
Akademie věd České republiky
Ústav teorie informace a automatizace

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

M. Studený:

LP relaxations and pruning

for characteristic imsets

No. 2323 June 2012

ÚTIA AV ČR, P.O. Box 18, 182 08 Prague, Czech Republic
Telex: 122018 atom c, Fax: (+42) (2) 688 4903

E-mail: utia@utia.cas.cz

This report constitutes an unrefereed manuscript which is intended to be submitted
for publication. Any opinions and conclusions expressed in this report are those of the
author(s) and do not necessarily represent the views of the Institute.

LP relaxations and pruning for characteristic imsets

Milan Studený∗

Institute of Information Theory and Automation of the ASCR
email: studeny@utia.cas.cz

June 10, 2012

Abstract

The geometric approach to learning a Bayesian network (BN) structure is based on
the idea to represent every BN structure by a certain vector. Suitable such a zero-one
vector representative is the characteristic imset, introduced in [20]. This concept allows
one to re-formulate the task of finding the global maximum of a score over BN structures
as an integer linear programming (ILP) problem.

In this research report, extensions of characteristic imsets are considered which ad-
ditionally encode chain graphs without flags equivalent to acyclic directed graphs. The
main contribution is the LP relaxation of the corresponding polytope, that is, a poly-
hedral description (= in terms of linear inequalities) of the domain of the respective
ILP problem. The advantage of this approach is that, as a by-product of the ILP op-
timization procedure, one may directly get the essential graph, which is a traditional
graphical BN representative. Another topic discusses in the report is the method of
search space reduction from [7]; in the considered context it leads to suitable pruning
components of the characteristic imsets, that is, to the reduction of the length of these
vector representatives.

Keywords: learning Bayesian network structure; quality criterion; integer linear program-
ming; characteristic imset; LP relaxation; essential graph; search space reduction.

1 Introduction

Learning a Bayesian network (BN) structure by a score-and-search method means to max-
imize a quality criterion Q, also named a score or a scoring function. The criterion is a
real function of the (acyclic directed) graph G and the observed database D. The value
Q(G,D) evaluates how the BN structure defined by the graph G fits the database D.

Two important technical assumptions on the criterion Q, which were pinpointed in the
literature in connection with computational aspects of this maximization task, are that Q
should be score equivalent [2] and (additively) decomposable [3]. The geometric approach
is to represent every BN structure by a certain vector so that such a criterion Q becomes
an affine function of the vector representative. This idea was introduced already in [18]
and then deepened in [19]. A suitable (uniquely determined) such a zero-one vector BN
representative seems to be the characteristic imset, introduced in [20].

∗This research has been supported by the grant GAČR n. 201/08/0539.

1

Jaakkola et al. [10] and Cussens [4, 5] came independently with an analogous geometric
approach. The main difference is that they used certain special zero-one vector codes of
(acyclic) directed graphs to represent (non-uniquely) BN structures. On the other hand,
they made more progress with the practical application of integer linear programming (ILP)
tools. To overcome technical problems with the exponential length of their vectors they
utilized the idea of the reduction of the search space from [6], based on a particular form
of databases and criteria occurring in practice; for deeper results on this topic see [7].

In [21], both methods of BN structure vector representation were compared and it
was found that the characteristic imset can be viewed as a (many-to-one) linear function
of the above mentioned graph-code. Finally, Lindner [12] performed some preliminary
computational experiments based on the characteristic imset approach; for an overview of
this approach see [22] and [9].

In this report, an extended vector BN structure representative is introduced, which
includes the characteristic imset and, moreover, encodes a certain special graph (equivalent
to an acyclic directed graph). The main result is a polyhedral characterization of the domain
of the respective ILP problem. Specifically, a set of linear inequalities is presented such that
the only vectors with integer components in the polyhedron specified by those inequalities
are the above mentioned extended vector representatives. It is called the LP relaxation (of
the corresponding polytope).

The inequalities are classified in four groups. The number of inequalities in the first
two groups is polynomial in the number of variables (= nodes of the graph), while the
number of remaining inequalities is exponential. However, provided the length of the vector
representatives is limited/reduced to a polynomial number by the idea of from [7], the
number of inequalities in the third group can be reduced to a polynomial number as well.
The inequalities in the fourth group correspond to acyclicity restrictions and two versions of
these inequalities are presented. In general, they cannot be reduced to a polynomial number,
but, owing to their natural graphical interpretation, the method of iterative constraint
adding may be applied to solve the respective ILP problems.

Another advantage of this extended vector BN structure representative is that one can
get, as a result of solving an ILP problem, the essential graph, which is known as a standard
(unique) graphical BN representative [1].

2 Preliminaries

Let N be a finite non-empty set of variables; to avoid the trivial case, assume |N | ≥ 2. In
statistical context, the elements of N correspond to random variables in consideration; in
graphical context, they correspond to nodes.

2.1 Graphical concepts

A hybrid graph over (the set of nodes N) is a graph with two types of edges between
(distinct) nodes i, j ∈ N , namely directed edges, called arrows, and denoted like i → j (or
j ← i), and undirected edges, called lines, and denoted like i ! j (or j ! i). No multiple
edges are allowed between two nodes of a hybrid graph H, which means, if i→ j in H, then
¬(j → i in H) and ¬(i ! j in H). If there is an edge between nodes i and j, we say they
are adjacent. A graph is undirected if it only has lines; it is directed if it only has arrows.

2

A cycle of the length m ≥ 3 in a hybrid graph H is a sequence ρ : i0, i1, . . . , im = i0,
where i1, . . . , im are distinct nodes, and, for each r = 0, . . . ,m − 1, [ir, ir+1] is an edge in
H. The cycle ρ is chordless, or minimal, if there is no other edge in H between nodes
in {i1, . . . , im = i0} besides those which form the cycle ρ. An undirected graph is called
chordal if it has no chordless cycle of the length m ≥ 4.

The cycle ρ is directed if ir → ir+1 in H for each r = 0, . . . ,m − 1. A directed graph
is acyclic if it has no directed cycle. An equivalent definition of an acyclic directed graph
G is that there exists an ordering b1, . . . , b|N | of all nodes in N which is consistent with the
direction of arrows: bi → bj in G implies i < j. The set of parents of a node i ∈ N in a
(directed) graph G is the set paG(i) ≡ { j ∈ N ; j → i in G}.

The cycle ρ is semi-directed if i0 → i1 in H and, for each r = 1, . . . ,m−1 one has either
ir → ir+1 in H or ir ! ir+1 in H. We say that a hybrid graph H is 3-acyclic if it has no
semi-directed cycle of the length 3.

A set of nodes C ⊆ N in a hybrid graph H is connected if, for every pair i, j ∈ C,
there exists an undirected path between i and j, that is, a sequence of (distinct) nodes
i = i1, . . . , is = j, s ≥ 1 such that ir ! ir+1 in H for r = 1, . . . , s − 1. The maximal
connected sets (with respect to inclusion) are called the connected components of H.

A hybrid graph H is called a chain graph if (all) its components can be ordered into a
sequence C1, . . . , Cm, m ≥ 1, called a chain, such that if i→ j in H, then i ∈ Cr and j ∈ Cs
with r < s. An equivalent definition of a chain graph is that it is a hybrid graph which
has no semi-directed cycle, or alternatively, which has no semi-directed chordless cycle; see
Lemma 2.1 in [15]. Thus, chain graphs are, in fact, acyclic hybrid graphs, they involve
acyclic directed graphs. Also, clearly, every chain graph is a 3-acyclic hybrid graph.

A flag in a hybrid graph H is an induced subgraph (over three nodes) of the form
i→ j ! k, which means that i and k are not adjacent. An immorality in H is an induced
subgraph (over three nodes) of the form i→ k ← j (that is, i and j are not adjacent in H).

2.2 Bayesian network structure

In statistical context, each variable i ∈ N is assigned a finite (individual) sample space Xi
(of possible values); assume |Xi| ≥ 2 for each i ∈ N to avoid technical problems. The joint
sample space is the Cartesian product XN ≡

∏
i∈N Xi. For A ⊆ N , the projection of an

element x = [xi]i∈N of XN to A is the configuration (= the list) of values xA = [xi]i∈A.
The symbol XA will denote the respective projection space. Thus, for A = ∅, the projection
space X∅ is a singleton, consisting of the empty list; for ∅ 6= A one has XA =

∏
i∈A Xi.

A Bayesian network (BN) is a pair (G,P), where G is an acyclic directed graph with
the node set N and P a Markovian probability distribution (with respect to G) on the joint
sample space. This means P that satisfies conditional independence restrictions determined
by G; see [11] for details. The BN structure defined by an acyclic directed graph G is the
class of Markovian probability distributions with respect to G on (fixed)

∏
i∈N Xi.

However, different graph over N can be Markov equivalent, which means they define the
same BN structure. Classic graphical characterization of equivalent graphs by Verma and
Pearl [23] says they are Markov equivalent iff they have the same adjacencies and the same
immoralities.

3

2.3 Essential graph

A standard (unique) graphical representative of a BN structure is the following.

Definition 2.1 Let G be a Markov equivalence class of acyclic directed graphs over N .
The essential graph G∗ of G is a hybrid graph over N defined as follows:

• a→ b in G∗ if a→ b in every G from G,

• a ! b in G∗ if there are graphs G1 and G2 in G with a→ b in G1 and a← b in G2.

This terminology and the first graphical characterization of essential graphs was given
by Anderson, Madigan and Perlman [1]. It implies that every essential graph is a chain
graph and has no flags. Actually, the class of chain graphs without flags appear to be
important in this context. One can introduce a graphical concept of equivalence for these
graphs.

Definition 2.2 Two chain graphs without flags G and H over N are equivalent if they
have the same adjacencies and immoralities. Given two such graphs, we say that H is
larger than G if, for any i, j ∈ N , i→ j in H implies i→ j in G.

The meaning of this equivalence of G and H is that they define the same statistical
model; c.f. Lemma 2 in [17]. The following characterization of the essential graphs, proved
as Corollary 4 in [17], will be utilized later.

Lemma 2.1 Let G be a Markov equivalence class of acyclic directed graphs over N and H
the equivalence class of chain graphs without flags such that G ⊆ H. Then G∗ is the largest
graph in H.

Further important observation is that a chain graph H without flags is equivalent to
an acyclic directed graph G iff the induced subgraphs of H for its components are chordal
undirected graphs; see Lemma 3 in [17].

2.4 Characteristic imset

This algebraic representative of a BN structure was introduced in [20]. For our purpose,
the following equivalent definition is suitable.

Definition 2.3 Let G be an acyclic directed graph over N . The characteristic imset for G
can be introduced as a zero-one vector cG with components cG(S) where S ⊆ N , |S| ≥ 2,
such that

cG(S) = 1 ⇔ ∃ i ∈ S such that S \ {i} ⊆ paG(i). (1)

The point is that two acyclic directed graphs G and H over N are Markov equivalent
iff cG = cH ; see § 3 of [9]. Moreover, Corollary 2 in [9] implies that, for different i, j, k ∈ N ,

(i) i and j are adjacent in G iff cG({i, j}) = 1,

(ii) i→ k ← j is an immorality in G iff cG(ijk) = 1 and cG(ij) = 0.

