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Abstract
We introduce an improved multi-factor credit risk model describing simultaneously
the default rate and the loss given default. Our methodology is based on the KMV model, 
which we generalize in three ways. First, we add a model for loss given default (LGD), 
second, we bring dynamics to the model, and third, we allow non-normal distributions 
of risk factors. Both the defaults and the LGD are driven by a common factor and 
an individual factor; the individual factors are mutually independent, but we allow any 
form of dependence of the common factors. We test our model on a nationwide portfolio of 
US mortgage delinquencies, modeling the dependence of the common factor by a VECM
model, and compare our results with the current regulatory framework, which is de-
scribed in the Basel II Accord.

1. Introduction

The recent financial crisis showed significant shortfalls in banks’ credit risk 
management and measurement processes. In particular, investments in mortgage-
backed securities appeared to be much riskier than banks originally anticipated. 
Consequently, the subprime mortgage crisis in the US caused lots of banks to crash 
and triggered a worldwide debate on financial market regulation. 

Current credit risk measurement techniques are mostly based on evaluation 
of the value-at-risk of a creditor, i.e., the amount the creditor will lose with a certain 
probability as a result of delinquency of debtors. The distribution of the losses is 
usually assumed to depend on several risk indicators, usually linked to the riskiness 
of the debtor and the conditions of the loan. Most credit risk models are based on two 
indicators: the (conditional) probability of default (PD) and the loss given default 
(LGD),1 both of which are supposed to depend on other underlying factors. In par-
ticular, the probability of default of an individual is dependent on his/her solvency, 
which is usually assumed to be driven by a factor common to all debtors (i.e., the macro-
economic environment) and a factor reflecting the specifics of the individual (i.e., 
his/her ability to increase the value of his/her own assets). The loss given default, on 
the other hand, is dependent on the contractual conditions of the loan, mainly on 

* Support from the Czech Science Foundation under grants 402/09/H045 and 402/09/0965 and from 
Charles University under grant GAUK 46108 is gratefully acknowledged. The authors are also grateful 
to Jan Voříšek for valuable comments and the idea of using the VECM model for the description of
the factors.

1 PD and LGD are usually referred to as risk factors; however, in this paper we call them “indicators” in 
order to verbally distinguish between these main quantities and the factors that drive them.



the value of the collateral. Collateral value is typically assumed to be driven by one 
or two (the common and the individual) factors; the simplest models, however, take 
LGD as fixed.

The Basel II (Bank for International Settlements, 2006) “Internal Rating Based”
(IRB) approach to credit risk measurement assumes that LGD is fixed, while PD is 
modeled by the famous KMV (Merton-Vasicek) model (Vasicek, 1987, 1991, 2002). 
In this model, the solvency of a debtor is supposed to be driven by two standard 
normal factors (the common and the individual one).2

In our paper, we question three of the most restrictive assumptions of the IRB 
approach: the normal distribution of all factors, the fixed LGD, and the static nature 
of the approach. In our model, the (two) factors driving PD may follow any distribu-
tion, LGD is random and driven by two factors, and, moreover, our model is multi-
periodic with the underlying factors allowed to follow a stochastic process of 
an arbitrary type. We show how a suitable version of our model is able to explain
the credit losses observed in reality. In our opinion, our results might be useful for 
credit risk management in banks, specifically to determine more precisely the capital 
that banks need to hold to protect themselves against unexpectedly large credit 
losses.

This paper is organized as follows. In the first part, we summarize the current 
state of knowledge in the field of credit risk modeling. In the second part, we 
describe our proposed methodology and extensions of the current regulatory frame-
work. Then we test our approach using empirical data and compare our results with 
the Basel II IRB model. Finally, we conclude and provide ideas for further research.

2. Current Credit Risk Measurement Methodologies

In this section, we describe more precisely the idea of value-at-risk models for 
credit risk, summarize the basic facts about the Basel II requirements for credit risk 
modeling, and suggest ways of overcoming their shortfalls. 

