properties of optional times); we describe this distribution forthwith.

We divide our task into two steps: the description of L
(
Ξθ

∣∣ξ̄θ ) (Subsection 4.1) and
a (recursive) expression of the distribution of L (ξ) (hence of L

(
ξ̄θ
)
, Subsection 4.2).

4.1. Distribution of Ξ|ξ

Let us proceed to the conditional distribution of Ξθ. Due to the symmetry of our model,
only the distribution of Aθ will be treated in full detail here (the distribution of Bθ may
be obtained by mirroring); in particular, we shall examine the conditional distribution
of Aθ given the initial state of the market Ξ0 and the history of the best quotes ξ̄θ.

In the beginning, we will make a preliminary analysis of the composition of Aθ; let us
start by noting that an order with an arrival time t and a limit price p is unexecuted at a
time θ if and only if its limit price is not smaller than the best ask since its appearance,
i. e.,

p ≥ ãI(t), I(t)
4
= max{i : τi ∈ [0, t]}, (3)

where
ãi = ãθ

i
4
= max

i≤ν≤Ĩ
aτν , 0 ≤ i ≤ Ĩ , Ĩ

4
= I(θ), 15

see Figure 1 for a graphical illustration. Hence, by a pure logic, the p.p. Aθ, being a set
of all the uncancelled and unexecuted limit orders having arrived until θ, may be split
into the following four disjoint p.p.’s:

{aθ} — the present ask

15Proof. When the order is unexecuted, (3) has to hold, otherwise there would exist an unexecuted
order with a limit price smaller than the best ask. Conversely, if an order fulfilling (3) were executed
then, due to the fact that A is simple, its execution would cause a jump of a above its limit price at
the time of the execution, which would contradict (3).



Probabilistic properties of the continuous double auction 61

D — the set of the uncancelled initial limit orders (i. e., those which were present in
A0) fulfilling (3) with “>”

L — the set of all the uncancelled limit orders with a positive arrival time fulfilling (3)
with “>”

E — the set of all the uncancelled orders (initial or with a positive arrival time) fulfilling
(3) with “=” but differing from aθ.

Proceeding further in the analysis, note that

L = L1 + · · ·+ LĨ+1

where, for each 1 ≤ i ≤ Ĩ+1, Li is the p.p. of (the limit prices of) the uncancelled orders
with arrival times belonging to [τi−1, τi ∧ θ) and with limit prices being strictly larger
than ãi−1, i. e., those l.o.’s whose arrival time and limit price falls into the rectangle

Λi
4
= [τ̃i−1, τ̃i)× (ãi−1,∞)

where

τ̃i = τ̃θ
i
4
=

{
τi if i ≤ Ĩ ,

θ if i = Ĩ + 1,

(see Figure 1 for an illustration).
The following Proposition describes the conditional distributions of the individual

components of an order book and proves their mutual (conditional) independence.

Proposition 4.1. (conditional distribution of order books) Let θ be a finite positive
σ(ξt)-optional time. For any i, denote

fi(p) = fθ
i (p)

4
=

{
φi(p)∆τ̃i if ρi(p) = 0,
φi(p)
ρi(p) [1− e−∆τ̃iρi(p)] if ρi(p) > 0,

ε(i, x) = εθ(i, x)
4
= exp

{
−
∑I(θ)

j=i
ρj+1(x− aτj )∆τ̃j+1

}
and

Ȧi = Ȧθ
i
4
= Aτ̃i |(ãi,∞).

Further, denote by
Ă = Ăθ 4

= [ă1, . . . , ăJ ]

the collection of all the distinct elements of {ã0, . . . , ãĨ}\{aθ} (i. e., the set of the former
asks which could potentially survive until θ) and

γν = γθ
ν = min{k : ãk < ăν}, 1 ≤ ν ≤ J,

(i. e., the index of the time when ăν ceased to be an ask). Then it holds that

(◦) Aθ = {aθ}+ L+D + E,
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Fig. 1. Composition of the order book.

where, denoting C = Cθ = (Ξ0, θ, ξ̄θ),

(–) aθ is conditionally constant given C,

(i) L|C is a Poisson point process with density

F (p)
4
=

Ĩ+1∑
i=1

1(ãi−1,∞)(p)fi(p− aτi−1)ε(i, p),

(ii) D|C is an h-thinning of Ȧ0 = [ȧ1, ȧ1, . . .] with parameters

ε(0, ȧ1), ε(0, ȧ2), . . . ,

(iii) E|C is an h-thinning of Ă = [ă1, . . . , ăJ ] with parameters

ε(γ1, ă1), . . . , ε(γJ , ăJ),

(iv) L,D,E are mutually conditionally independent given C.

If, in addition, A0 is a Poisson point process with density φ0 then all (◦), (–), (i), (iii),

(iv) hold true with C ′
4
= (θ, ξ̄θ) instead of C and
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(ii’) D|C ′ is a Poisson process with density

F0(p) = 1(ã0,∞)(p)φ0(p)ε(0, p).

Moreover,

(∗) formulas symmetric to (◦), (–), (i) – (iv), (ii’) hold for B

and

(M) Aθ is conditionally independent of Bθ both given C and given C ′.

P r o o f . The proof may be found in Appendix A.4. �

4.2. Distribution of ξ

Let us proceed to the distribution of ξ; since the distributions of x1, x2, . . . have been in
fact postulated, it only remains to add a formula for the distribution of the quote jumps
out of the spread.

Proposition 4.2. (Distribution of ξ) For any k ∈ N, denote by

Ck
4
= (Ξ0, ξ̄τk−1 ,∆τk, χk).

(i) The distribution aτk
given Ck is determined as follows: For any p < 0,

P[∆aτk
≤ p|Ck] =

{
P[yk < p|Ck] if χk = a−

0 if χk 6= a−
(4)

while, for any p ≥ 0,

P[∆aτk
> p|Ck] =

{
0 if χk 6= a+

Hk(p) if χk = a+
(5)

where

Hk(p)
4
= exp

{
−
∫ aτk−1+p

−∞
F̀ (z) dz

}
·

∏
α∈Ȧ

τk−1
0 ,α≤aτk−1+p

[1− ετk(0, α)]

·
∏

1≤ν≤|Ăτk−1 |,ă
τk−1
ν ≤aτk−1+p

[1− ετk(γτk−1
ν , ăτk−1

ν )],

(ετk stands for ετk , Ăτk−1 for Ăτk−1 , etc.), and where

F̀ (p)
4
=

k∑
ν=1

1
(ã

τk−1
ν−1 ,∞)

(p)fτk
ν (p− aτν )ετk(ν, p).
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(i’) If A0 is a P.p.p. with density φ0 and C ′k
4
= (ξ̄τk−1 ,∆τk, χk) then (4) holds with C ′k

instead of Ck while, for any p ≥ 0,

P[∆aτk
> p|C ′k] =

{
0 if χk 6= a+

H ′
k(p) if χk = a+

where

H ′
k(p)

4
= exp

{
−
∫ aτk−1+p

−∞
[F̀ (z) + φ0(z)ετk(0, z)] dz

}
·

∏
α∈Ȧ

τk−1
0 ,α≤aτk−1+p

[1− ετk(0, α)],

(∗) formulas symmetric to (i) and (i’) hold for b,

(M) aτk
and bτk

are conditionally independent both given Ck and given C ′k.