4

In particular, one can observe that the characteristic imset cG is uniquely determined by
its values cG(S) for S ⊆ N , 2 ≤ |S| ≤ 3.

It appears to be suitable to have a formula for the characteristic imset on the basis of
any graph H in the class H from Lemma 2.1. For this purpose one needs the following
auxiliary concept.

Definition 2.4 We say that a hybrid graph H over S ⊆ N has a super-terminal component
if there exists non-empty set K ⊆ S such that

• K is a complete set in H, which means, for each pair of distinct nodes i, k ∈ K, one
has i ! k in H,

• ∀ j ∈ S \K ∀ i ∈ K one has j → i in H.

It makes no problem see that a super-terminal component K, if exists, is uniquely deter-
mined.

The following result follows directly from Theorem 2 in [9]:

Lemma 2.2 Let H be a chain graph without flags equivalent to an acyclic directed graph
G. For any S ⊆ N , |S| ≥ 2 one has cG(S) = 1 iff the induced subgraph of H for S (denoted
by HS) has a super-terminal component.

2.5 Straightforward codes of graphs

Jaakkola et al. [10] and Cussens [4, 5] used a special method for vector encoding (acyclic)
directed graphs over N . The vector ηG encoding G has components indexed by pairs (i|B),
where i ∈ N and B ⊆ N \ {i}. Specifically, it is defined as follows:

ηG(i|B) =

{
1 B = paG(i),

0 otherwise.
(2)

In their paper [10], Jaakkola et al. mentioned special inequalities for ηG, which they called
the cluster inequalities. These inequalities correspond to sets S ⊆ N , |S| ≥ 2:

1 ≤
∑
i∈S

∑
B⊆N\S

ηG(i|B) . (3)

The meaning of the inequality (3) is that there exists at least one node i in the set S with
paG(i)∩S = ∅. In other words, the induced subgraph GS has at least one initial node, that
is, a node i ∈ S with no j ∈ S such that j → i in GS . Because GS is an acyclic directed
graph over S, the existence of such a node i ∈ S is obvious. That’s why (3) holds for every
acyclic directed graph G

In [21], the relation of the characteristic imset to this straightforward code of G was
established. Actually, cG is a linear function of ηG given by

cG(S) =
∑
i∈S

∑
B,S\{i}⊆B⊆N\{i}

ηG(i|B) for S ⊆ N , |S| ≥ 2. (4)

Indeed, (4) follows directly from Definition 2.3: clearly, at most one node i ∈ S with
S \ {i} ⊆ paG(i) exists in an acyclic directed graph GS .

5

2.6 Learning a BN structure

Learning a BN structure means to determine it on the basis of an observed (complete)
database D, which is a sequence x1, . . . , xd of elements of the joint sample space

∏
i∈N Xi

(d ≥ 1 is the length of the database). The projection of D to A ⊆ N is the sequence of
respective projections x1A, . . . , x

d
A, denoted by the symbol DA. Given a database D of the

length d ≥ 1 and y ∈ XA, A ⊆ N we use a special notation d[y] ≡ |{l; 1 ≤ l ≤ d, xlA = y}|
for the number of occurrences of y in the database DA. In particular, for the empty list
y ∈ X∅, one has d[y] = d. The concatenation of two configurations y ∈ XA and z ∈ XB for
A,B ⊆ N , A ∩B = ∅ will be denoted by [y, z]; it belongs to XA∪B.

Learning a BN structure is often done by maximizing some quality criterion, also named
a score, which is a bivariate real function (G,D) 7→ Q(G,D), where G is an acyclic directed
graph over N and D a database. The value Q(G,D) quantitatively evaluates how the BN
structure defined by the graph G is good to explain the occurrence of the database D. For
formal definition of the relevant concept of statistical consistency see [13].

Given the observed database D, the goal is to maximize G 7→ Q(G,D). Since the aim is
learn a BN structure, a natural assumption is that the criterion Q we are going to maximize
should be score equivalent, which means, for every database D,

Q(G,D) = Q(H,D) whenever G and H are Markov equivalent acyclic directed graphs.

The crucial technical assumption is that Q should be additively decomposable, which means,
it has the form

Q(G,D) =
∑
i∈N

qD(i | paG(i)) , (5)

where the summands qD(∗|∗) are called local scores. Moreover, it is required here that
each local score term qD(i|B), for i ∈ N and B ⊆ N \ {i}, only depends on the database
projection D{i}∪B. One can re-write (5) in terms of ηG:

Q(G,D) =
∑
i∈N

∑
B⊆N\{i}

qD(i|B) · ηG(i|B), (6)

which allows one to interpret Q as (the restriction of) a linear function of ηG.

A well-known example of such a score is Schwarz’s [14] Bayesian information criterion
(BIC), whose local scores are given as follows: for i ∈ N , B ⊆ N \ {i},

bicD(i|B) =
∑
y∈XB

∑
z∈Xi

d[y,z] · ln
d[y,z]

d[y]︸ ︷︷ ︸
mllD(i|B)

− ln d

2
· {r(i)− 1} ·

∏
j∈B

r(j)︸ ︷︷ ︸
dim(i|B)

, (7)

where r(i) = |Xi|, i ∈ N are the cardinalities of the individual sample spaces. In that
formula, the conventions 0 · ln 0

∗ ≡ 0 and
∏
j∈∅ r(j) ≡ 1 are applied. The first term here

is the local score of the maximized log-likelihood criterion (MLL); what is subtracted is
a penalty term reflecting the length of the database and the local contribution to the
dimension (DIM). The penalty term is to quantify the complexity of the statistical model
given by G.

6

Another common example is the Bayesian Dirichlet Equivalence (BDE) score [8], whose
local scores are given by the following formula: for i ∈ N , B ⊆ N \ {i},

bdeD(i|B) =
∑
y∈XB

 ln
Γ(α[y])

Γ(α[y] + d[y])
−
∑
z∈Xi

ln
Γ(α[y,z])

Γ(α[y,z] + d[y,z])

 , (8)

where the α-terms are so-called hyper-parameters. Typically, for y ∈ XB, they are given by
the formula α[y] = α∗ · (|XB|)−1 = α∗ · (

∏
j∈B r(j))

−1 with some fixed α∗ > 0, called the
equivalent sample size.

3 What is the aim?

The final aim of the learning procedure proposed in this report is to get a zero-one vector,
which is an extension of the characteristic imset and, simultaneously, encodes the essential
graph. Therefore, the considered vectors have two kinds of components:

• c(S) for sets S ⊆ N , |S| ≥ 2, intended to encode the values of the characteristic imset,

• a(i→ j) for ordered pairs i, j ∈ N , i 6= j, intended to encode the presence of an arrow
i→ j in a graph (= the codes of arrowheads).

However, it seems to be convenient and advantageous, in the first phase, to allow a wider
class of graphs. The idea is to consider a certain class of graphs which includes both the
essential graphs and acyclic directed graphs; see below § 3.1. What is presented in the
report is the LP relaxation of the respective polytope (= of the convex hull of the set of
considered vector codes; see § 3.2. This allows one to specify properly the domain of the
respective ILP problem; see § 6.2.

However, the pure version of the obtained ILP problem is still too complex to be solved
by standard ILP software packages: this os becuase of both the exponential length of
vector codes and of the exponential number of inequalities (in the number of variables |N |).
Therefore, we describe the idea of the reduction of the search space, which allows one to
shorten the length of considered vectors codes substaintially; see § 7.2. This pre-processing
step (for the first phase), based on a particular form of databases and criteria occuring in
practice, allows us to reduce the number of inequalities as well.

Then, in the second phase, when the solution of the first ILP problem is already found
and the characteristic imset c determined, another ILP problem is formulated. The second
ILP problem is based on the same LP relaxation and its solution is the desired simultaneous
code of the essential graph and the characteristic imset c. The second ILP procedure is much
simpler than the first one (clearly polynomial in |N |); it can be viewed as an LP version of
the reconstruction algorithm for the essential graph on thr basis of the characteristic imset.
Morerover, the second ILP procedure can be modified in such a way that the solution will be
one of the respective acyclic directed graphs; see § 8. The summary of the whole procedure,
including complexity considerations, is given in § 9.

3.1 The class of graphs and encoding

The output of the first phase should be a graph over N which falls within the class of

7

chain graphs without flags that are equivalent to acyclic directed graphs.

Now, we are going to introduce special zero-one vector codes for even more general graphs,
because this appears to be convenient.

Definition 3.1 Let H be a hybrid graph over N which is 3-acyclic and has no flags. Then
we ascribe to H a zero-one vector (aH , cH) with components determined as follows:

aH(i→ j) =

{
1 i→ j in H,
0 otherwise,

cH(S) =

{
1 HS has a super-terminal component,
0 otherwise,

(9)
where i, j ∈ N are distinct and S ⊆ N , |S| ≥ 2.

Observe, that in case |S| = 2, HS has a super-terminal component iff the nodes in S are
adjacent in H. Thus, the relation (9) means that, for distinct i, j ∈ N ,

cH(ij) = 1 ⇔ [i, j] is an edge in H. (10)

In case |S| = 3, as H is 3-acyclic, HS has a super-terminal component iff either HS is quasi-
complete, that is, every pair of distinct nodes in S is adjacent in H, or HS is an immorality.
In particular, for distinct i, j, k ∈ N ,

cH(ijk) = 1 ⇔
{

either [i, j],[i, k],[j, k] are all edges in H,
or, up to a permutation of i, j, k, one has i→ k ← j in H.

(11)

3.2 What are the inequalites?

The inequalities are classified in four groups and none of them is superfluous (see below).

The basic non-negativity inequalities are as follows:

(b.1) ∀ i, j ∈ N distinct 0 ≤ a(i→ j),

(b.2) ∀S ⊆ N , |S| = 3, 4 0 ≤ c(S).

The consistency inequalities mainly relate the a-part of the vector with its c-part:

(c.1) ∀ i, j ∈ N distinct a(i→ j) + a(j → i) ≤ c(ij),

(c.2) ∀ i, j ∈ N distinct c(ij) ≤ 1,

(c.3) ∀ i, j, k ∈ N distinct 2 · c(ijk) ≤ 2 · c(ij) + a(i→ k) + a(j → k),

(c.4) ∀ i, j, k ∈ N distinct a(i→ j) + c(jk) ≤ 1 + c(ijk) + a(j → k),

(c.5) ∀ i, j, k ∈ N distinct a(i→ j) + c(jk) + c(ik) ≤ 2 + a(i→ k) + a(k → j).

The extension inequalities ensure the c-part to be determined by c(S) for 2 ≤ |S| ≤ 3:

(e.1) ∀S ⊆ N , |S| ≥ 3
∑

i∈S c(S \ {i}) ≤ 2 + (|S| − 2) · c(S),

(e.2) ∀S ⊆ N , |S| ≥ 4 (|S| − 1) · c(S) ≤
∑

i∈S c(S \ {i}).