2.1 Current Credit Risk Models 

In the past three decades, the methods used by banks to determine the riski-
ness of their loan portfolios have evolved from simple averaging of past losses to 
complex models that combine the estimated riskiness of individual loans. The most 
influential models include CreditMetrics (RiskMetrics Group, 1997), which uses 
transition matrices to determine the level of defaults in a portfolio, CreditRisk+ 
(Wilde, 1997), which assumes a Poisson distribution for the default frequency, and 
the KMV model (Vasicek, 1987, 1991, 2002), used by the Basel II IRB approach and 
generalized in this paper. A comprehensive comparison of these methodologies can 
be found in Crouhy et al. (2000) and in Gordy (2000). 

2.2 The KMV Model

The KMV (Vasicek) model assumes that the wealth of an individual follows 
geometrical Brownian motion and that the values of the assets of individuals are 

2 Basel II is a widely known and accepted set of principles for banking capital regulation. IRB is one 
of several credit risk quantification methods described and allowed in Basel II. The currently proposed 
Basel III–the supposed successor of Basel II–uses the same risk quantification model as Basel II.



correlated, which is equivalent to saying that the individual’s wealth can be decom-
posed into a systemic and an idiosyncratic part (see (1) and (2)). While the systemic 
part might be interpreted as the macroeconomic environment, the individual factor 
may be viewed as an ability to change one’s personal wealth over time (education, 
health conditions, etc…).3

In particular, the KMV model assumes that the logarithm of the assets of 
the i-th individual fulfills

                                                  ,1 ,0log logi i iA A X                                                 (1)

Here, ,0iA is the individual’s wealth at time zero,  and  are constants, and 

iX is a random variable fulfilling

                                                               i iX Y Z                                                          (2)

where Y is the common factor and 1 2,  ,Z Z  are i.i.d. individual factors, independent 

of Y. 
Default is defined the state where the value of an individual’s assets de-

creases below a certain threshold iB ; this threshold is usually interpreted as the sum 

of the individual’s debts (including installments at least). The probability of default is 
then

                
,1 [ ]i i i i iPD A B X c              ,0log logi i
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                      (3)

The KMV model assumes that the factors Y and ,  1, 2, 3, , iZ i n  , are cen-

tered normal with such variances that  corr ,i jX X  for some prescribed  and 

each i j . 

After some calculations we obtain the default rate (DR)4, defined as

                                               
  

  

number of defaults
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which approximately fulfills 
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                              (4)

given a sufficiently large number of loans. Here, N denotes the standard normal

cumulative distribution function and 1PD PD 5 (for more details of the calculation 

see Vašíček, 1987). It follows that the distribution of DR is heavy-tailed, with 
the heaviness of the tail dependent on the correlation  .

3 The systemic factor is exogenous to both the KMV and to our model. For interesting research into
the relations of systemic factors among various financial and insurance sectors, see Billio et al. (2012).
4 The quantity which we call DR is sometimes called the empirical or observed PD. We use a different 
name so as not to suggest that DR is an estimate of PD (it is clear from (4) that DR is neither unbiased nor 
consistent).
5 Note that PDi = PD for any i because the individual factors are equally distributed.



Finally, since LGD is fixed, we may take it as a unit without any loss of 
generality. Thus, in the KMV model the credit loss L of the portfolio equals DR .

2.3 Existing Models with Random LGD

The biggest shortfall of the original Vasicek model usually discussed in 
the literature (see, for example, Cipollini and Missaglia, 2008) is the absence or 
randomness of LGD. Several recent models assume a non-random LGD; however, as 
far as we know, none of these studies challenged the assumption of standard normal 
distribution of the risk factors. In this sub-section we describe several of the most 
popular models of this kind.

The simplest (and the most natural) enhancement of the Vasicek model for 
LGD is the one proposed in Frye (2000), which assumes that LGD is a second risk 
indicator driving credit losses. In this model, LGD is a function of collateral:

                                               
max[0;1 ]i iLGD Collateral 

while the collateral value is expressed as

                                                   
(1 )i i i iCollateral C  

where Ci is the risk factor, which can be further expressed as a function of a sys-
temic risk factor Y identical to that driving defaults and a specific risk factor iE , i.e.,

                                             1i iC qY qE                                             (5)

The loss distribution is taken from the Vasicek framework (i.e., fulfilling (1)) 
with 

                                                 1i iX pY pZ                                                   (6)

which implies that the correlation between defaults and LGD is determined by how 
factors iX and iC depend on factor Y .