P r o o f . See Appendix, A.4. �

Remark 4.3. Note that Propositions 4.1 and 4.2 fully describe L
(
Ξ̇τ

∣∣∣Ξ̇0

)
for any θ ∈

R+; therefore and by Proposition 3.1 (iii), we have fully characterised the distribution
of Ξ̇, hence also Ξ.

5. CONCLUSION

In our paper, a general model of the continuous double auction was formulated and its
distribution was specified.

Our model provides a unified framework for the description of three existing models
of the continuous double auction ([4, 5] and [11]) enabling, among other things, to test
those (and similar) models statistically or to construct efficient simulation techniques
(see e. g. Section 6 of [10]).

To conclude, let us stress that we could proceed much further in the direction taken
in this paper. For instance, the assumption of unit order sizes could be relaxed, at least
for the continuous models (the only changes would be that the Poisson variables would
become compound Poisson and that the formulas for the distributions of a and b would
become complicated). However, since further additions would considerably increase the
size of the present introductory paper, we leave these and many other possibilities for
our or someone else’s future research.

A. APPENDIX

The Appendix is organized as follows: first, the relation of our setting to the covered
models is described, second, auxiliary results are formulated, third, the model is refor-
mulated as a mapping of mutually independent random elements (this reformulation is
further used in the proofs). Finally, the proofs of the Propositions from the main text
are presented.
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A.1. Link to Existing Models

As it was written in the Introduction, three existing models, namely those of [4, 5] and
[11] are special cases of our model. In the present Subection, we clarify the relations of
those models to our one, in particular, we re-define them using our notation. A more
detailed treatment of this topic may be found in [10].

Maslov’s Model

The model by [5], being the earliest of the mentioned ones, assumes i.i.d. (exponential)
inter-event times where the events include arrivals of either buy or sell, limit or market
orders (there are no cancellations in the model). The probability that the newly arriving
order is of any particular type is 1/4 and the limit price of a newly arriving limit order is
unit uniform on the interval starting at the opposite best quote. Implicitly, it is assumed
that the inter-event times, the selection of a type of a newly coming order and the limit
prices are mutually independent.

If we agree to consider an arrival of a market order at a time when the opposite order
book is empty as a jump of ξ̄ too, then the ith jump of ξ, i. e. the arrival of either a
market or an in-spread limit order, satisfies

L
(
∆τi|ξτi−1

)
= Exp (si/4) , si = 2[(aτi−1 − bτi−1) ∧ 1] + 2,

while the remaining characteristics are:

P[χi = a+|τi, ξ̄τi−1 ] = P[χi = b−|τi, ξ̄τi−1 ] =
1
si

P[χi = a−|τi, ξ̄τi−1 ] = P[χi = b+|τi, ξ̄τi−1 ] =
(aτi−1 − bτi−1) ∧ 1

si

L
(
−yi|χi = a−, τi, ξ̄τi−1

)
= L

(
zi|χi = b+, τi, ξ̄τi−1

)
= U

(
0, (aτi−1 − bτi−1) ∧ 1

)
φi(p) = ψi(−p) =

1
4
1(0,[1−(aτi−1−bτi−1 )]∨0)(p), ρi ≡ σi ≡ 0

where 1 denotes the characteristic function.

Luckock’s Model

Another finite model, introduced by [4], assumes unit inter-event times, no cancellations,
equal probability that an incoming agent is a buyer or a seller, and i.i.d. buying and
selling absolute reservation (i. e. intended) prices. The newly coming agent takes his
actions as follows: if he is a buyer and his reservation price is less than the ask then
he puts a limit order with the limit price equal to the reservation price, otherwise he
immediately buys (by putting a market order), the situation for sellers is symmetric.
Hence, the only parameters of the Luckock’s model are the (continuous) distribution
functions of the selling and buying reservation prices, denoted by K, L, respectively.

In the language of our model, the model is defined as

L
(
∆τi|ξ̄τi−1

)
= Exp (Si/2) , Si = K(aτi−1) + [1− L(bτi−1)],
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P [χi = b+|τi, ξ̄τi−1 ] =
L(aτi−1)− L(bτi−1)

Si

P[χi = a−|τi, ξ̄τi−1 ] =
K(aτi−1)−K(bτi−1)

Si

P[χi = a+|τi, ξ̄τi−1 ] =
1− L(aτi−1)

Si
P[χi = b−|τi, ξ̄τi−1 ] =

K(bτi−1)
Si

P[yi < p|χi = a−, τi, ξ̄τi−1 ] =
K(aτi−1 + p)−K(bτi−1)
K(aτi−1)−K(bτi−1)

P[zi < p|χi = b+, τi, ξ̄τi−1 ] =
L(bτi−1 + p)− L(bτi−1)
L(aτi−1)− L(bτi−1)

φi(p) =
1
2
L′(aτi−1 + p) ψi(p) =

1
2
K ′(bτi−1 + p) ρi ≡ σi ≡ 0

where ′ means a derivative.

Smith’s and Farmer’s Model

The probably most popular model of the c.d.a. is the infinite one by [11]. It assumes
unit ticks, a constant rate η of arrivals of both the types of market orders, a constant per
tick arrival rate ς of both the types of limit orders and a constant rate ι of cancellations.

In the language of our (general) definition, this means that r(p) = bpc (i. e. the integer
part of p) and, for each i ∈ N,

∆τi|ξ̄[i−1] ∼ Exp (ωi) , ωi = 2(η + ι) + [sa
i + sb

i ]ς,

χi|ξ̄[i−1] =
{
η + ι

ωi
,
sa

i ς

ωi
,
sb

i ς

ωi
,
η + ι

ωi

}
where

sa
i = aτi−1 − (b̂τi−1 + 1), sb

i = âτi−1 − bτi−1 ,

and, further,

yi|ξ̄[i−1] ∼ U (−sa
i , 0) , φi ≡ ς, ρi ≡ ι,

zi|ξ̄[i−1] ∼ U
(
0, sb

i

)
, ψi ≡ ς, σi ≡ ι.