8

Finally, the acyclicity inequalities only concern the c-part and ensure that the solution is
the graph in the considered class:

(a.1) ∀S ⊆ N , |S| ≥ 4
∑

T⊆S, |T |≥2 c(T) · (−1)|T | ≤ |S| − 1.

The meaning (= interpretation) of above inequalities will be explained later, after the
necessity proof (see § 4.2). As concerns their number:

• the number of the basic non-negativity constraints is polynomial in n ≡ |N |,
namely 2 ·

(
n
2

)
+
(
n
3

)
+
(
n
4

)
,

• the number of the consistency inequalities is also polynomial, namely 2 ·
(
n
2

)
+ 15 ·

(
n
3

)
,

• the number of the extension inequalities is exponential, namely 2 · 2n −
(
n
3

)
− 2 ·(

n
2

)
− 2 · n− 2, but there is a fair hope that one can in practice reduce their number

polynomially (see § 9),

• the number of the acyclicity inequalities is also exponential, namely 2n −
(
n
3

)
−
(
n
2

)
−

n− 1, and one cannot reduce it to a polynomial amount in general, but can possibly
design a reasonable way of avoiding the use of all of them; see § 9.

Now, examples are given, that none of the above inequalities is a consequence of the others:

(b.1) take N = {i, j} and a(i→ j) = −1 while a(j → i) = c(ij) = 0,

(b.2) take N = S and put c(S) = −1 while a ≡ 0 and c(T) = 0 for T ⊂ S,

(c.1) take N = {i, j} and c(ij) = a(i→ j) = a(j → i) = 1,

(c.2) take N = {i, j} and c(ij) = 2 while a(i→ j) = a(j → i) = 1,

(c.3) take N = {i, j, k} and c(ijk) = c(ik) = c(jk) = 1 while c(ij) = 0 and a ≡ 0,

(c.4) take N = {i, j, k} and a(i → j) = c(jk) = 1 while c(ij) = 1 but c(ik) = c(ijk) = 0
and a vanishes in other components,

(c.5) take N = {i, j, k} and a(i→ j) = 1, c ≡ 1 while a vanishes in other components,

(e.1) in case |S| = 3 take N = {i, j, k} and c(ij) = c(ik) = c(jk) = 1, while c(ijk) = 0 and
a ≡ 0; if |S| ≥ 4 take N = S, choose distinct i, j ∈ S and put a(i→ k) = a(j → k) = 1
for every k ∈ S \ {i, j}, a vanishing for other components, c(ij) = c(S) = 0, while
c(T) = 1 for T ⊂ S, T 6= {i, j},

(e.2) take N = S and c(S) = 1, while c(T) = 0 for T ⊂ S, a ≡ 0,

(a.1) take N = S, consider a total order i1, . . . , is, s = |S| of elements of S and put
c({i1, is}) = 1, c({ir, ir+1}) = 1 for r = 1, . . . s − 1, while c vanishes for remaining
components and a ≡ 0.

4 Necessity of the inequalities

In this section, we show that the inequalities from § 3.2 are necessarily valid for the vector
codes from Definition 3.1. This allows us to interpret the inequalities in graphical terms.

9

4.1 Auxiliary observations

To verify the necessity of the extension inequalities we will need the next technical lemma.

Lemma 4.1 Let H be a hybrid graph over N and S ⊆ N , |S| ≥ 3.

(a) If HS has a super-terminal component, then for at least |S| − 1 subsets T ⊂ S with
|T | = |S| − 1, the graph HT has a super-terminal component.

(b) Provided H is 3-acyclic, if, for at least 3 subsets T ⊂ S with |T | = |S| − 1 the graph
HT has a super-terminal component, then HS has a super-terminal component.

Proof: (a) If HS has a super-terminal component K, then for each j ∈ S \K, the graph
HS\{j} has K as a super-terminal component. If |K| ≥ 2, then, for every i ∈ K, HS\{i} has
K \ {i} as a super-terminal component.

(b) Assume that k,m, ` ∈ S are such that, for each i ∈ {k,m, `}, HS\{i} has a super-
terminal component. Since H{k,m,`} has no directed cycle, it has a node with no arrow
directed towards it. Thus, without loss of generality assume that k has the property that
¬(m→ k in H) and ¬(`→ k in H). Now,

let K be a super-terminal component in HS\{k}.

If K ∩ {m, `} 6= ∅ then we can assume without loss of generality that ` ∈ K. Thus, we
distinguish the following three cases:

A. K ∩ {m, `} = ∅,

B. K = {`},

C. ` ∈ K and |K| ≥ 2.

In case A. we haveK ⊆ S\{k,m, `} andK is a super-terminal component inHS\{k,m,`}.
Let L be a super-terminal component in HS\{`}. Then, because there exists i ∈ K ⊆
S \ {k,m, `} with m→ i in H, necessarily m 6∈ L. Also, k 6∈ L, as otherwise, for m 6∈ L, we
observe m → k in H, which contradicts the choice of k. Hence, L ⊆ S \ {k,m, `} and L is
a super-terminal component in HS\{k,m,`}. By its uniqueness, we get L = K. This implies
that K is a super-terminal component in HS .

In case B. , that is K = {`}, let M be a super-terminal component in HS\{m}. Then,
because for every j ∈ S \ {k, `} one has j → ` in H, necessarily M ⊆ {k, `}. Necessarily
` ∈M , for otherwise M = {k} and `→ k in H, which contradicts the choice of k. Then we
have two options:

• M = {`}, in which case k → ` in H and K = M = {`} is a super-terminal component
in HS ,

• or M = {k, `}, in which case k ! ` in H. To show that M = {k, `} is a super-terminal
component in HS , it remains to verify m → k in H. To this end, consider a super-
terminal component L in HS\{`}. As ∀ j ∈ S \ {k,m, `} one has j → k in H, we have
L ⊆ {k,m}. This implies that [k,m] is an edge in H. Because H is 3-acyclic and
m→ ` ! k in H, it implies m→ k in H, which was desired.

10

Finally, in case C. the assumption |K| ≥ 2 implies that the set K \ {`} is a super-
terminal component in HS\{k,`}. Now, let L be a super-terminal component in HS\{`}. We
distinguish two subcases:

C.1. If k 6∈ L, then L is a super-terminal component in HS\{k,`}, and, by its uniqueness,
L = K \ {`}. To show that that K is a super-terminal component in HS it remains to
verify k → ` in H. To this end, consider a super-terminal component M in HS\{m}.
Because ∀ j ∈ S \ ({k} ∪ K) one has j → ` in H, we have M ⊆ {k} ∪ (K \ {m}).
As K \ {m} is complete in H, there are three options for M , namely M = {k},
M = K \ {m} and M = {k} ∪ (K \ {m}). In each of these 3 cases, [k, `] is an edge in
H. There is at least one i ∈ L ⊆ K, and one has then k → i ! ` in H. Because H is
3-acyclic, it implies k → ` in H, which was needed.

C.2. If k ∈ L, then necessarily m ∈ L, for otherwise one has m→ k in H, which contradicts
the choice of k. Hence, L \ {k} is a super-terminal component in HS\{k,`}, and, by its
uniqueness, K \ {`} = L \ {k} = K ∩ L. As m ∈ K ∩ L, we have k ! m and m ! `
in H. Let M be a super-terminal component in HS\{m}. Observe that M ⊆ K ∪ L,
because, ∀ j ∈ S \ (K ∪L), one has j → k in H. The next observation is that k ∈M .
Indeed, otherwise for some i ∈M ⊆ (K ∪L) \ {m} one has k → i in H, which means
that k → i ! m ! k in H contradicting that H is 3-acyclic. Analogously, we derive
` ∈ M (exchange of k and `). Because k, ` ∈ M , we have k ! ` in H, which implies
that K ∪ L is complete in HS . This allows to derive that K ∪ L is a super-terminal
component in HS .

Thus, in all cases (and subcases) we showed that HS has a super-terminal component. 2

4.2 Necessity proof

We show now that the inequalities from § 3.2 are valid for vector-codes introduced in § 3.1.

Lemma 4.2 Let H be a hybrid graph over N which is 3-acyclic and has no flags.

(i) Then the inequalities (b.1)-(b.2), (c.1)-(c.5) and (e.1)-(e.2) are valid for the vector
(aH , cH) defined in (9).

(ii) If H is a chain graph without flags equivalent to an acyclic directed acyclic graph, then,
moreover, the inequalities (a.1) hold.

Proof: The inequalities (b.1)-(b.2) and (c.2) are evident from (9).

(c.1) If both terms on the left-hand side (LHS) of aH(i→ j) + aH(j → i) ≤ cH(ij) vanish,
then one has LHS = 0 ≤ RHS, where RHS means the right-hand side. Assume that
at least one term on LHS is non-zero, say aH(i → j) = 1. Then i → j in H, and
because H is a hybrid graph, ¬(j → i in H). Thus, the other term on LHS vanishes:
aH(j → i) = 0. However, [i, j] is an edge in H then, which means, by (10), cH(ij) = 1.
Hence, LHS = 1 = RHS.

(c.3) If the LHS of 2 · cH(ijk) ≤ 2 · cH(ij) +aH(i→ k) +aH(j → k) vanishes, the inequality
clearly holds. If cH(ijk) = 1 = cH(ij) then LHS = 2 ≤ RHS. Only in case cH(ijk) = 1
and cH(ij) = 0 we observe by (11) that i → k ← j is an immorality in H. Hence,
LHS = 2 = RHS.

11

(c.4) If at least one term on the LHS of aH(i → j) + cH(jk) ≤ 1 + cH(ijk) + aH(j → k)
vanishes LHS ≤ 1 ≤ RHS. Assume aH(i→ j) = cH(jk) = 1, that is, i→ j in H and
[j, k] is an edge in H. If aH(j → k) = 1 then LHS = 2 ≤ RHS. If aH(j → k) = 0,
then, since H is a hybrid graph, either j ← k in H or j ! k in H. Because H has
no flag (of the form i→ j ! k), in both these sub-cases one has cH(ijk) = 1 by (11).
Thus, LHS = 2 = RHS.

(c.5) If at least one term on the LHS of aH(i → j) + cH(jk) + cH(ik) ≤ 2 + aH(i →
k)+aH(k → j) vanishes then LHS ≤ 2 ≤ RHS. If all three of them equal 1 then i→ j
in H and [j, k],[k, i] are both edges in H. As H is 3-acyclic one necessarily has either
i→ k in H or k → j in H. In particular, LHS = 3 ≤ RHS.

(e.1) If at most two terms on the LHS of
∑

i∈S cH(S \ {i}) ≤ 2 + (|S| − 2) · cH(S) are
non-zero then LHS ≤ 2 ≤ RHS. If at least three of them are non-zero then, by (9),
for at least 3 subsets T ⊂ S with |T | = |S| − 1, the graph HT has a super-terminal
component. By Lemma 4.1(b), HS has a super-terminal component, and, therefore
cH(S) = 1. Hence, LHS ≤ |S| = RHS.