An extension of the Frye model can be found in Pykhtin (2003), who sup-
poses that the risk factor driving LGD depends on one systemic and two idiosyncratic 
factors:

                                                     
1i iC qY qE  

                                                    
1 'i i iE wZ wE                                                 (7)

where the systemic factor Y is common to both defaults and LGD. In this framework 
factor Zi also influences the idiosyncratic factor driving defaults (factor Ei´ is specific 
to LGD). The correlation between the two idiosyncratic factors is w. In practice, this 
approach is used by the Moody model (Meng et al., 2010).

Another extension of the KMV model can be found in Witzany (2011). In this 
model LGD is assumed to be driven by a specific factor different from the one 
driving defaults and by two systemic factors, one common to the defaults and 
the other specific to LGD.



3. Our Approach

In our proposed model, we, similarly to Frye (2000) and Pykhtin (2003), 
assume a random LGD. However, we look at defaults and LGD separately first and 
then offer ideas about how these two can be linked through dynamic dependence 
of their underlying factors. While the sub-model for defaults is a generalization of 
Vasicek’s approach, the LGD sub-model is a new one, making few assumptions but 
naturally explaining LGD as a function of the price of collateral. As to the evolution 
of the factors, we allow maximum generality; in fact, we only show how to “plug in” 
any model of the factors into our approach.

3.1 Model for Defaults

Analogously to Vasicek, we assume that 

                                      , , 1 ,log log Δ ,     i t i t t i tA A Y U i n                                      (8)

where n is the number of borrowers, ,i tA is the wealth of the i -th borrower at time 

t  , ,i tU is a random variable specific to the i -th borrower, and 1Δ t t tY Y Y   is 

the first difference of the common factor tY following a general (adapted) stochastic 

process. Such a setting makes sense, for instance, if tY stands for (the logarithm of) 

a stock index; then, our model corresponds to the situation where a borrower owns 
a portfolio with the same composition as the index plus some additional assets.

For simplicity, we assume that the duration of the debt is exactly one period 
and that the initial wealth in each period equals

                                            , 1 1 ,log ,     i t t i tA Y V i n                                               (9)

where ,i tV is a random variable specific to the i -th borrower. Further, we assume all 

 , ,
,i t i n t

U
 

to be mutually independent and independent of  Δ t t
Y


, and all 

, , ,,i t i t i tZ Z U + ,i tV , ,i n t  to be identically distributed with 1,1 0Z  , 

1,1var( )Z  , 0  , 1,1Z , having a strictly increasing continuous cumulative dis-

tribution function Ψ . Since the equation for wealth may be scaled, we can assume 
that 1  . Note that we do not require the increments of tY to be centered.

Even though the assumption of one-period duration of debts may seem very 
restrictive, in fact it is not; even if the total duration of a mortgage is measured 
in decades, the periods between the re-fixing of interest rates, at the end of which 
the mortgage may be repaid, are much shorter (sometimes as little as one year).6

It follows from our independence assumptions that the (conditional) proba-

bility of default of the i -th borrower at time t given  1 1: Δ , ,Δt tY Y Y   equals

                  
 , , , , ,| | Ψ logi t i t t i t i t t t i t tA B Y Z logB Y Y B Y                           (10)

where ,i tB are the debts of the i -th borrower at time t. 

6 A multi-period version of our model may also be formulated (see Šmíd and Gapko, 2010). However, this 
is tractable only by means of Monte Carlo simulation.