Since, for any i ∈ N, ∆τi is conditionally exponential, it is easy to determine the distri-
bution of ∆τ̂i (see Subsection 3.3 for a definition) since the first jump of X̂ after τ̂i−1

happens if and only if, in the underlying model, one of the following events happen:

• ξ jumps (which happens with rate ωj where j is the index of the last τ•) or

• an order arrives between a and â (with rate (a− â)ς) or

• an order (except the ask) with price between â and â + 1 is cancelled (with rate
(p̂− 1)ι) or
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• an order arrives between b and b̂+ 1 (with rate (b̂+ 1− b)ς) or

• an order (except the bid) with price between b̂ and b̂ + 1 is cancelled (with rate
(q̂ − 1)ι),

which, summarized, gives

∆τ̂i| ¯̂Ξτ̂i−1 ∼ Exp (ω̂i) , (6)

where

ω̂
4
= 2η + (p̂τ̂i−1 + q̂τ̂i−1)ι+ (âτ̂i−1 − b̂τ̂i−1)ς.

A.2. Lemmas and Auxiliary Results

Before starting to deal with auxiliary results and proofs, let us agree to assume that
all the underlying random elements (12) as well as eventual further randomisations are
defined on a common probability space (Ω,P,F), which is rich enough.

Further, let us introduce an additional notation: By writing X ⊕i c or X 	i c, we
shall mean a shift of a point process (or a measure) X in the ith coordinate by c to
the left or to the right, respectively. If, for instance, X is a p.p. on R3 with points
(xi,1, xi,2, xi,3)i∈N then the points of X 	2 c are (xi,1, xi,2 − c, xi,3)i∈N. For n = 1 we
shall omit the index at ⊕ or 	.

The notion d= means equality of distributions.

Lemma A.1. (distribution of functions of independent elements) Let U and V be mu-
tually independent random elements taking values in measurable spaces (L,L) and
(M,M), respectively. Let (Q,Q) be a measurable space and let f : L×M → (R,B(R))
and F : L×M → (Q,Q) be measurable mappings. Then

(i) Ef(U, V ) = Eg(V ), where g(v) = Ef(U, v), v ∈M.

(ii) If, for each v ∈M and z ∈ Q,

P(f(U, v) ∈ •|F (U, v) = z) = pz(•) (7)

where p• is a conditional probability distribution (viewed as a probability measure
dependent on the condition) then

P(f(U, V ) ∈ •|F (U, V ) = z) = pz(•). (8)

Violating the strict formality but sparing much notation, we may compute expectations
or conditional distributions of the type in (i), (ii) respectively, as if V was deterministic
and use Lemma A.1 to obtain the validity of our computations given the true distribution
of (U, V ).

P r o o f . For the proof of (i), see [2], 4.5.2.
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(ii) For any A ∈ B(R) and B ∈ Q,

P(f(U, V ) ∈ A,F (U, V ) ∈ B)

=
∫ ∫

1A(f(u, v))1B(F (u, v)) dPU (u)dPV (v)

=
∫
P (f(U, v) ∈ A,F (U, v) ∈ B) dPV (v)

=
∫ (∫

B

P (f(U, v) ∈ A|F (U, v) = z) dPF (U,v)(z)
)

dPV (v)

=
∫ (∫

B

pz(A) dPF (U,v)(z)
)

dPV (v)

=
∫ (∫

1B(z)pz(A) dPF (U,v)(z)
)

dPV (v)

=
∫ (∫

1B(F (u, v))pF (u,v)(A) dPU (u)
)

dPV (v)

=
∫

1B(z)pz(A) dPF (U,V )(z) =
∫

B

pz(A) dPF (U,V )(z)

which proves (8) by the definition of the conditional probability, viewed as a function of
the condition. �

The next assertion will be found as helpful as the previous one:

Lemma A.2. (Local property) Let u, u̇ be real random variables and let S ⊂ F such
that u = u̇ on S.

(i) If G ⊆ F , H ⊆ F are such that S ∈ G, S ∈ H and G|S = H|S then E(u|G) = E(u̇|H)
w.p.1 on S.

(ii) If, in addition, U and U̇ are random elements taking values in a measurable space
(K,K) such that S ∈ σ(U), S ∈ σ(U̇) and U = U̇ on S then E(u|U) = E(u̇|U̇)
w.p.1 on S.

P r o o f . (i) [3], Lemma 6.2.
(ii) Since σ(U) ∩ S = U−1(K) ∩ S = U̇−1(K) ∩ S = σ(U̇) ∩ S, i. e., σ(U) and σ(U̇)
coincide on S, the assertion follows from (i). �

Our usual usage of Lemma A.2 follows: in attempt to prove a (complicated) relation
concerning conditional expectations (or distributions), we simplify our situation by par-
titioning Ω into sets S1, S2, · · · ∈ F on which it is possible to prove the relation by means
of Lemma A.2; the general validity of the relation will follow from the additive property
of conditional expectations (using the fact that there are only countably many sets S•).
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Lemma A.3. (Representation by uniform random elements) For any non-decreasing
right continuous function G defined on R with G(−∞+) = 0, denote

G[−1](p) = inf{x : G(x) ≥ p}, p ∈ (0, G(∞−)), (9)

its generalised inversion.
The following assertions hold:

(∗) If G is continuous then G[−1](•) is a bijection between (0, G(∞−)) and TG
4
=

G[−1]((0, G(∞−))).

(i) If z is a k-dimensional real random vector and u is a k-dimensional uniform random
vector on the unit cube (0, 1)k then

z
d= γ(u),

γ : (0, 1)k → Rk, γ1(p) = G
[−1]
1 (p1),

γi(u) = G
[−1]
i (ui|γ1(u), . . . , γi−1(u)), 2 ≤ i ≤ n,

where G1 is the cumulative distribution function (c.d.f.) of the first component of
z and where Gi(•|ε1, . . . , εi−1) is the conditional c.d.f. of the ith component of z
given its first i− 1 components for each i ≤ k.

(ii) If Z is a marked P.p.p on R+ with absolutely continuous intensity µ and indepen-
dent marks (in the sense of [1], ch. 6.4.) taking values in Rk−1 for some k ∈ N
and if U is a unit P.p.p. on (0, µ(R+))× (0, 1)k−1 then

Z
d= Γ(U),

Γ1(u) = G[−1](u1), G(x)
4
= µ(0, x),

Γi(u) = G
[−1]
i−1 (ui|Γ1(u), . . . ,Γi−1(u)), 2 ≤ i ≤ k,

where Gν(•]ζ,m1, . . . ,mν−1) is the conditional c.d.f. of the νth component of the
mark given the location of the corresponding point ζ and the first ν−1 components
of the marks, ν ≤ k − 1.

(iii) If Z is the same as in (ii) and if V is P.p.p. on R+×[0, 1]k−1 with intensity µ⊗`k−1

then Z d= Υ(V ) where
Υ1(u) = u1,

Υi(u) = G
[−1]
i−1 (ui|u1,Υ2(u) . . . ,Υi−1(u)), 2 ≤ i ≤ n.