(e.2) If the LHS of (|S| − 1) · cH(S) ≤
∑

i∈S cH(S \ {i}) vanishes then LHS = 0 ≤ RHS.
However, if cH(S) = 1 then, by (9), HS has a super-terminal component. By Lemma
4.1(a) observe that there exists at least |S| − 1 subsets T ⊂ S with |T | = |S| − 1 with
cH(T) = 1. Thus, by (9), LHS = |S| − 1 ≤ RHS.

Thus, the part (i) of Lemma 4.2 was proved. To verify the part (ii) assume that H is a
chain graph without flags equivalent to an acyclic directed acyclic graph G. If follows from
(9) and Lemma 2.2 that cH equals to the characteristic imset cG for G. Thus, we need to
verify the inequality

(a.1)
∑

T⊆S, |T |≥2 cG(T) · (−1)|T | ≤ |S| − 1 for any acyclic directed graph G over N .

Let us fix S ⊆ N , |S| ≥ 4. As GS is acyclic, there exists a total order ρ of all nodes in S
consistent with the direction of arrows in GS . For every j ∈ S let us put

T (j) = {T ⊆ {j} ∪Bρ
j ; |T | ≥ 2, j ∈ T } where Bρ

j is the set of predecessors of j in ρ.

Clearly, the classes T (j), j ∈ S define a partitioning of the class {T ⊆ S; |T | ≥ 2}; one has
T (i) = ∅ for the first node i in ρ (= the one with Bρ

i = ∅). The point is that, for every
j ∈ S \ {i}, one has ∑

T∈T (j)

cG(T) · (−1)|T | ≤ 1 . (12)

Indeed, by (1), observe that, for T ∈ T (j), one has cG(T) = 1 iff T = {j} ∪ K, where
K ⊆ paG(j) ∩ S. In particular, the sum on the LHS of (12) is∑

∅6=K⊆paG(j)∩S

(−1)|K|+1 =

{
0 if paG(j) ∩ S = ∅,
1 if paG(j) ∩ S 6= ∅.

Clearly, (a.1) can be obtained by summing (12) for j ∈ S \ {i}. 2

Note that (a.1) is, in fact, a transformed cluster inequality (3): the following equality
can be derived using (4) with some effort:

|S| −
∑

T⊆S, |T |≥2

cG(T) · (−1)|T | =
∑
i∈S

∑
B⊆N\S

ηG(i|B) ;

12

for details see the proof of Lemma 16 in [21].

Now, it is clear from the above proof of Lemma 4.2 what is the graphical interpretation
of the inequalities from § 3.2:

(c.1) aH(i → j) + aH(j → i) ≤ cH(ij) means that if i → j or j → i (are encoded in aH as
arrows) then [i, j] is (encoded in cH as) an edge,

(c.2) cH(ij) ≤ 1 means, together with (c.1), that there is no bi-directed edge between i and
j (= one cannot have simultaneously i→ j in H and j → i in H),

(c.3) 2 ·cH(ijk) ≤ 2 ·cH(ij)+aH(i→ k)+aH(j → k) allows to conclude that if cH(ijk) = 1
then Hijk has a super-terminal component,

(c.4) aH(i→ j) + cH(jk) ≤ 1 + cH(ijk) + aH(j → k) prevents H to have a flag i→ j ! k,

(c.5) aH(i → j) + cH(jk) + cH(ik) ≤ 2 + aH(i → k) + aH(k → j) says that H has not a
semi-directed 3-cycle of the form i, j, k, i with i→ j,

(e.1)
∑

i∈S cH(S \ {i}) ≤ 2 + (|S| − 2) · cH(S) encodes the implication in Lemma 4.1(b),

(e.2) (|S| − 1) · cH(S) ≤
∑

i∈S cH(S \ {i}) encodes the implication in Lemma 4.1(a),

(a.1)
∑

T⊆S, |T |≥2 cH(T) · (−1)|T | ≤ |S| − 1 means, loosely said, that the graph HS has
at least one initial node. The point is that all inequalities (a.1) together ensure the
existence of an equivalent acyclic directed graph G, as shown in the following section.

5 Sufficiency of the inequalities

In this section, we prove that the inequalities from § 3.2 provide an LP relaxation for (the
convex hull of) the set of codes of chain graphs without flags equivalent to acyclic directed
graphs.

5.1 Auxiliary lemmas

We start with a couple of auxiliary observations.

Lemma 5.1 Let (a, c) be a vector with integer components satisfying the inequalities (b.1)-
(b.2), (c.1)-(c.5) and (e.1)-(e.2). Then (e.2) also holds for |S| = 3, that is,

2 · c(ijk) ≤ c(ij) + c(ik) + c(jk) , (13)

and (a, c) is a zero-one vector.

Proof: To show (13) let us fix the set S = ijk and sum up all three corresponding inequal-
ities (c.3) and then use three-times (c.1):

6 · c(ijk) ≤ 2 · c(ij) + 2 · c(ik) + 2 · c(jk) + a(i→ j) + a(j → i)

+a(i→ k) + a(k → i) + a(j → k) + a(k → j) ≤ 3 · c(ij) + 3 · c(ik) + 3 · c(jk) .

Divide it by 3 and get (13). The next observation is that (a, c) is non-negative. The
inequality 0 ≤ c(S) for |S| = 2 follows from (b.1) and (c.1). The inequality 0 ≤ c(S) for

13

|S| ≥ 5 can be derived by induction on |S| from (b.2) and (e.1): if |S| ≥ 5 then by the
induction premise and (e.1) one has

0 ≤ 2 + (|S| − 2) · c(S), which implies − 1 <
−2

|S| − 2
≤ c(S) .

However, because c(S) ∈ Z, it implies 0 ≤ c(S).

Finally, we show that the components of (a, c) are at most 1. As concerns the a-part,
by (b.1), (c.1) and (c.2) one has a(i → j) ≤ a(i → j) + a(j → i) ≤ c(ij) ≤ 1. As concerns
the c-part, we prove c(S) ≤ 1 by induction on |S| from (c.2) using (e.2) for |S| ≥ 3, which
involves (13). Specifically, consider |S| > 2 and write by (e.2) and the induction premise

(|S| − 1) · c(S) ≤
∑
i∈S

c(S \ {i}) ≤
∑
i∈S

1 = |S| . Hence, c(S) ≤ |S|
|S| − 1

= 1 +
1

|S| − 1
< 2 .

However, because c(S) ∈ Z, it implies c(S) ≤ 1. 2

Lemma 5.2 Let c,c′ be zero-one vectors satisfying (e.1)-(e.2). Provided c(S) = c′(S) for
S ⊆ N with 2 ≤ |S| ≤ 3 one has c = c′.

Proof: We prove c(S) = c′(S) by induction on |S|. Since they are both zero-one vectors
and exchangeable, it it enough to show, for |S| ≥ 4, the implication c(S) = 1 ⇒ c′(S) = 1.
First, by (e.2) applied to c, we observe 3 ≤ |S| − 1 = (|S| − 1) · c(S) ≤

∑
i∈S c(S \ {i}). By

the induction premise the same holds for c′ and one can write using (e.1) applied to c′:

3 ≤
∑
i∈S

c′(S \ {i}) ≤ 2 + (|S| − 2) · c′(S) . That means 0 <
1

|S| − 2
≤ c′(S) ,

which, because c′(S) ∈ {0, 1}, implies c′(S) = 1. 2

5.2 Sufficiency proof

Here is the desired result.

Lemma 5.3 Given a finite non-empty set N , let (a, c) be a vector with integer components
satisfying the inequalities (b.1)-(b.2), (c.1)-(c.5) and (e.1)-(e.2).

(i) Then there exists a (unique) hybrid graph H over N which is 3-acyclic and has no flags
such that a = aH and c = cH .

(ii) If, moreover, the inequalities (a.1) hold for c then H is a chain graph without flags
equivalent to an acyclic directed graph over N .

Proof: By Lemma 5.1, (a, c) is a zero-one vector. Let us define a hybrid graph H over N :

i→ j in H ⇔ a(i→ j) = 1, (14)

i ! j in H ⇔ c(ij) = 1 & a(i→ j) = 0 & a(j → j) = 0 .

14

The definition is correct, since, by (c.1) and (c.2), a(i→ j) + a(j → i) ≤ c(ij) ≤ 1. Note

c(ij) = 1 ⇔ [i, j] is an edge in H ⇔ Hij has a super-terminal component. (15)

Observe that H is 3-acyclic. Indeed, assume for a contradiction that H has a semi-directed
cycle ρ : i, j, k, i with i→ j. Hence, by (14), (15) and (c.5) we have

3 = a(i→ j) + c(jk) + c(ik) ≤ 2 + a(i→ k) + a(k → j),

that means 1 ≤ a(i → k) + a(k → j), which implies, by (14), that either i → k in H or
k → j in H. This contradict the assumption ρ is a semi-directed cycle.

The next step is to show that, for distinct i, j, k ∈ N ,

c(ijk) = 1 ⇔ Hijk has a super-terminal component. (16)

For this purpose, realize that, because H is 3-acyclic, the graph Hijk has a super-terminal
component iff it is either quasi-complete or an immorality. For ⇒ direction, if c(ijk) = 1
and Hijk is not quasi-complete, then at least one edge in Hijk is missing. Assume without
loss of generality that it is [i, j], which means, by (15), c(ij) = 0. Write by (c.3)

2 = 2 · c(ijk) ≤ 2 · c(ij) + a(i→ k) + a(j → k) = a(i→ k) + a(j → k) .

This implies that both a(i→ k) = 1 and a(j → k) = 1; by (14), i→ k ← j is an immorality.
For ⇐ direction, in case Hijk is quasi-complete, write by (15) and (e.1) for S = ijk:

3 = c(ij) + c(ik) + c(jk) ≤ 2 + c(ijk),

which implies the desired conclusion c(ijk) = 1. If Hijk is an immorality, say i → j ← k,
then realize that ¬(j → k in H) and observe by (14) that a(i → j) = 1 and a(j → k) = 0;
while c(jk) = 1 by (15). This allows us to write by (c.4)

2 = a(i→ j) + c(jk) ≤ 1 + c(ijk) + a(j → k) = 1 + c(ijk),

implying c(ijk) = 1. Thus, (16) has been verified.

The next observation is that H has no flag. Assume for a contradiction it has a flag
i→ j ! k. As ¬(j → k in H), by (14), a(i→ j) = 1 and a(j → k) = 0. By (15) and (c.4)

2 = a(i→ j) + c(jk) ≤ 1 + c(ijk) + a(j → k) = 1 + c(ijk).

Hence, c(ijk) = 1, which, by (16), contradicts the assumption i→ j ! k is a flag in H.