Our primary topic of interest is the default rate (DR), defined as:

                                           
    

t

number of defaults at t
R

n


If we assume the debts to be the same for all borrowers and at all times, i.e., log Bi,t = 

, b t  ,  i n , for some b, and if we approximate 
    

lim  t n

number of defaults at t
R

n
 , 

we may apply the Law of Large Numbers to the conditional probabilities described in 

(10) (we may do this since 1, 2,,t tA A  are conditionally independent given tY ) to 

obtain (for a very large portfolio):

                                       
 ,[ | ] Ψ ,     t i t t tR A b Y b Y t     

further implying that 

                                                1 1
1Δ Ψ Ψt t tY R R 

 

and

                                                   
  1

1Ψ Ψ Δt t tR R Y
                                           (11)

The latter formula roughly determines the dynamics of the process of losses, while 
the former one allows us to statistically infer the common factor based on the time 
series of the rates of default. 

Furthermore, we shall assume that factor Z is normal, i.e., Ψ is the cumu-
lative distribution function (CDF) of the standard normal distribution.

3.2 Model for LGD

Our model for LGD is analogous to our version of the default model. How-
ever, contrary to the Frye and Pykhtin models, we assume a separate common factor 
driving LGD. This choice is quite natural, as the systemic conditions driving defaults 
are different from those driving LGD: while defaults depend on many different 
variables (e.g. average wage, unemployment rate, and real estate prices), losses given 
default depend mainly on real estate prices. Note that we do not assume inde-
pendence of the factors driving defaults and LGD; as we show below, we allow for 
any form of stochastic dependence on each other as well as on the past values of both 
factors. 

Coming to the definitions, we assume that the property price of the i-th 
defaulted debtor is

                                                   , ,log logi t i t i tP a I E                                               (12)

(or, equivalently,    , ,exp expi t i t i tP a I E ), where tI is an (unobservable) common 

factor underlying LGD following a general adapted process, ,i tE is a centered indi-

vidual factor independent of 0(  , )t t tI Y  and all the individual factors described in 

subsection 3.1 (i.e., Ui, Vi, and Zi), and ia is a constant reflecting the ratio of the i -th 

debtor’s property price to the common factor. 



Let iC be the size of the i -th debt, including the cost of recovery. Then 

the recovered percentage of the i-th debt at time t is

                                                          
 ,n ,mi i t i

i
i

P C
G

C


Furthermore, let us say that ,  , i iC C a a i N   and let 1, 2,, , t tE E  be i.i.d. 

Given all this, we may assume without any loss of generality that 1,  1C a 

(the constants may now be incorporated into I ). Then

                                          ,
,min ;1 exp min , 0t i tI E

i t i tG e I E


  

If there is a large number of defaulted debtors, then the average of iG is, by 

the Law of Large Numbers,

                                                1
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1
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Evaluating the right-hand side (and omitting the time index), we get
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                                                                                   (13)

where F is the cumulative distribution function (CDF) of E1. Consequently, the LGD 
equals 

                                                    1  t t tD G h I                                                 (14)

where

                                                
ι

d ( )xh F e e F x



 




                                           (15)

or, after integrating by parts,

                                                        

   
ι

dxh e F x e x








                                              (16)

As shown in the Appendix, h is strictly decreasing, hence its inverse exists. 

Assume further that 1E is normal with variance 2 . Then    Φ /F x x  , 

where Φ is the standard normal CDF and

    21
 Φ exp Φ

2
h h

 
    

 

     
           

     
                                           (17)
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where  is the standard normal probability density function and where the derivative 

of h is with respect to . For the calculation of (17), see the Appendix.

3.3 Econometrics of the Model

As already said, we place no special requirements on the (vector) 

process   , t tY I . We will only assume that the process may be transformed into 

independent residuals in the sense that there exist mappings 1 2, ,  Q Q  such that

                                    1 1 2 2; ,     , , , , , , t t t t t tQ Y I Y I Y I     

for each t, where  is a (vector) parameter and 1 2, ,   is a sequence of i.i.d. two-

dimensional random variables whose density  possibly depends on a (vector)

parameter  . Given this assumption and some invertibility and differentiability 

conditions (which would be better tested in concrete cases), the conditional density of 

 , t tY I given 1t  is, by the formula for transformed density, 

                                
    1, ; , , , ; ; | ( , ) |t t t ty Q y D y         

where ( , )tD y  is the Jacobian determinant of tQ , restricted to the last two variables. 