This Lemma may be useful in two ways: in Monte Carlo simulations (the computers
usually generate only uniform random elements) and in theoretical constructions, used
for representations of various random objects by means of “distribution-free” underlying
elements.

P r o o f . (?) It is easy to check that if G[−1] was not a bijection then G would jump.
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(i) For the case k = 1, see, e. g., [7], p. 238. For the general case, see [8], Lemma 1.12.

(ii) Denote by Zg the ground process of Z, by Z ′g the ground process of Γ(U), and by
Ug the ground process of U viewed as a marked real p.p. (note that the marks of such
a process are i.i.d. uniform on (0, 1)k−1 by [1], Lemma 6.4.VI). Let us start by proving
that

Zg
d= Z ′g. (10)

Since, for any S = (−∞, a], a ∈ R,

µS = G(a) = `(0, G(a)] = `G(S)

and since half lines generate B(R), we are getting

µS = `G(S), S ∈ B(R), (11)

by the monotone class argument [3, Theorem 1.1.].
Due to (?) and since we may assume that no points of Z ′g lie in R+ \ TG

16 it holds
that s is a point of Z ′g if and only if G(s) is a point of Ug which further yields

Z ′gS = Ug(G(S)), S ∈ B(R),

further implying

L
(
Z ′gS

)
= L (Ug(G(S))) = Poisson (`(G(S))) (11)= Poisson (µS) , S ∈ B(R),

which is sufficient for (10) by the uniqueness criterion for simple point processes [3,
Theorem 12.8].

Now, note that if

(♠) Ug was deterministic,

then the conditional distribution of the marks given the locations of the points would
become unconditional; hence we could use assertion (i) of the present Lemma to prove
that the distribution of marks (given (♠)) of Z ′ is the same as the one determined by
G1, . . . , Gk−1 (with fixed ζ). Moreover, since the marks of U are independent of Ug (by
[1], Lemma 6.4.VI), we may use assertion (ii) of Lemma A.1 to get that the same is true
given the true distribution of Ug which, in combination with (10), proves the assertion
of the Lemma by the Disintegration Theorem ([3], 6.6.4).

(iii) The ground processes of Z and Υ(U) agree in distribution trivially, the proof of
equality of the distributions of the marks is the same as in assertion (ii). �

16Proof: Due to the Lebesgue decomposition of G, the set T ′
4
= R+ \ TG consists of countably many

intervals. Hence, if µ(T ′) > 0 then there would exist an interval I ⊆ T ′ on which G would be strictly
increasing which would contradict the definition of TG. Therefore, µ(T ′) = 0 so a possible change of
Z′g on T ′ would not change its distribution.
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A.3. Ξ as a Function of Independent Elements

Even if we have fully characterised the distribution of Ξ in Subsections 3.1 and 3.2,
it will be much simpler to handle the model if we express Ξ (without the change of its
distribution) as a function of mutually independent random elements; we find this useful
especially during the derivation of the distribution of Ξ (Appendix A.4).

For any i ∈ N, let Vi and Wi be P.p.p.’s on R+×R+×(0, 1) with the unit intensity, let
vi,2, wi,2, vi,3, wi,3, . . . be unit exponential random variables and let ui ∈ (0, 1)× (0, 1)×
(0, 1) be a three dimensional-uniform random vector. Further, let all

V1,W1, u1, v1,2, w1,2, v1.3, v1.3, . . .

V2,W2, u2, v2,2, w2,2, v2.3, v2.3, . . . (12)
. . .

be mutually independent and independent of Ξ0.
Starting to (re)construct Ξ, note that there exists a mapping F such that, for any

i ∈ N, the conditional distribution of xi given ξ̄τi−1 will not change if, for each i ∈ N,

xi = F (ui; ξ̄τi−1) (13)

(to see it, assume for a while that ξ̄τi−1 is deterministic and construct F by means of
conditional c.d.f.’s as in Lemma A.3 (i) to get

F (ui; ξ̄τi−1)
d= xi (14)

and note that, by Lemma A.1 (ii), formula (14) holds also for the true distribution of
Ξ̄τi−1).

Further, denote by Φ(•; •) and Ψ(•; •) the c.d.f.’s corresponding to φ, ψ, respectively,
and, for each i ∈ N, put

Yi = G(Vi|(0,∆τi)×(0,v̇i)×(0,1); ξ̄τi−1), (15)

Zi = H(Wi|(0,∆τi]×(0,ẇi)×(0,1); ξ̄τi−1), (16)

where v̇i
4
= Φ(∞−; ξ̄τi−1), ẇi

4
= Ψ(0; ξ̄τi−1),

G(t, π, u; ζ) →
(
t,Φ[−1](π; ζ),

u

ρ(Φ[−1](π; ζ); ζ)

)
and where H is defined symmetrically (see Lemma A.3 for a definition of •[−1]).

By Lemma A.1 (i) (with V = ξ̄τi−1) and Lemma A.3 (ii) (taking the second coordinate
of Yi as the ground process and the first one together with the third one as a mark; note
that the first coordinates are i.i.d. ∼ U (0,∆τi)), we get that Yi and Zi defined by (15)
and (16) fulfil (α) and (β), respectively, including the required conditional independences
(the latter stemming from the independence of underlying variables).

To finish the construction, put, for each i ∈ N,

ei,ν =

{
vi,ν

ρ(aτi−1,ν−aτi−1 ;ξ̄τi−1 )
if aτi−1,ν <∞ and ρ(aτi−1,ν − aτi−1 ; ξ̄τi−1) 6= 0

∞ otherwise
(17)
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and define f• symmetrically by means of w•. By assertion (ii) of Lemma A.1 with
temporarily deterministic Ξ̄τi−1 , xi, Yi and Zi we immediately get that our construction
fulfils (γ) as well.

A.4. Proofs

The present Section contains proofs of the Propositions stated in the main text.

P r o o f o f P r o p o s i t i o n 3.1. (i) Let i ∈ N and assume that Aτi−1 and Bτi−1 are
simple. If

(♥i) the elements Ξ0 and (uν ,Vν ,Wν , vν,•, wν,•)ν<i are deterministic

then, thanks to the continuity of Fi and Gi,

P[Two orders share the same price during (τi−1, τi]] = 0.

Since, by assertion (i) of Lemma A.1, the same is true for the actual distribution of the
variables from (♥i), point (i) of the present Proposition is proven for t ∈ [τi−1, τi). By
induction, we get (i) for the whole R+.
The proof of (ii) is similar: if (♥i) held and, in addition, ui was deterministic then, by
the continuity of the Lebesgue measure,

P[Two events share the same time during (τi−1, τi]] = 0;

hence the general validity of this follows analogously to (i).
Before proceeding to (iii), note that, for each i ∈ N and ν ≥ 2, vi,ν may be regarded

as the first jump of a unit P.p.p. on R+; we will denote the process by v?
i,ν (similarly

with wi,ν and w?
i,ν). We naturally assume that v?