Thus, consider the 3-acyclic hybrid graph H without flags. By Lemma 4.2(i) the vector
cH given by (9) is a zero-one vector satisfying the conditions (e.1)-(e.2). By (15) and (16),
we have c(S) = cH(S) for any S ⊆ N , 2 ≤ |S| ≤ 3. As c also satisfies (e.1)-(e.2), by Lemma
5.2, we have c = cH . By (9) and (14), we also have a = aH , which concludes the proof of
the (i)-part of Lemma 5.3.

As concerns the (ii)-part, assume c satisfies (a.1). As mentioned in § 2.1, to show that
H is a chain graph, it is enough to verify it has no semi-directed chordless cycle. Since H
is 3-acyclic, we already know it has no semi-directed cycle of the length 3. Thus, assume
for a contradiction it has a semi-directed chordless cycle ρ : i0, i1, . . . , im = i0 of the length
m ≥ 4 with i0 → i1 in H. Because H has no flag, we observe that ρ has to be a directed

15

cycle, that is, ir → ir+1 in H for r = 0, 1, . . . ,m− 1. Put S = {i1, . . . , im}. By the (i)-part,
c = cH ; thus, using (9) observe that the only subsets T ⊆ S, |T | ≥ 2 with c(T) = 1 are the
edges of the cycle ρ. In particular, if we substitute into (a.1) we get

|S| =
∑

T⊆S, |T |≥2

c(T) · (−1)|T | ≤ |S| − 1 ,

which is a contradiction. Thus, H cannot have a semi-directed cycle of the length m ≥ 4.

As mentioned in § 2.3, to show that H is equivalent to an acyclic directed graph, it is
enough to show it has no undirected chordless cycle of the length m ≥ 4. The proof by a
contradiction is analogous to the case of a semi-directed cycle. If ρ : i0 ! i1 ! . . . ! im = i0
is such a cycle, put S = {i1, . . . , im} and get a contradiction with (a.1) in the same way. 2

Thus, by combining Lemmas 4.2 and 5.3 we get.

Theorem 5.1 Given a finite non-empty set N , a vector (a, c) with integer components
satisfies the inequalities (b.1)-(b.2), (c.1)-(c.5), (e.1)-(e.2) and (a.1) if and only if there
exists (uniquely determined) chain graph H over N without flags equivalent to an acyclic
directed graph such that (a, c) = (aH , cH).

5.3 Modification of acyclicity inequalities

In this section, we show that the acyclicity inequalities (a.1) can be modified. Specifically,
they can be replaced by a simplified version

(a.1*) ∀S ⊆ N , |S| ≥ 4
∑

T⊆S, |T |=2 c(T)−
∑

T⊆S, |T |=3 c(T) ≤ |S| − 1,

which may perhaps appear to be easier to implement. However, this change formally leads
to a different LP relaxation of the same polytope (= of the convex hull of the considered set
of codes). Note that Lindner [12] named (a.1*) the DAG inequalities and included them in
the LP relaxation of her polytope, which was different (from the polytope considered here).

Theorem 5.2 Given a finite non-empty set N , a vector (a, c) with integer components
satisfies the inequalities (b.1)-(b.2), (c.1)-(c.5), (e.1)-(e.2) and (a.1*) if and only if there
exists a chain graph H over N without flags equivalent to an acyclic directed graph such
that (a, c) = (aH , cH).

Proof: As concerns the necessity proof, by Lemma 4.2(i), it is enough to show that (a.1*)
holds for such (aH , cH). The procedure is analogous to the case (a.1) in the proof of Lemma
4.2(ii). Basically, we need to verify that, for any acyclic directed graph G over N ,

(a.1*)
∑

T⊆S, |T |=2 cG(T)−
∑

T⊆S, |T |=3 cG(T) ≤ |S| − 1 whenever S ⊆ N , |S| ≥ 4.

Again, we fix S and a total order ρ of nodes in S consistent with the direction of arrows
in GS . Let i denote the first node in ρ and consider the same partitioning of the class
{T ⊆ S; |T | ≥ 2} into subclasses T (j), j ∈ S \ {i}. In this case, however, the following
collection of inequalities is derived∑

T∈T (j), |T |=2

cG(T)−
∑

T∈T (j), |T |=3

≤ 1 . (17)

16

Indeed, for any T ∈ T (j), one has cG(T) = 1 iff T = {j} ∪ K, where K ⊆ paG ∩ S.
Therefore, the sum on the LHS of (17) is as follows:

∑
K⊆paG(j)∩S, |K|=1

1−
∑

K⊆paG(j)∩S, |K|=2

1 =

0 if paG(j) ∩ S = ∅,
1 if 1 ≤ |paG(j) ∩ S| ≤ 2,

− `·(`−3)
2 ≤ 0 if 3 ≤ ` ≡ |paG(j) ∩ S|.

Of course, (a.1*) can be obtained by summing (17) for j ∈ S \ {i}.
For the sufficiency use Lemma 5.3(i) and then modify the proof of Lemma 5.3(ii): the

same arguments hold if (a.1) is replaced by (a.1*) there. 2

An alternative proof of the necessity of (a.1*) is to derive it as a consequence of (a.1).
One can show that the following inequality∑

T⊆S, |T |≥4

cH(T) · (−1)|T | ≥ 0 where S ⊆ N , |S| ≥ 4 (18)

is valid for any a chain graph H without flags equivalent to an acyclic directed acyclic graph;
by subtracting this inequality from (a.1) one gets (a.1*).

A natural question is what is the relation of the LP relaxations (of the same polytope)
from Theorems 5.1 and 5.2. In case |N | = 4, (18), namely c(N) ≥ 0, follows from (b.2).
Therefore, in case |N | = 4, the LP relaxation with (a.1) defines a smaller polyhedron than
the one with (a.1*). The following example shows that the inclusion is strict.

Example 5.1 Consider N = {a, b, c, d}, an undirected graph H over N formed by a chord-
less cycle a ! b ! c ! d ! a, and an acyclic directed graph G over N with (three) arrows,
directed from nodes a, b, c into d. Note that, by Lemma 4.2(i), both cH and cG satisfy (b.1)-
(b.2), (c.1)-(c.5) and (e.1)-(e.2). In particular, their convex combination c := 3

4 · cH + 1
4 · cG

satisfies those inequalities, too. Moreover, c also satisfies (a.1*) for S = N with equality:∑
|T |=2

c(T)−
∑
|T |=3

c(T) = 2 · 1 + 2 · 3

4
+

1

4
− 3 · 1

4
= 3 ≤ |N | − 1 .

However, in (a.1) an additional term c(N) = 1
4 is on the LHS of the inequality, for which

reason it does not hold for c.

It looks like one cannot expect that (a.1*) is implied by the inequalities from Theorem
5.1 in general, for |N | ≥ 5. Nevertheless, the LP relaxation based on (a.1) always gives, in
a certain sense, a tighter approximation of the considered polytope. More specifically, the
face defined by (a.1) contains more lattice points than the corresponding face defined by
(a.1*). This can be derived from the following auxiliary observation.

Lemma 5.4 Let N be a finite non-empty set.

(i) Consider the polyhedron specified by the inequalities (b.1)-(b.2), (c.1)-(c.5), (e.1)-(e.2)
and (a.1). Then a vector with integer components (a, c) satisfies (a.1) for S ⊆ N ,
|S| ≥ 4 with the equality iff (a, c) = (aH , cH), where H is equivalent to an acyclic
directed graph G such that there is only one initial node in GS (= just one i ∈ S with
paG(i) ∩ S = ∅).

17

(ii) Consider the polyhedron specified by the inequalities (b.1)-(b.2), (c.1)-(c.5), (e.1)-(e.2)
and (a.1*). Then a vector with integer components (a, c) satisfies (a.1*) for S ⊆ N ,
|S| ≥ 4 with the equality iff (a, c) = (aH , cH), where H is equivalent to an acyclic
directed graph G such that GS has the property that, for every j ∈ S but one, 1 ≤
|paG(j) ∩ S| ≤ 2.

Proof: As concerns (i), by Theorem 5.1, every lattice point in that polyhedron is a code
(aH , cH) of the respective graph H over N . Now, repeat the consideration in the proof of
Lemma 4.2(ii). Specifically, it is shown there that (a.1) is obtained by summing inequalities
(12). In particular, (a.1) holds with the equality iff the equality holds in (12) for every
j ∈ S \{i}. This happens (see the argument in the proof of Lemma 4.2(ii)) if paG(j)∩S 6= ∅
for any such j. That means that i is the only initial node in GS .

As concerns (ii), the procedure is analogous. We repeat the consideration from the
proof of Theorem 5.2, where it is shown that (a.1*) is obtained by summing inequalities
(17). In particular, (a.1*) holds with the equality iff the equality holds in (17) for every
j ∈ S \ {i}, that is, when 1 ≤ |paG(j) ∩ S| ≤ 2 for any such j. 2

Thus, from Lemma 5.4, one can easily derive the following.

Corollary 5.1 Let N be a finite non-empty set and S ⊆ N , |S| ≥ 4. Then, every lattice
point within the polyhedron specified by (b.1)-(b.2),(c.1)-(c.5), (e.1)-(e.2) and (a.1*) which
belongs the face (of that polyhedron) defined by (a.1*) with S also belongs to the face defined
by (a.1) for S of the polyhedron specified by (b.1)-(b.2),(c.1)-(c.5),(e.1)-(e.2) and (a.1).

The fact that the face defined by (a.1) for S contains many more other lattice points
may play an important role in solving the respective ILP problems. One can perhaps expect
less frequent need for the application of branch-and-bound procedure. Actually, the results
from [21] suggest that (a.1) should be facet-defining inequalities for the considered polytope
(= the convex hull of the set of codes).

6 First phase: getting the characteristic imset

In this section we formulate the first ILP problem in its pure form. Its solution should be
the respective characteristic imset.

6.1 Score as an affine function

It was observed in Lemma 1 of [9], provided Q is additively decomposable and score equiv-
alent, it can be viewed as (the restriction of) an affine function of the characteristic imset
cG. Specifically, we have

Q(G,D) = Q(G∅, D) +
∑

S⊆N, |S|≥2

rQD(S) · cG(S) , (19)

where G∅ is the empty graph over N (= the graph without edges) and rQD is the so-called
revised data vector (relative to Q). It is uniquely determined (by Q and D) and can be
obtained from the local scores qD(∗|∗) as described below.

18

Lemma 6.1 Let Q be a score equivalent and additively decomposable criterion with local
scores qD(∗|∗). First, the local scores are standardized:

q̂D(i|B) = qD(i|B)− qD(i|∅) for i ∈ N , B ⊆ N \ {i}. (20)

For every T ⊆ N , |T | ≥ 2, consider a total order ρ of elements in T ; denote, for i ∈ T , by
the symbol Bρ

i the set of predecessors of i ∈ T in ρ. Second, we observe that the expression

tQD(T) =
∑
i∈T

q̂D(i |Bρ
i) for T ⊆ N , |T | ≥ 2 , (21)

does not depend on the choice of ρ. Third, this makes correct the following definition:

rQD(S) =
∑

T⊆S, |T |≥2

(−1)|S\T | · tQD(T) for S ⊆ N , |S| ≥ 2 . (22)

Then, the formula (19) holds.