Suppose now that we have a sequence of historical RDs and LGDs 

1 1 2 2,  , ,  ,  T TR D R D R D at our disposal and we want to estimate all parameters of our 

model, i.e., ,  , and  . A straightforward way to do this is by maximum 

likelihood estimation, with the likelihood function taking the form of

     
 1 1, , , , ; , ,T TL R D R D    



(18)

              1 ' 1

1

log log , log Ψ' Ψ log
T

t t t t t t t
t

Q D Y I R h h D    



     
 

(recall that      1 1 1
1Ψ Ψ , ).t t t t tY R R I h D

  
   Note that the third term in 

the square brackets may be omitted during the maximization because it does not 
depend on any parameter.

4. Empirical Results

We empirically tested our proposed methodology on a nationwide retail mort-
gage portfolio and compared the results with the Basel II IRB framework. In this 
section, we provide a detailed description of the datasets we used, the estimation 
process, and the results.

4.1 Description of the Data

The dataset for our empirical work consists of quarterly delinquency rates 
on mortgage loans from the whole US economy and was provided by the US 
Department of Housing and Urban Development and the Mortgage Bankers 
Association.7 All data start with the first quarter of 1979 and end with the third



Figure 1 The US 90+ Delinquency Rates–the Proxy for DR

quarter of 2009. Thus, the difficult period of the subprime mortgage crisis and 
the subsequent real recession is included.

4.2 Estimation

To estimate our model, we proceeded as follows. First, we extracted factor Y
from the values of R. Second, we computed factor I from the values of D by em-
ploying h specified in (17); since the function h, which maps D to I, depends also on 
parameter  , we did the transformation for a sufficient number of values of  . 

Third, we found a suitable model for the dynamics of the pair (Y, I). Finally, we 
estimated the model of the series (Y, I) for each  and chose the version with 

the highest likelihood.

4.2.1 Extraction of Y

As a proxy for the default rate (denoted by R), we used the series of 90+ 
delinquency rates8 depicted in Figure 1. We can see that the number started growing 
significantly at the end of 2007. During the estimation process, we used two types 
of delinquency rates: quarterly delinquencies and their yearly averages. The average 
delinquencies were used for the computation of the Basel II IRB capital requirement 
because the IRB method requires a long-term average probability of default as 
an input. The quarterly delinquency rates, on the other hand, served as the input data 
for our model. 

The values of the common factor “Y” were computed by means of (11). To 
verify our conjecture that the common factor may coincide with a stock index, we 
compared graphically the values of the common factor with the S&P 500 stock index 
(see Figure 2). It can be seen that the evolution of the common factor exhibits 
similarities to the stock index. A simple linear correlation analysis indicates that 
the common factor is lagged behind the stock index by two quarters and that both 
datasets are significantly correlated (the value of the Pearson correlation coefficient 
is about 30%, which is significant at 5%).

7 The Mortgage Bankers Association is the largest US society representing the US real estate market, with 
over 2,400 members (banks, mortgage brokers, mortgage companies, life insurance companies, etc.)
8 The 90+ delinquency rate is the proportion of all receivables 90 or more days past due in a given quarter.



Figure 2 Comparison of the Common Factor and the Lagged S&P 500 Index 
(values of the common factor on the left-hand scale; 
values of the S&P 500 on the right-hand scale)

Figure 3 Foreclosures/90+ Delinquencies–the Proxy for LGD 

4.2.2 Extraction of I

As a proxy for the LGD (denoted by D in our paper), the proportion of started 
foreclosures9 in the 90+ delinquency rates was used. Unfortunately, the proxy cannot 
be exact, because it does not include income collected from the sale of debtors’ prop-
erty; however, it at least gives us an idea of how large the losses would be in the case 
of no real estate collateral. The resulting series of D is plotted in Figure 3.

It is very interesting that, in the several recent periods, when the 90+ delin-
quency rate increased significantly, the ratio of seriously delinquent (defaulted) 
accounts which fell into the foreclosure process decreased. This can be intuitively 
explained by state aid under which the Fed bought a non-negligible amount of bad 
loans, especially from the mortgage market.