•,• w
?
•,• are mutually independent and

independent of Ξ0, u•,V•,W•.
Let θ > 0 be a real constant and let i ∈ N. Denote

θi
4
= (θ ∨ τi−1) ∧ τi,

x̂i
4
=

{
xi if θi = τi

∞ otherwise

and

x̃i
4
=

{
∞ if θi = τi

xi otherwise.

Note that ξ̄θi
is uniquely determined by ξ̄τi−1 , x̂ and θ.

Since (ξ̄t)t≥0 is of a pure-jump type and (trivially) Markov, it is (by [3], Theorem
12.14.) strongly Markov; hence we may (by [3] Proposition 6.13.) assume the existence
of variables ûi ∼ U (0, 1) , ũi ∼ U (0, 1) such that

ûi⊥⊥ξ̄τi−1 , x̂i = f̂(ξ̄τi−1 , ûi) (18)

ũi⊥⊥ξ̄θi , ûi, x̃ = f̃(ξ̄θi , ũ) (19)
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for some measurable functions f̂ , f̃ .
It can be easily verified that the distribution of Ξ will remain unchanged if we assume

that xi is defined by (18) and (19) (instead of its original definition by means of ui,
assumed in Section A.3), provided that û, ũ are independent of the underlying variables
(12).17 Moreover, it will be

ũ⊥⊥Ξ̄θi
(20)

given our assumption (to see it, note that Ξ̄θi
is a function of ξ̄θi

and the variables (12)).
Further, note that, by our definition of the dynamics and our reconstruction,

Ξ|(θi,∞) = Υi(Ξ̇θi , Ui), Ui
4
= (Ūi, Ũi, ũi)

for some mapping Υi, where

Ūi
4
= (ui+1,Vi+1,Wi+1, vi+1, wi+1, ui+2,Vi+2, . . . ),

Ũi
4
= (Ṽ, W̃, ṽ?

• , w̃
?
•),

Ṽ 4
= Vi|(ϑ,∞) 	1 ϑ, ϑ

4
= τi − θi,

ṽ?
ν
4
= v?

κν
|(sν ,∞) 	 sν , sν

4
= ϑρi(aθi,ν),

and where κν is the ordering of aϑ,ν in Aτi−1 (W̃ and w? are defined symmetrically).
Let us examine L

(
Ui

∣∣Ξ̄θi

)
now: Note first that, thanks to the independence of

variables (12),
L
(
Ūi

∣∣∣Ξ̄θi
, ũi, Ũi

)
= L

(
Ūi

)
(21)

where L
(
Ūi

)
is independent of i. Take i ∈ N and k = (k2, k3, . . . ), l = (l2, l3, . . . ),

kν , lν ∈ N, ν > 1 and define the set

Si,k,l = [κ• = k•, λ• = l•].

If (♥i) held true and, in addition, ũi was deterministic, then θi, σi, ρi would also be
deterministic, so it would be easy to see that Ṽi would be a P.p.p. with the same
intensity as V1 and that (ṽ?

ν)ν>1 would be a collection of independent unit P.p.p.’s on
R+, (symmetrically W̃i, w̃?); moreover, all the components of Ũi would be mutually
independent. Summarised,

L
(
Ũi

∣∣Ξ̄θi , ũi

)
= d (22)

on Si,j,k for some distribution d depending neither on i nor on Si,j,k. Hence, by Lemma
A.2 (and thanks to the facts that Si,j,k is measurable w.r.t. σ(Ξ̄θi , x̃i) and that sets
Si,j,k cover Ω), relation (22) holds on the whole Ω.

Now we are able to apply the Chain Rule ([3], Proposition 6.8.) to (21), (22) and
(20) to prove that

L
(
Ui

∣∣Ξ̄θi

)
= D (23)

17Note that xi is uniquely determined by x̂i and x̃i.
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for a distribution D not depending on i.
Finally, denote

ι
4
= min{i : θ ≤ τi},

U
4
= Uι, Υ

4
= Υι.

Since θι = θ, we obtain that
Ξ̇|(θ,∞) = Υ(Ξ̇θ, U). (24)

Moreover, it follows from (23) and from Lemma A.2 (applied to Si
4
= [ι = i], i ∈ N) that

L
(
U
∣∣Ξ̄θ

)
= D.

Since the distribution D does not depend on Ξ̄θ, necessarily D = L (U), i. e., U and Ξ̄θ

are independent which is, together with (24), sufficient for the validity of (iii) by the
equivalent definition of Markov property given by [3] (see the start of Chapter 8) and
by Lemma 1.12. from the same book. �

P r o o f o f P r o p o s i t i o n 4.1. Our aim is to determine the distribution of the
components of Aθ given Ξ0 and ξ̄θ; however, we (temporarily) add the opposite order
book Bθ among the conditioning elements. We will later find this addition useful when
proving the conditional independence of the books.

Let 1 ≤ i ≤ Ĩ + 1. The fact that the prices of all the limit orders waiting at the
time τ̃i must either equal ãi or be not smaller than ãi−1,18 implies that Ȧi is uniquely
determined by ãi and the set of the orders with limit prices no less than ãi−1 waiting at
time ∆τ̃i, which is itself determined by

Ȧi−1,∆τ̃i, Ỹi and ṽi

where
Ỹi

4
= Yi|R+×(ãi−1−aτi−1 ,∞)×R+

and
ṽi = ṽθ

i
4
= (vi,ki , vi,ki+1, . . . ), ki

4
= 1 + max{ν : aτi−1,ν ≤ ãi−1}.

Applying this procedure repeatedly and putting ãν − aτν
= 0 and kν

4
= 2 for ν > Ĩ + 1,

we find that Aθ (which equals to ȦĨ+1) is a function of Ȧ0, ξ̄θ, θ and Ỹ1, ṽ1, Ỹ2, ṽ2, . . . .
Since, by our construction,

Ỹi = G(Vi|(0,∆τi)×(ṽi,v̇i)×(0,1); ξ̄τi)

where ṽi
4
= Φi(ãi−1 − aτi−1), we are getting that Ỹi is a function of ξ̄τi ,∆τi and

Ṽi = Ṽθ
i
4
= Vi|R+×(ṽi,∞)×R+ 	2 ṽi

hence
Aθ is a function of Ȧ0, ξ̄θ, θ and Ṽ1, ṽ1, Ṽ2, ṽ2, . . . .