The vector tQD from (21) have been introduced earlier in [18] and called the data vector
relative to Q; note that, if one puts tQD(T) = 0 for T ⊆ N , |T | ≤ 1, then (21) implies that,

q̂D(i|B) = tQD({i} ∪B)− tQD(B) for any i ∈ N and B ⊆ N \ {i} . (23)

Proof: It follows from (5) and (20) that, for any G and D, one has

Q(G,D) =
∑
i∈N

qD(i | ∅) +
∑
i∈N
{ qD(i |paG(i))− qD(i | ∅)} = Q(G∅, D) +

∑
i∈N

q̂D(i |paG(i)) .

Given T ⊆ N , |T | ≥ 2 and a total order ρ of its elements, let Gρ be the acyclic directed
graph over N in which j → i iff i, j ∈ T and j ∈ Bρ

i . Thus, we have∑
i∈T

q̂D(i |Bρ
i) =

∑
i∈N

q̂D(i |paGρ(i)) = Q(Gρ, D)−Q(G∅, D),

which implies, by the assumption that Q is score equivalent, that the right-hand side of
(21) does not depend on the choice of ρ. Because of the first formula in this proof, to prove
(19), it is enough to verify∑

S⊆N, |S|≥2

rQD(S) · cG(S) =
∑
i∈N

∑
B⊆N\{i}

ηG(i|B) · q̂D(i|B) ≡
∑
i∈N

q̂D(i |paG(i)) .

To show it, we use the symbol δ(??) for the zero-one indicator of the validity of a statement
??, substitute (4) into the left-hand side expression and change the order of summation:∑
S⊆N, |S|≥2

rQD(S) · cG(S) =
∑

S⊆N, |S|≥2

rQD(S) ·
∑
i∈N

∑
B⊆N\{i}

δ(i ∈ S) · δ(S \ {i} ⊆ B) · ηG(i|B)

=
∑
i∈N

∑
B⊆N\{i}

ηG(i|B) ·
∑

S⊆N, |S|≥2

δ(i ∈ S) · δ(S \ {i} ⊆ B) · rQD(S)

︸ ︷︷ ︸
q̂D(i|B)

.

19

Thus, it remains to verify, for any fixed i ∈ N and B ⊆ N \ {i}, that the indicated inner
expression is indeed q̂D(i|B). To this end, we substitute (22) into it, change the order of
summation and re-write that a little bit to get what is desired:∑

S⊆N, |S|≥2

δ(i ∈ S) · δ(S \ {i} ⊆ B) · rQD(S) =

=
∑

S ⊆ {i} ∪B
i ∈ S, |S| ≥ 2

rQD(S) =
∑

S ⊆ {i} ∪B
i ∈ S, |S| ≥ 2

∑
T ⊆ S
|T | ≥ 2

(−1)|S\T | · tQD(T)

=
∑

T ⊆ {i} ∪B
|T | ≥ 2

tQD(T) ·
∑

S, T ⊆ S ⊆ {i} ∪B
i ∈ S

(−1)|S\T |

=
∑

T ⊆ {i} ∪B
|T | ≥ 2

tQD(T) ·
∑

S, T ⊆ S ⊆ {i} ∪B
i ∈ S

(−1)δ(i 6∈T) · (−1)|S\({i}∪T)|

=
∑

T⊆{i}∪B, |T |≥2

tQD(T) · (−1)δ(i 6∈T) ·
∑

S, {i}∪T⊆S⊆{i}∪B

(−1)|S\({i}∪T)|

︸ ︷︷ ︸
δ({i}∪T={i}∪B)

= δ(|B| ≥ 1) · tQD({i} ∪B)− δ(|B| ≥ 2) · tQD(B) = q̂D(i|B) .

To see the last equality use (23). 2

Lemma 6.1 allows us to derive a direct formula for the components of the revised data
vector on the basis of local scores.

Corollary 6.1 Let Q be a score equivalent and additively decomposable criterion with local
scores qD(∗|∗). Then, for any S ⊆ N , |S| ≥ 2, one has

rQD(S) =
∑
K⊆R

(−1)|R\K| · qD(j|K) where j ∈ S and R = S \ {j} . (24)

In particular, the right-hand side of (24) does not depend on the choice of j ∈ S.

Proof: First, note that it is enough to prove (24) with standardized local scores q̂D(∗|∗),
given by (20); this is because

∑
K⊆R(−1)|R\K| · qD(j|∅) = 0. That means, as q̂D(j|∅) = 0,

we are going to verify

rQD(S) =
∑
∅6=K⊆R

(−1)|R\K| · q̂D(j|K) for any S ⊆ N , |S| ≥ 2, j ∈ S and R = S \ {j} .

For this purpose choose a total ordering π of elements in S which ends by j, that is,
R = S \ {j} is the set of predecessors of j in π. For any T ⊆ S, |T | ≥ 2 consider a total
order ρ of elements in T induced by π. Then the set of predecessors of i ∈ T is π(i) ∩ T ,
where π(i) denotes the set of predecessors of i in π. Now, we can substitute (21) into (22)

20

and change the order of summation:

rQD(S) =
∑

T⊆S, |T |≥2

(−1)|S\T | · tQD(T) =
∑

T⊆S, |T |≥2

(−1)|S\T | ·
∑
i∈T

q̂D(i |π(i) ∩ T)

=
∑
i∈S

∑
T⊆S, |T |≥2, i∈T

(−1)|S\T | · q̂D(i |π(i) ∩ T)

=
∑
i∈S

∑
K⊆π(i)

q̂D(i|K) ·
∑

T⊆S, |T |≥2, i∈T,K=π(i)∩T

(−1)|S\T |

︸ ︷︷ ︸
(†)

.

As q̂D(i|∅) = 0, to get the desired conclusion one needs to show, for any ∅ 6= K ⊆ π(i),
that the internal sum (†) is 0 in case i 6= j and (−1)|R\K| if i = j. Indeed, if one denotes
W = S \ [π(i) ∪ {i}], it can equivalently be written as

(†) =
∑

T=K∪{i}∪L,L⊆W

(−1)|S\T | =
∑
L⊆W

(−1)|S\(K∪{i}∪L)| =
∑
L⊆W

(−1)|(S\(K∪{i})\L| ,

which vanishes in case W 6= ∅, and equals to (−1)|S\(K∪{i})| if W = ∅. Of course, W = ∅ if
and only if i = j, in which case S \ (K ∪ {i}) = R \K. 2

6.2 Pure form of the first ILP task

Thus, the aim is to maximize the function

(a, c) 7−→
∑

S⊆N, |S|≥2

rQD(S) · c(S) (25)

over the domain of vectors (a, c) with integer components satisfying the inequalities from
§ 3.2. By Theorem 5.1, this is equivalent to maximization of this function over the codes
(aH , cH) of chain graphs without flags equivalent to acyclic directed graphs. The function
(25) only depends on the characteristic imset cH , because cH = cG for some (equivalent)
acyclic directed graph G. By (19), the solution maximizes Q in the domain of acyclic
directed graphs over N . An obvious modification is to replace (a.1) by (a.1*); see § 5.3.

7 Search space reduction

The idea of pruning components of the vector codes on the basis of a particular form of the
database (and the criterion) is described in this section.

7.1 Pruning components of graph code

This is the idea elaborated in [6] and then applied in [10, 5]. The basic observation is the
following, proved as Lemma 1 in [7], which is an extended version of [6]. We repeat the
proof to pinpoint the core argument.

21

Lemma 7.1 Let Q be an additively decomposable criterion and D a database such that, for
some i ∈ N and B ⊆ N \ {i},

∃C ⊂ B qD(i|C) > qD(i|B) . (26)

Then no acyclic directed graph G over N with paG(i) = B maximizing G 7→ Q(G,D) exists.

Proof: Assume for a contradiction that G is such a graph and consider the directed graph
H obtained from G by the removal of arrows from nodes in B \C to i. Then, clearly, H is
also an acyclic directed graph over N , and, by (5), one has

Q(H,D)−Q(G,D) = qD(i |paH(i))− qD(i | paG(i)) = qD(i|C)− qD(i|B) > 0.

This contradicts the assumption that G maximizes G 7→ Q(G,D). 2

Lemma 7.1 means that, provided the condition (26) holds for some i and B, one cannot
have an optimal acyclic directed graph G with paG(i) = B, for which reason, one can
assume without loss of generality ηG(i|B) = 0 in (6). Thus, the component of ηG for (i|B)
and the respective local score can be excluded from the considerations in (6). This was the
idea of pruning the components of η from [10], used as a pre-processing step there; it was
mentioned there that, in practice, effective pruning can be done.

This is, in fact, based on further observations from [6]. For a general decomposable cri-
terion Q, the condition (26) only allows one to remove just one components of the η-vector.
To remove most of them (= to reduce the exponential length in |N | to the “polynomial”
one) one has to verify exponentially many such conditions, which looks like the task of
exponential complexity as well.

The point is that the criteria used in practice somehow give the preference to sparse
graphs. For example, the BIC-criterion has a penalty term which, in fact, protects the large
parent sets to occur in the optimal graph. Indeed, realize that, for i ∈ N , B ⊆ N \ {i},
the respective local contribution dim(i|B) to the dimension from (7) is exponential in |B|:∏
j∈B r(j) ≥ 2|B| (as r(j) ≥ 2 for any j ∈ N). This often allows one to exclude in one step

exponentially many parent sets (= components of the η-vector).

Lemma 7.2 Let D be a database of the length d ≥ 2, i ∈ N and C ⊂ B ⊆ N \ {i} with

∏
j∈B

r(j)−
∏
`∈C

r(`) >
2

ln d · {r(i)− 1}
·
∑
y∈XC

∑
z∈Xi

d[y,z] · ln
d[y]

d[y,z]
. (27)

Then, there is no acyclic directed graph G over N maximizing G 7→ BIC (G,D) with
paG(i) = B. In particular, the same conclusion holds if, for i ∈ N , ∅ 6= B ⊆ N \ {i},

∏
j∈B

r(j)− 1 >
2 · d

ln d · {r(i)− 1}
·
∑
z∈Xi

d[z]

d
· ln d

d[z]
. (28)

Proof: The condition (28) is just (27) for C = ∅. The key argument, based on (7),
is an upper estimate for mllD(i|B) − mllD(i|C) derived from the well-known inequality
I(i;B \ C |C) ≤ H(i|C), where I(i;B \ C |C) is the conditional mutual information (with

22

respect to the empirical probability measure induced by D) and H(i|C) is the corresponding
conditional entropy; see, for example, Lemma 3.1 in [16]:

mllD(i|B)−mllD(i|C) =
∑

x∈XB\C

∑
y∈XC

∑
z∈Xi

d[x,y,z] · ln
d[x,y,z]

d[x,y]
−
∑
y∈XC

∑
z∈Xi

d[y,z] · ln
d[y,z]

d[y]

=
∑

x∈XB\C

∑
y∈XC

∑
z∈Xi

d[x,y,z] · ln
d[x,y,z] · d[y]
d[x,y] · d[y,z]

= d ·
∑

x∈XB\C

∑
y∈XC

∑
z∈Xi

{d[x,y,z]/d} · ln
{d[x,y,z]/d} · {d[y]/d}
{d[x,y]/d} · {d[y,z]/d}

≤ d ·
∑
y∈XC

∑
z∈Xi

{d[y,z]/d} · ln
{d[y]/d}
{d[y,z]/d}

=
∑
y∈XC

∑
z∈Xi

d[y,z] · ln
d[y]

d[y,z]
.