4.2.3 Selection of the Model for (Y, I)
After a preliminary analysis of the series of Ys we found clear ARCH behavior 

of the factor, hence we decided to analyze the transformed version of the factor instead 

of its original values
1

Δ

Δ
t

t
t

Y
y

Y 

 .

9 Foreclosure is a process whereby a creditor ceases all attempts to force a debtor to repay a seriously 
delinquent debt. The loan is treated as a loss and a late collection process begins. The creditor collects
the debtor’s property and tries to sell it on the real estate market.



Figure 4  Graphical Comparison of DR and LGD Common Factors

                                                  Further, for a sufficiently dense set of the values of σ, we extracted I by means 
of the inversion of h and fitted the (vector) time series (y, I) using a vector error 
correction model (VECM) with one lag, i.e.,

                                     1 1 1 1 1 1 1 1 1,t t t t ty y I e              

                                      2 2 1 2 1 2 1 2,t t t t tdI y I e            

where  y and  I are the first differences of y and I and e is an error correction term. 
For each of the examined values of σ, we computed the maximum likelihood func-
tion of the VECM model by means of (18) and chose σ = 12% as the estimate of σ
since this value gave the greatest likelihood. We found it very interesting that 
the estimated σ intuitively corresponds to the standard deviation of real estate prices 
(Quigley, 1999).

Figure 4 compares the two common factors. It is obvious at first glance that 
these two show some similarities. 

The resulting VECM model with Y as the dependent variable in the first 
equation and I in the second one is summarized in Table 1 (in accordance with 
the definition of the model, cointegration rank 1 was assumed).

To determine whether our choice of cointegration rank was correct, we per-
formed both the Engel-Granger and the Johansen cointegration tests. Both tests con-
firmed cointegration of rank one. Moreover, we see that the (transformed) factor Y
depends on the past value of both factors, while factor I does not show dependence 
on the past (except the one caused by the cointegration). The R2 of the whole model 
is around 30%.
Since normality of the residuals from the VECM model was rejected (with 
p-value lower than 0.01), we additionally fitted the residuals using the generalized 
hyperbolic distribution. This distribution was first described in Barndorff-Nielsen 
(1977), and it has been shown that it is able to describe financial time series more 
realistically than, for example, the standard normal distribution (Eberlein and Keller,
1995). The choice of distribution is based on Gapko and Šmíd (2010), where 
the authors found that the class of generalized hyperbolic distributions best fits 
the increments of the Y factor.



Table 1 Estimated Coefficients of the VECM Model

1st equation (y dependent) Coefficient Value (SE) p-value

Constant 0.552233 (0.101865) 3.44E-07

Δy t–1 -0.169582 (0.0914292) 0.0663

ΔIt–1 0.111233 (0.0286587) 0.0002

Error Correction Term -0.534066 (0.0982860) 3.26E-07

2nd equation (I dependent) Coefficient Value (SE) p-value

Constant -0.299802 (0.321560) 0.3532

Δyt–1 -0.106660 (0.288617) 0.7124

ΔIt–1 -0.362746 (0.0904674) 0.0001

Error Correction Term 0.293693 (0.310262) 0.3459

Before the end of this section, let us describe the derivation of the ML func-
tion (18) in detail. First, note that 
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where St and Mt are matrices possibly containing past values of both (transformed) 

factors Y and I. Since, in (18), the term    1,t t t tlog D Y I log Y    does not de-

pend on any parameter, it can be excluded from the maximization, so the ML 
estimate can be obtained by maximizing
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                  (19)

where L Is the likelihood function of the VECM model, 1 2( , , )i i   are the residuals 

from the i-th equation of the VECM model, and i is the density of the residuals (keep 

in mind, however, that the residuals depend on the parameters of the VECM model).

Remark: To be rigorous, we did not proceed exactly according to Section 3 
because we did not maximize the parameters of the VECM model and of the re-
siduals “at once”. However, since both estimations are already implemented (in 
R language), it seems reasonable to use the existing methods–to estimate the VECM 
first and then to fit the residuals. However, we pay a price for this simplification: our 
estimate becomes a quasi maximum likelihood one instead of a maximum likeli-
hood one (because least squares estimation is an ML one only given normality of 
the residuals). 