The following Auxiliary Assertion proves a useful – quite intuitive – result:
18Indeed, if ãi−1 = ãi then the assertion is trivial, if ãi−1 > ãi then necessarily a

τ̃−i
= ãi−1 so

any order between ãi and ãi−1 waiting at τ̃i would have to arrive at τ̃i which is impossible by our
assumption following the Proposition 3.1.
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Auxiliary Assertion. For each i ∈ N, Ṽθ
i is a P.p.p. with unit intensity and ṽθ

i is a
vector of i.i.d. unit exponential variables. Moreover,

Ṽθ
1 , ṽ

θ
1 , Ṽθ

2 , ṽ
θ
2 , . . .

are mutually independent and independent of ξ̄θ,Ξ0, Bθ, θ.

P r o o f o f A.A. First we prove, by induction, that the A.A. holds given that

τ̃k−1 ≤ θ ≤ τ̃k (25)

for some k ∈ N.
Assume first that k = 1. In that case, Ĩ = 0; hence Ṽi = V and ṽi = vi for each i.

Since, in addition, θ is a function of (u1, ξ0) and Bθ is a function of Ξ0, W• and w•, the
elements Ṽ•, ṽ• are independent of ξ̄θ,Ξ0, Bθ, θ hence the A.A. holds for k = 1.

Let now k > 1 and assume that the A.A. holds for k − 1. For better readability, let
us agree to write ã′ instead ãτk−1 , Ṽ ′i instead of Ṽτk−1

i etc., and to omit index θ at ãθ,
Ṽθ

i etc. (i. e., ã will stand for ãθ etc.).
By the induction hypothesis with θ = τk−1, we have

Ṽ ′•, ṽ′•|Ξ0, ξ̄τk−1 , Bτk−1 ∼ P⊗ E

where P is a distribution of a P.p.p. on R+ × R+ × (0, 1) with unit intensity and E is
a distribution of a sequence, indexed by N, of independent unit exponential variables,
which implies

Ṽ ′•, ṽ′•⊥⊥Ξ0, ξ̄τk−1 , Bτk−1 .

Further, since Ṽ ′•, ṽ′•, viewed as functions of the underlying elements (12), are constant
in uk,Wk and wk, it also holds that

Ṽ ′•, ṽ′•⊥⊥uk,Wk, wk;

with respect to our construction (Section A.3) we get

uk,Wk, wk⊥⊥Ξ0, ξ̄τk−1 , Bτk−1

we have a mutual independence of (uk,Wk, wk), (Ξ0, ξ̄τk−1 , Bτk−1) and (Ṽ ′•, ṽ′•) implying

Ṽ ′•, ṽ′•⊥⊥Υ, Υ
4
= (Ξ0, ξ̄τk−1 , Bτk−1 .uk,Wk, wk).

Assume now, for a while, that

(]) Υ, ṽ′• are deterministic

and let us investigate the distribution of Ṽ ′•.
We begin with the case of χk = a+. It follows from the definition of the dynamics

that, in this case,
bτk

= bτk−1 , aτk
= ℵ (26)
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where ℵ is the first limit order except of the ask waiting at τ−k , i. e.,

ℵ = min{p : p ∈ Ȧ′0 ∪ Ă′, p is not cancelled}
∧min

i
min{p : p ∈ Ri, p is not cancelled}

where Ri is a p.p. formed by the second coordinates of (aτi−1 ⊕ Yi)|R+×(ã′i−1,∞). De-
noting (ti,ν , πi,ν , ηi,ν)ν∈N the points of Ṽ ′i|(0.∆τi)×R+×(0,1), i ≤ k, we are getting, by our
reconstruction, that

Ri
4
= (aτi−1 + Φ[−1]

i (Φi(ã′i−1 − aτi−1) + πν))ν∈N. (27)

In the following text, let us agree to view Ri as a marked point process with marks
(tν , ην)ν∈N. Since, under (]), each Ri is (by Lemma A.3 (ii)) a P.p.p. on (ã′i−1,∞) with
intensity Φi⊕ aτi−1 and with i.i.d. marks (note that ã• are deterministic under (])) and
since Ṽ ′1, . . . , Ṽ ′k are independent (by the induction hypothesis), we have that

Rp
1, . . . , R

p
k,⊥⊥R

p

1, . . . , R
p

k,

Rp
i

4
= Ri|[0,p) R

p

i
4
= Ri|[p,∞),

for any p ∈ R, with the consequence that

Rp
1, . . . , R

p
k⊥⊥S

p
1 , . . . , S

p
k (28)

for any p ∈ R, where

Sp
i

4
= {(t,Φi(q − p), η) : q ∈ Ri, (t, η) is a mark of q}.

Note that Sp
1 , . . . , S

p
k are mutually independent and, by Lemma A.3 (ii),

Sp
i ∼ p, 1 ≤ i ≤ k, (29)

where p is the distribution of a unit P.p.p. on (0,∆τ̃i)× R+ × (0, 1).

Now introduce a m.p.p. R
4
= R1 ∪ · · · ∪ Rk with an additional mark determining an

index of a “source” process of each point (i. e., the mark of a point π ∈ R equals i iff
π ∈ Ri). Let rp be a stochastic process (with “time” p) whose jump times coincide with
points of R and the magnitudes of the jumps are equal to the corresponding uniquely
coded marks (the existence of such coding is guaranteed by [3], Lemma 1.12). Since, r is
a process with independent increments by (27), it is clearly Markov. Moreover, since r
is a pure-jump type process, it is even strong Markov (by [3], Theorem 12.14.); therefore
and because ℵ is a σ(rp)-optional time (indeed, to determine whether or not ℵ ≤ p, only
the history of r up to p and deterministic variables are needed), relations (28) and (29)
hold with p = ℵ. Further, since optional times are measurable with respect to “their”
sigma fields (see [3], Lemma 7.1), we are getting that Sℵ1 , . . . , S

ℵ
k |ℵ ∼ pk implying

Sℵ1 , . . . , S
ℵ
k⊥⊥ℵ. (30)
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Now, for any i ≤ k and p ∈ R, put

T p
i

4
= Ṽ ′i|[∆τ̃i,∞)×(Φi(p−ã′k−1),∞) 	2 Φi(p− ã′k−1),

(i. e., the unused part of Ṽ ′i) and note that

Ṽi =

{
Sℵi ∪ Tℵi i ≤ k

Ṽ ′i i > k.