Thus, one can write by (27), because ln d
2 > 0 and r(i)− 1 > 0,

mllD(i|B)−mllD(i|C) ≤
∑
y∈XC

∑
z∈Xi

d[y,z] · ln
d[y]

d[y,z]
<

ln d

2
· {r(i)− 1} · {

∏
j∈B

r(j)−
∏
`∈C

r(`)} ,

which, can be re-written, by (7), as follows:

bicD(i|B) = mllD(i|B)− ln d

2
· dim(i|B) < mllD(i|C)− ln d

2
· dim(i|C) = bicD(i|C) .

The rest follows from Lemma 7.1 applied to BIC. 2

The inequality (27) has one important advantageous property: the right-hand side of
(27) does not depend on B, while the left-hand side is a non-decreasing function of |B|.
Therefore, once (27) holds for some i ∈ N and B ⊆ N \ {i} then (27) also holds for any
B′ with B ⊆ B′ ⊆ N \ {i}. Hence, this allows us in one step to prune exponentially many
components of η. Note that in [7] two such sufficient conditions for pruning with the BIC
were derived and also one such a condition for the BDE (Theorem 2, 4 and 9 in [7]).

Because of the well-known upper estimate for the entropy term in the right-hand side of
(28) one can derive from Lemma 7.2 the following observation, which is a minor strength-
ening of Theorem 2 from [7] (and of Theorem 1 from [6]).

Corollary 7.1 Let D be a database of the length d ≥ 2, i ∈ N and ∅ 6= B ⊆ N \ {i} with∏
j∈B

r(j)− 1 >
2 · d
ln d
· ln r(i)

r(i)− 1
. (29)

Then, there is no acyclic directed graph G over N maximizing G 7→ BIC (G,D) with
paG(i) = B. In particular, this is the case whenever 4 ≤ d < 2|B| − 1.

Proof: A well-known fact is that the entropy achieves its maximal value for the uniform
distribution: ∑

z∈Xi

d[z]

d
· ln d

d[z]
≤
∑
z∈Xi

1

r(i)
· ln r(i)

1
= ln r(i) ,

23

which means that (29) implies (28). As concerns the last claim, realize that d ≥ 4 implies
ln d
2 ≥

ln 4
2 = ln 2 > 0 and, hence, 1

ln 2 ≥
2

ln d > 0. As r(i) ≥ 2 and the function x 7→ x−1
lnx

is increasing on (1,∞), one has r(i)−1
ln r(i) ≥

2−1
ln 2 = 1

ln 2 > 0 and, hence, ln 2 ≥ ln r(i)
r(i)−1 > 0. By

multiplying these inequalities we get, using the assumption d < 2|B| − 1,

1 =
1

ln 2
· ln 2 ≥ 2

ln d
· ln r(i)

r(i)− 1
> 0 ⇒

∏
j∈B

r(j)− 1 ≥ 2|B| − 1 > d ≥ d · 2

ln d
· ln r(i)

r(i)− 1
,

which means (29) holds, no matter what the database D is. 2

The meaning of the last claim in Corollary 7.1 is that if the database is not lengthy
enough, than one can always exclude some large parent sets. The above described procedure,
therefore, allows one to prune all components η(i|B) with |B| high enough.

Actually, as reported in § 6 of [7], the pruning procedure was applied to some databases
from the so-called UCI repository, and it typically resulted in the reduction of the parent set
cardinality to at most 5; only in a few cases the maximal parent set cardinality was 7 or 8.
The reduction was done both for the BIC-score and the BDE-score. However, no particular
algorithm or a formal procedure to perform the pruning was presented in [7]; it was only
mentioned there that the above mentioned principles were applied. Also, as one can deduce
from the laconic notes from [7], the pruning was probably quite costly procedure from the
point of view of computational time.

Remark Coming back to Lemma 7.2: note that one can derive the same conclusion there
if (27) is replaced by the condition∏

j∈B
r(j)−

∏
`∈C

r(`) >
2

ln d · {r(i)− 1}
·
∑
y∈XC

∑
x∈XB\C

d[y,x] · ln
d[y]

d[y,x]
.

This is based on an alternative estimate I(i;B \ C |C) ≤ H(B \ C |C). However, the
expression on the right-hand side of the inequality does depend on B and may be difficult
to compute. Therefore, the inequality may be difficult to verify. On the other hand, this
alternative condition may be valid even if (27) is not and may justify pruning which cannot
be derived using (27).

7.2 Pruning components of the characteristic imset

The point is that the pruning of the η-vector can be utilized in this context.

Corollary 7.2 Let Q be a decomposable criterion and D a database such that, for some
S ⊆ N , |S| ≥ 2, the condition (26) holds for any i ∈ S and B with S \ {i} ⊆ B ⊆ N \ {i}.
Then cG(S) = 0 for any acyclic directed graph G over N maximizing G 7→ Q(G,D).

Proof: Assume for a contradiction that an optimal acyclic directed graph G with cG(S) = 1
exists. Then, by (4), there exists i ∈ S and B ⊆ N \ {i} with S \ {i} ⊆ B such that
ηG(i|B) = 1, which means paG(i) = B. However, since (26) holds for D and the pair (i|B),
by Lemma 7.1, G is not optimal, which contradicts the assumption. 2

This motivated the following definition.

24

Definition 7.1 Let Q be a decomposable criterion and D a database. Given a pair (i|B),
where i ∈ N and B ⊆ N \{i}, we say that the respective component η(i|B) (of the η-vector)
is redundant (for D and Q) if the condition (26) holds. Analogously, given S ⊆ N , |S| ≥ 2,
we say that the corresponding component c(S) of the c-vector is redundant (for D and Q)
if, for every i ∈ S and every S \ {i} ⊆ B ⊆ N \ {i}, the components η(i|B) is redundant.

Indeed, the redundant components of c can be ignored if our task is to find an optimal
BN structure. By Corollary 7.2, if c(S) is redundant, one always has cG(S) = 0 in any
optimal graph G. In other words, in the task (25) one can assume without loss of generality
c(S) = 0 and the value rQD(S) is not needed to solve such a simplified ILP task. Simply, one
can concentrate on the non-redundant components of c only.

For our purpose, it would be convenient to have an algorithm for the removal of all redun-
dant components of c, because this seems to lead to the maximal reduction in the dimension
of the corresponding ILP problem. However, as indicated in § 7.1, such an algorithm may
appear to be too complex, if its goal is really to indicate all redundant components. Then
the question is whether the computational time spent on finding such a maximal reduction
would be worthwhile.

Therefore, what is suggested below instead is a heuristic procedure, whose aim is to
find inclusion-maximal non-redundant components. Of course, this preliminary version of
the procedure can probably be modified later to become more efficient. Its goal is to get a
system of sets T ⊆ {S ⊆ N ; |S| ≥ 2} which is

• closed under subsets: S ∈ T , T ⊆ S, |T | ≥ 2 implies T ∈ T ,

• all “non-redundant” sets are included in it: if c(S) is non-redundant for some S ⊆ N ,
|S| ≥ 2 then S ∈ T ,

• T consists of sets of small cardinality: there exists “low” upper bound t ∈ N such
that |S| ≤ t for any S ∈ T .

The practical experiments described in § 6 of [7] suggest that this is a realistic plan. Thus,
the goal of the procedure is to obtain inclusion-maximal sets S for which c(S) is non-
redundant. Let us consider S ⊆ N , |S| ≥ 2 such that c(T) is redundant for any its
strict subset T , S ⊂ T ⊆ N . If this is the case, then η(i|B′) is redundant whenever
S \ {i} ⊂ B′ ⊆ N \ {i} (see Definition 7.1). Thus, c(S) is redundant iff, for every i ∈ S,
η(i |S \{i}) is redundant (= the condition (26) holds for any i ∈ S and B = S \{i}). Thus,
the (inclusion-maximal) non-redundance means that there exists i ∈ S with (inclusion-
maximal) non-redundant η(i |S \ {i}). This, perhaps, explains why the following procedure
makes sense.

Heuristic procedure

Let D be a database and Q a score equivalent and additively decomposable criterion.

1. The first step is to derive a suitable formula for local scores. Because, in (26), one can
replace qD(∗|∗) by its standardized version q̂D(∗|∗) (uniquely determined by Q, it is
often convenient to have a subroutine which allows one to compute any standardized
local score q̂D(i|B) whenever it is needed. (One of the possible ways is to have a
formula for the components of the data vector tQD(S) for S ⊆ N , |S| ≥ 2 and use (23)
for our purpose.)

25

2. The second step is, for any fixed i ∈ N , to find all inclusion-maximal B ⊆ N \ {i}
such that η(i|B) is non-redundant (in sense of Definition 7.1).

• First, we need to indicate as redundant those η(i|B) in which |B| is high enough.
In the case of the BIC-score, one can use the condition (28) from Lemma 7.2
for this purpose. (In the case of the BDE-score one needs to have an analogous
sufficient condition like in Theorem 9 of [7].)

• Second, if we already know that |B| has some (not necessarily tight) upper bound
k, then we can inductively, for ` = 0, . . . k, indicate the inclusion-maximal B
with η(i|B) non-redundant and |B| ≤ `. We already know that η(i|∅) is non-
redundant; therefore, the starting list for ` = 0 contains just B = ∅. Now, for
` = 1, . . . , k, we compute (inductively) for any B ⊆ N \ {i} with |B| = ` both
the value of q(i|B) and the value of q∗(i|B) ≡ max { q(i|C); C ⊂ B}. Clearly,
η(i|B) is redundant iff q(i|B) < q∗(i|B). If it is non-redundant, we include B
in the list and remove from the list all C ⊂ B, which have been there before.
Observe that q∗(i|B) can be computed inductively.

Let C denote the resulting collection of pairs (i|B).

3. The third step is to define, on the basis of the (obtained) collection C of pairs (i|B)
with the property that η(i|C) is redundant provided there is no (i|B) ∈ C with C ⊆ B:

T := {S ⊆ N ; |S| ≥ 2 ∃ (i|B) ∈ C such that S ⊆ {i} ∪B } .

Of course, T contains all sets S with non-redundant c(S). If C is the class from step
2., the maximal sets in T are just the maximal sets S∗ with non-redundant c(S∗).