4.3 Predictions

Having the model, we computed the quantiles of both DR and LGD on 
the 99.9th percentile probability level, i.e., on the level used in the Basel II frame-
work. 



Table 2 Comparison of Basel II and Dynamic GHD Models Tail DR

Model Basel II IRB Our model

Distribution used 
for the individual factor

Standard Normal Standard Normal

Distribution used 
for the common factor

Standard Normal Generalized Hyperbolic

99.9% loss 10.3% 7.2%

Table 3 Selected LGD Quantiles in Our Model

99th quantile LGD 99.9th quantile LGD 99.99th quantile LGD

29.8% 40.6% 50%

During the estimation, we had to solve a technical problem. The common 
practice is to measure credit risk over a one-year horizon, while our dataset is based 
on quarterly observations. In order to get one-year predictions exactly, we would 
need to calculate convolutions of the (generalized hyperbolic) residuals, which would 
lead to complicated integral expressions. Therefore, we decided instead to use simu-
lations for four consecutive quarters, using the formula 

                                        1
4

1 4
t t t i

i

R R Y
 

 

 
     

 
                                       (20)

which can be easily achieved by using (11) four times consecutively.

4.3.1 Quantile of DR

As was said in Section 3, we assumed that the distribution of the individual 
factor driving defaults, denoted by Z, is standard normal.

We compared the quantiles of DR calculated by our proposed methodology 
and those obtained by the Basel II IRB method (assuming standard normal dis-
tributions for both risk factors and a 15% correlation between the factors10). 
The result is summarized in Table 2.

The results show that our model predicts a lower value of the quantile of DR 
than the IRB formula, which may seem surprising in light of the fact that we rejected 
normality of the residuals in favor of a fat-tailed distribution. However, if we keep in 
mind that we use information from the past to estimate the distribution of the factor 
(which the static model does not), we are able to “predict” the factor more exactly. 
This decreases the uncertainty in the model and thus explains the lower value of 
the quantile. 

4.3.2 Quantile of LGD

Similarly to DR, we computed the quantiles of LGD (by means of simulations 
again). The resulting 99.9th LGD quantile calculated by our model, 40.6%, is slightly 
below the regulatory 45% benchmark. The other computed quantiles are summarized 
in Table 3.

10 The 15% correlation is the benchmark set for mortgage exposures in the Basel II framework.



5. Conclusion

We proposed a new model for quantifying credit risk, widely generalizing 
the IRB approach implemented in the Basel II regulatory framework. In particular, 
we extended the original model framework so that both DR and LGD are considered, 
each being driven by one common and one individual factor. In our proposed metho-
dology, nearly any dynamic stochastic model may be used to describe the dynamics 
of the (common) factors. 

We applied our model to real data, specifically to the time series of serious 
credit delinquencies in the nationwide US mortgage market. We used a VECM 
model with generalized hyperbolic residuals as the model for the common factors. 
Based on the model, we evaluated the quantiles for both DR and LGD, finding that 
our results are comparable with the levels prescribed by Basel II. In particular, our 
results show that the Basel II framework gives both higher DR and higher LGD than 
our model. This is because our model, employing dynamics, gives more precise fore-
casts of both factors. In the Basel II methodology with static models, information 
from the past is not exploited. Consequently, our results show that the current
regulatory framework may overestimate credit losses, which may result in higher 
capital requirements and thus higher customer interest rates on loans.

The proposed methodology could be used as part of internal capital adequacy 
measurement in banks or other financial institutions. However, there are still some 
unresolved questions and suggestions for future research, including more detailed 
analysis of the relationship between DR and LGD and an empirical analysis of 
the model on a single bank’s portfolio.



APPENDIX

In the Appendix, we provide mathematical details concerning the function h defined 

in Section 3.1. First we specify its derivative:
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Second, we evaluate the function given that 1E is normal with variance 2 :
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(recall that Φ is the standard normal CDF).
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