Since, by assertion (ii) of Lemma A.3 (with ℵ made temporarily deterministic),

Tℵ1 , . . . , T
ℵ
k |Sℵ1 , . . . , Sℵk ,ℵ (31)

are independent unit Poisson, we are getting, by the Chain Rule ([3], Proposition 6.8.)
applied to (30), (31) and to the relation (Ṽi)i>k⊥⊥(Ṽi)i≤k, π (following from the defini-
tions) that

Ṽ•|ξτk
= P (32)

given the assumption (]) and the case χk = a+ (note that ξτk
is a function of ℵ and

deterministic elements).
If, on the other hand, χk 6= a+, the situation is much simpler: in this case, Ṽ• = Ṽ ′•

and ξτk
is a function of deterministic elements ξ̄τk−1 , xi, Bτk−1 , Wk and wk, hence ξτk

is deterministic implying (32) given χk 6= a+, too.
Finally, releasing (]) and assuming the true distribution of Υ, we are getting, by

assertion (ii) of Lemma A.1, that

Ṽ•|ξτk
,Υ, ṽ′ ∼ P

implying
Ṽ•|ξτk

,Υ ∼ P (33)

because P does not depend on ṽ′.
Now proceed to the distribution of ṽ•: let us make another temporary assumption

that

([) Υ, Ṽ ′• are deterministic

and, for any κ1, . . . , κk ∈ N, define set (of elementary events)

Sκ1,...,κk

4
= [k1 = κ1, . . . , kk = κk].

On each Sκ1,...,κk
, clearly

ṽi = {vi,κi , vi,κi+1, . . . }, 1 ≤ i ≤ k,

and
ξτk

= h(v1,k′1
, . . . , v1,k1 , v2,k′2

, . . . , v2,k2 , vk,k′2
, . . . , vk,k2)
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for some deterministic function h. Hence, by the independence of components of v• and
thanks to the fact that ki = 1 for i > k,

ṽ•|ξτk
∼ E (34)

on Sκ1,...,κk
by Lemma A.2. Since the sets S• cover the entire probability space Ω, (34)

holds universally. Further, after releasing ([), we are getting (by Lemma A.1 (ii), that

ṽ•|ξτk
,Υ, Ṽ ′• ∼ E (35)

which yields
ṽ•|ξτk

,Υ, Ṽ• ∼ E (36)

because Ṽ• is a function of the elements in the condition of (35).
Now, by an application of the Chain rule ([3], Proposition 6.8) to (36) and (33), we

finally get
Ṽ•, ṽ•|ξτk

,Υ ∼ P⊗ E.

Moreover, since each θ fulfilling (25) is a function of ξ̄τk
which itself is a function of Υ

and ξτk
and since Bθ is a function of Bτk−1 , Wk and wk, we get

Ṽ•, ṽ•|Ξ0, θ, ξ̄θ, Bθ ∼ P⊗ E,

i. e., the assertion of the A.A. in the case that θ fulfils (25).
Finally, let θ be a general optional time. For each k ∈ N, define

Sk
4
= [θ ∈ [τi−k, τk)]. (37)

Since, on each Sk,
θ = θk, θk

4
= (θ ∨ τk−1) ∧ τk

and since θk fulfils (25), we are getting (37) on each Sk by Lemma A.2. Since S• cover
Ω, the Auxiliary Assertion is proven. �

Now, in line with the discussion succeeding Lemma A.1, assume, for some time, that

(♦) ξ̄θ,Ξ0, Bθ and θ are deterministic while Ṽ1, ṽ1, Ṽ2, ṽ2 keep their distribution (see
the A.A.)

and try to derive the conditional distribution of Aθ given Ξ0, θ, ξ̄θ, Bθ; before starting,
note that all the elements in the condition are constant under (♦) hence we are looking
for an ordinary (unconditional) distribution. We shall proceed gradually according to
our decomposition of Aθ.

The easiest work is with aθ: since it may be determined directly from ξ̄θ, it is deter-
ministic given (♦) i. e., (-) is proven.

Let us proceed to the sets L•: Fix 1 ≤ i ≤ Ĩ + 1 and denote by Ki the p.p. of the
relative limit prices of the orders originated in Λi having survived until τi, i. e.,

Ki = {p : (t, p, c) ∈ Yi : p > ãi−1 − aτi−1 , c+ t > ∆τ̃i}.
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Viewing the second coordinates of Yi as its ground process and regarding the pair of the
first and third coordinates as marks (note that then the first coordinates are uniformly
distributed), we get by Lemma A.3 (iii) that

Yi
d= γ(Y ′i), γ(t, p, u)

4
= (t, p,− ln(u)/ρi(p))

where Y ′i is a P.p.p. with intensity

µ′
4
= `⊗ Fi ⊗ `

on (0,∆τi)× R+ × (0, 1) implying that

Ki
d= K ′

i, K ′
i = {p : (t, p, u) ∈ Y ′i : p > ãi−1 − aτi−1 , u < exp{−ρi(p)(∆τ̃i − t)},

which further yields that, for any S ∈ B(R),

KiS = Y ′iS′, S′
4
= {(t, p, u) : p ∈ S, p > ãi−1 − aτi−1 , u < exp{−ρi(p)(∆τ̃i − t)}.

Therefore and since Y ′i is a P.p.p.,

KiS ∼ Poisson (µ′(S′))

and we get, by a textbook integration, that

µ′(S′) =
∫

S∩(ãi−1−aτi−1 ,∞)

∫ ∆τ̃i

0

∫ exp{−ρi(p)(∆τ̃i−t)}

0

φi(p) du dtdp

=
∫

S∩(ãi−1−aτi−1 ,∞)

∫ ∆τ̃i

0

exp{−ρi(p)(∆τ̃i − t)}φi(p) dpdt

=
∫

S

1(ãi−1−aτi−1 ,∞)(p)fi(p) dp.

Hence, by the uniqueness criterion for simple point processes [3, Theorem 12.8], Ki is a
P.p.p. with density

1(ãi−1−aτi−1 ,∞)(p)fi(p)

and, moreover,
Ki⊥⊥K1, . . . ,Ki−1, e1, . . . , ei (38)

(which is true because the variables on the r.h.s. depend on underlying variables, inde-
pendent of those by means of which Ki is defined).