4. We establish a cache for values that correspond to sets S ∈ T and use (24) in Corollary
6.1 to compute the values rQD(S) for S ∈ T . The goal of our later optimization task
will be, in fact, to maximize c 7→

∑
S∈T rQD(S) · c(S). (An alternative method is to

compute first the values tQD(S) for S ∈ T , and the use (22) to get what is needed.)

Another option is to start with a store of local score values q(∗|∗) which has already been
pruned by somebody else, by which we mean that the local scores not involved in the store
correspond to redundant components of η. In that case, one can use Corollary 6.1; but,
what is needed here is to compute qD(i|D) whenever D ⊆ B and η(i|B) is non-redundant.

8 Second phase: reconstruction of the essential graph

Assume that the first ILP problem has been successfully solved and a solution (a, c) found,
which is a vector code for a chain graph H without flags equivalent to an acyclic directed
graph over N . The graph H need not be an essential graph, but we are already sure that
the vector c is the characteristic imset for some acyclic directed graph G over N , that is,
c = cG.

The idea is to fix c now and search through all a′ such that (a′, c) satisfies the inequalities
from § 3.2. This, in fact, means to search through all codes of chain graphs without flags
equivalent to G. By Lemma 2.1, the class H of these graphs has the largest graph, namely
the essential graph G∗ for the equivalence class of acyclic directed graphs G containing G.

26

The largest graph in H can be characterized as the graph with the minimal amount of
arrowheads in H. Thus, it minimizes the function

H ∈ H 7−→
∑

i,j∈N, i6=j
aH(i→ j) .

In this (second) ILP problem, since c is fixed, then number of constrains in the LP relaxation
from § 3.2 is already polynomial in |N |. We only need the values c(S) for 2 ≤ |S| ≤ 3 and
use the inequalities (b.1), (c.1) and (c.3)-(c.5). The number of variables a(i → j) is also
polynomial in |N |.

If someone is particularly interested in finding an acyclic directed graph as a solution
(which, however, need not be unique), then one can simply maximize the above-mentioned
function instead. This is because the elements of G (= Markov equivalence class of acyclic
directed graphs equivalent to G) can be viewed as the elements in H with the maximal
amount of arrowheads. Actually, one can even ascribe different positive weights w(a → j)
to possible arrowheads and, determine in that way a criterion for the choice an acyclic
directed graph from G, which takes into account our preference od directions of arrows.
Then the aim should be to maximize the function

H ∈ H 7−→
∑

i,j∈N, i6=j
aH(i→ j) · w(i→ j) .

The other option is to include the second ILP task in the first one, that is, to consider the
following maximization task over integral vectors (a, c) satisfying the inequalities from § 3.2:

(a, c) 7→ max

 ∑
S⊆N, |S|≥2

rQD(S) · c(S)− ε ·
∑

i,j∈N, i6=j
a(i→ j)

 ,
where rQD is the respective revised data vector and ε > 0 small enough in comparison with
the absolute values of the components of rQD, so that the c-part of the solution is ensured
to maximize c 7→

∑
S⊆N, |S|≥2 rQD(S) · c(S). The technical problem here could be how small

ε is allowed to avoid rounding errors.

9 Complexity considerations

After the search space reduction we have a class of sets T ⊆ {S ⊆ N ; |S| ≥ 2 } which is
closed under subsets and there is a reasonable upper bound t ∈ N on the cardinality of sets
in T : |S| ≤ t for S ∈ T . The hope is that typically t will be 5 or 6. The aim is to maximize
the function

cG 7→
∑

S⊆N, |S|≥2

rQD(S) · cG(S),

which is, by (19), equivalent to the maximization of Q(G,D) over the class of characteristic
imsets cG of acyclic directed graphs G over N , such that, moreover, one has

cG(S) = 0 for S ⊆ N, S 6∈ T .

The result of the pre-processing stage should be a store of values for rQD(S) for S ∈ T . This
is also the situation when we deal with the problem of restricted learning with prescribed
upper bound t ∈ N for the size of cliques in the moral graph of G.

27

In such a situation, most of the inequalities (e.1)-(e.2) from § 3.2 can be omitted, as they
involve zero values and are trivially valid. It is enough to consider the following inequalities:

(e.1?) ∀S ⊆ N , |S| ≥ 3, S ∈ T ?
∑

i∈S c(S \ {i}) ≤ 2 + (|S| − 2) · c(S),

(e.2?) ∀S ⊆ N , |S| ≥ 4, S ∈ T (|S| − 1) · c(S) ≤
∑

i∈S c(S \ {i}),

with T ? = {S ⊆ N ; ∃ i ∈ S S\{i} ∈ T }. We implicitly assume that t ≡ max {|S|; S ∈ T }
is small and fixed; thus, the number of inequalities (e.1)-(e.2) is, in fact, reduced polynomi-
ally, to at most O(|N |t+1) size.

Unfortunately, this is not the case with the inequalities (a.1), respectively (a.1*). One
can always have a chordless cycle of arbitrary high length. In particular, there is no hope
to reduce the number of inequalities in (a.1) to a polynomial number in |N |, even in the
case of restricted learning. In case of acyclicity inequalities, however, each inequality has
quite clear interpretation: the inequality for S ⊆ N , |S| ≥ 4 means a forbidden chordless
(either undirected or semi-directed) cycle composed just of the nodes in S in the respective
graph H. Thus, an iterative constraint adding procedure is suggested below.

9.1 Summary of the procedure

1. The aim should be to maximize the function

(a, c) 7−→
∑

S⊆N,|S|≥2

rQD(S) · c(S) =
∑
S∈T

rQD(S) · c(S)

over the lattice points within the polyhedron specified by the inequalities from § 3.2
such that c(S) = 0 for S 6∈ T . We know, by Theorem 5.1, that the c-parts of these
vectors are nothing but the characteristic imsets for acyclic directed graphs over N .

2. As the first iteration, we relax this ILP problem on the basis of T and consider only
the inequalities (b.1)-(b.2), (c.1)-(c.5), (e.1?)-(e.2?). The number of these inequalities
should be reasonable, of at most O(|N |t+1) size, where t = max {|S|; S ∈ T }.

3. The solution of the starting ILP problem should be code (aH , cH) of a hybrid 3-acyclic
graph H without flags, by Lemma 5.3 (i).

4. We check whether H is a chain graph equivalent to an acyclic directed graph by search-
ing for chordless semi-directed or undirected cycles in H. This should be polynomially
complex graphical procedure.

• If there is no such a cycle, the graph H encodes the desired solution.

• If not, we find all such chordless cycles in H, take the respective acyclicity in-
equalities (a.1), respectively (a.1*), and incorporate them in the considered sys-
tem of inequalities and run the new ILP problem (= come to step 2. with an
extended class of inequalities).

5. Provided we do not get stuck with memory overload, the solution will be a vector
(aH , cH), where H is a chain graph over N , which has no flag and is equivalent to an
acyclic directed graph. We find the corresponding essential graph by establishing the
second ILP problem, as described in § 8.

28

A modified version of the above procedure is that in Step 2., we already include the in-
equalities (a.1) for S ∈ T . Then, in step 3., if a chordless cycle is found, it should have as
the node set some T ⊆ N not in T .

References

[1] S. A. Andersson, D. Madigan, M. D. Perlman: A characterization of Markov equiva-
lence classes for acyclic digraphs, Annals of Statistics 25 (1997) 505-541.

[2] R. R. Bouckaert: Bayesian belief networks - from construction to evidence, PhD thesis,
University of Utrecht 1995.

[3] D. M. Chickering: Optimal structure identification with greedy search, Journal of
Machine Learning Research 3 (2002) 507-554.

[4] J. Cussens: Maximum likelihood pedigree reconstruction using integer programming,
in Proceeedings of the Workshop on Constraint Based Methods for Bioinformatics
(WCBMB) 2010, pp. 9-19.

[5] J. Cussens: Bayesian network learning with cutting planes, in Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence (UAI) 2011, 153-160.

[6] C. P. de Campos, Z. Zeng, Q. Ji: Structure learning Bayesian networks using con-
straints, in Proceedings of the 26th International Conference on Machine Learning
(ICML) 2009, pp. 113-120.

[7] C. P. de Campos, Q. Ji: Efficient structure learning Bayesian networks using con-
straints, Journal of Machine Learning Research 12 (2011) 663-689.

[8] D. Heckerman, D. Geiger, D. M. Chickering: Learing Bayesian networks - the combi-
nation of knowledge and statistical data, Machine Learning 20 (1995) 194-243.

[9] R. Hemmecke, S. Lindner, M. Studený: Characteristic imsets for learning Bayesian net-
work structure, to appear in International Journal of Approximate Reasoning (2012);
see doi:10.1016/j.ijar.2012.04.001 .

[10] T. Jaakkola, D. Sontag, A. Globerson, M. Meila: Lerning Bayesian network structure
using LP relaxations, in Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2010, pp. 358-365.

[11] S. L. Lauritzen: Graphical Models, Clarendon Press 1996.

[12] S. Lindner: Discrete optimization in machine learning - learning Bayesian network
structures and conditional independence implication, PhD thesis, TU Munich 2012.

[13] R. E. Neapolitan: Learning Bayesian Networks, Pearson Prentice Hall 2004.

[14] G. E. Schwarz: Estimation of the dimension of a model, Annals of Statistics 6 (1978)
461-464.

[15] M. Studený: A recovery algorithm for chain graphs, International Journal of Approxi-
mate Reasoning 17 (1997) 265-293.

29

[16] M. Studený, J. Vejnarová: The multiinformation function as a tool for measuring
stochastic dependence, in Learning in Graphical Models (M. I. Jordan ed.), Kluwer
1998, pp. 261-298.

[17] M. Studený: Characterization of essential graphs by means of the operation of
legal merging of components, International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 12 (2004) 43-62.

[18] M. Studený: Probabilistic Conditional Independence Structures, Springer 2005.

[19] M. Studený, J. Vomlel, R. Hemmecke: A geometric view on learning Bayesian network
structures, International Journal of Approximate Reasoning 51 (2010) 578-586.

[20] M. Studený, R. Hemmecke, S. Lindner: Characteristic imset - a simple algebraic rep-
resentative of a Bayesian network structure, in Proceedings of the 5th European Work-
shop on Probabilistic Graphical Models (PGM) 2010, pp. 257-264.

[21] M. Studený, D. Haws: On polyhedral approximations of polytopes for learning Bayes
nets, research report n. 2303, Institute of Information Theory and Automation of the
ASCR, Prague, July 2011, also available on http://arxiv.org/abs/1107.4708.

[22] M. Studený, D. Haws, R. Hemmecke, S. Lindner: Polyhedral approach to statisti-
cal learning graphical models, in Proceedings of the 2nd CREST–SBM International
Conference, World Scientific 2012, pp. 346-372.

[23] T. Verma, J. Pearl: Equivalence and synthesis of causal models, in Proceedings of the
6th conference on Uncertainty in Artificial Intelligence, Elsevier 1991, pp. 220-227.

30

	titutlni-stranka-2323
	VZ-LPrelax