Further, for any j ∈ N, i < j ≤ Ĩ + 1, denote by P j
i = [pi,j,1, pi,j,2, . . .] the p.p. of

the absolute limit prices of the orders from Ki uncancelled at τ̃j and note that P i
i =

Ki ⊕ aτi−1 . Let, for each ν ∈ N, ki,j,ν be ordering of pi,j,ν in Aτj−1 and note that it
follows from our (re)definitions that an order (with the limit price) pi,j,ν is uncancelled
at τ̃j if

ej,ki,j,ν/ρi(aτi−1,ki,j,ν − aτi−1) ≥ ∆τ̃j .
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Taking ej,ki,j,ν as a mark of pi,j,ν for each ν, it follows from Lemma A.3 (iii) that,
whenever P j−1

i is a P.p.p. with a density hj−1, then, for each S ∈ B(R),

P j
i S = Poisson

(∫
S

∫ exp{−ρj(p−aτj−1 )∆τ̃j}

0

hj−1(p) du dp

)

= Poisson
(∫

S

hj−1(p) exp{−ρj(p− aτj−1)∆τ̃j} dp
)

i. e., P j
i is a P.p.p. with density hj−1(p) exp{−ρj(p− aτj−1)∆τ̃j}. Applying this proce-

dure to j = i+ 1, . . . , Ĩ + 1 and noting that Li = P Ĩ+1
i we finally get that Li is a P.p.p.

with a density
1(ãi−1,∞)(p)fi(p− aτi−1)ε(i, p). (39)

We further show that, for any 1 ≤ j ≤ Ĩ + 1,

P j
0 , . . . , P

j
j are mutually independent. (40)

Indeed: assume that (40) holds for j − 1, i. e.,

P j−1
0 , . . . P j−1

j−1 (41)

are independent. If the variables (41) were deterministic then ki,j,•, i < j, would be

deterministic, too, hence the vectors ej
i

4
= ej,ki,j,• , i < j, would be mutually independent

i.i.d. vectors of unit exponential variables. Therefore, by Lemma A.1 (ii), (ej
i )j<i are

mutually independent and independent of variables (41). The independence (40) now
follows from the fact that each P j

i , i < j, is a function of (P j−1
i , ej

i ) and from the
independence of P j

j of variables (41) and ej .

Since Li = P Ĩ+1
i , we have proven the independence of L1, . . . , LĨ+1 further implying

that L is Poisson with density equal to the sum of the densities (39) which proves (i).
Let us proceed to D: let 1 ≤ i ≤ Ĩ + 1 and denote by Di =

[
di
1, d

i
2, . . .

]
the set of all

the orders contained in Ȧ0 and uncancelled at τ̃i; it follows from the independence of ei

and Ȧi−1, Di−1 that Di is a heterogeneous thinning of Di−1 with parameters

exp{−ρi(di−1
1 − aτi−1)∆τ̃i}, exp{−ρi(di−1

2 − aτi−1)∆τ̃i}, . . . 19

which, used (Ĩ + 1)-times, gives that D = DĨ+1 is an h-thinning of Ȧ0 with parameters

ε(0, ȧ1), ε(0, ȧ2), . . .

where ȧ1 < ȧ2 < . . . are the points of Ȧ0, which is nothing else but (ii), Moreover, it
could be shown similarly to the proof of (40) that D⊥⊥L1, . . . , LĨ+1 hence D⊥⊥L.

Let us examine E now: it follows from the definition of E that for p to be its point,
two conditions have to be satisfied:

19To see it, view Ȧ0 and Di−1 as deterministic, note that the components of ei corresponding to the
points of Di−1 form a vector of i.i.d. unit exponential variables; i. e., it is easy to check that Di formally
fulfils the condition defining an h-thinning, and use Lemma A.1 (ii).
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1. It has to be p = ăν for some ν ≤ Ĩ.

2. It must have survived since τ̃γν−1 until θ.

The distribution of E (described by (iii)) and its independence of L,D may be deter-
mined similarly to our proofs of the analogous properties of D.

Having derived the distribution of L,D and E and having proven their independence
– i. e., (iv) – given (♦), we have fully described the distribution of Aθ given (♦).

Now we may stop assuming (♦). Due to the independence proven by the Auxil-
iary Assertion, we may use Lemma A.1 (ii) to get that the formulas describing the
distribution of Aθ given Ξ0, θ, ξ̄θ, Bθ remain valid even without (♦) (note that the in-
dependence of L, D and E given (♦) corresponds to their conditional independence
given Ξ0, θ, ξ̄θ, Bθ). Moreover, since L

(
Aθ

∣∣Ξ0, θ, ξ̄θ, Bθ

)
does not depend on Bθ, it is

simultaneously L
(
Aθ

∣∣Ξ0, θ, ξ̄θ
)
.

The validity of (i), (iii), (iv) with C ′ and (ii′) could be proven analogously by assuming
(♦) with B0 instead of Ξ0 (the distribution of D|C ′ might be derived analogously as the
one of Li for some i). The point (∗) would follow by a mirroring according to the price,
(M) follows from the fact that the conditional distribution of Aθ given both C and C ′

equals to the one given (C,Bθ), (C ′, Bθ), respectively. �

P r o o f o f P r o p o s i t i o n 4.2. Since, by definition of the dynamics, ∆aτk
= yk if

χk = a− and ∆aτk
= 0 if χk ∈ {b+, b−}, the relation (4) and the second branch of (5)

are trivial. It remains to derive the distribution of ∆aτk
given χk = a+ in which case

∆aτk
= y′k

where y′k is the distance of aτk−1 to the next point of Aτ−k
(if there is any) or equals

to ∞ (if |Aτ−k
| = 0). Hence, we first have to determine L

(
Aτ−k

|Ck

)
, which task is,

however, very similar to deriving L (Aτk
|. . . ) in the proof of Proposition 4.1 with the

“only” difference that now we have to get rid of the (possible) jump of a at τk (which is
actually the reason why ãτk−1 , Ăτk−1 , etc., appear in the formulas); hence, we will not
go through all the details but we only note that the proof would also be done by means
of a decomposition of Aτ−k

into

• the ask,

• a conditionally Poisson p.p. L′ with the density F̀ ,

• an h-thinning D′ of Ȧτk−1
0 with parameters ετk(0, •) and

• an h-thinning E′ of Ăτk−1 with parameters ετk(•, •),

all the four elements being conditionally independent. Clearly,

y′k > p⇔ (Aτ−k
)(aτ−k

, aτ−k
+ p] = 0.

Since, for any interval I,
P[L′I = 0|Ck] = exp{−ηI}



82 M. ŠMÍD

where η is the (conditional) intensity measure of L′ (whose density is F̀ , as we have al-
ready proven) and since, for any h-thinning Y of a p.p. X = [x1, x2, . . .] with parameters
p1, p2, . . . ,

P[Y I = 0|X] =
∏

ν∈N,xν∈I

(1− pν)

we are getting (i) (also using the conditional independence of L′, D′ and E′).
The proof of (i’) is similar (see also the proof of Proposition 4.1). The part (∗) may

be derived by mirroring. The conditional independence in (M) trivially follows from the
fact that always at least one of the values aτk

and bτk
is conditionally constant given

ξτk−1 , χk. �
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Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8. Czech Republic.

e-mail: smid@utia.cas.cz


	Introduction
	Preliminaries
	Point Processes Basics
	Conditional Independence
	Special Notation

	Model Definition
	Dynamics of 
	Stochastic Properties of 
	Discrete Version of the Model
	Basic Properties of 

	Distribution of 
	Distribution of |
	Distribution of 

	Conclusion
	Appendix
	Link to Existing Models
	Lemmas and Auxiliary Results
	 as a Function of Independent Elements
	Proofs


