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The goal of the paper is twofold. The first is to show that some of the ideas for representa-
tion of multidimensional distributions in probability and possibility theories can be trans-
ferred into evidence theory. Namely, we show that multidimensional basic assignments
can be rather efficiently represented in a form of so-called compositional models. These
models are based on the iterative application of the operator of composition, whose defi-
nition for basic assignments as well as its properties are presented. We also prove that
the operator of composition in evidence theory is in a sense generalization of its probabi-
listic counterpart.

The second goal of the paper is to introduce a new definition of conditional independence
in evidence theory and to show in what sense it is superior to that formerly introduced by
other authors.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction—motivation

Any application of AI models to problems of practice must cope with two basic issues: uncertainty and multidimension-
ality. In present time we can say that a ‘‘classical” solution to these problems is offered by probabilistic graphical Markov mod-
els. In these models, the problem of multidimensionality is solved with the help of the notion of conditional independence,
which enables factorization of a multidimensional probability distribution into small parts, usually marginal or conditional
low-dimensional distributions (or generally into low-dimensional factors). Such a factorization not only decreases the stor-
age requirements for representation of a multidimensional distribution but it usually also induces possibility to employ effi-
cient computational procedures.

About 10 years ago, as an alternative to graphical Markov models we introduced compositional models [12], in which mul-
tidimensional probability distributions were assembled from a system of low-dimensional ones by application of a special
operator of composition. Later we introduced compositional models also within the framework of possibility theory [22],
which meant that we had to define an operator of composition for possibilistic distributions as well. Naturally, (computa-
tional) efficiency of all these models also takes advantage of properties of conditional independence.

The research results presented in the current paper were motivated by Didier Dubois, who asked us once whether it was
possible to define an operator of composition for belief functions as well. The importance of such a question is apparent. It is
enough to realize the fact that we need efficient methods for representation of probabilistic and possibilistic distributions,
which require an exponential number of parameters. Thus, we have an even greater need of efficient methods for represen-
tation of a belief function, which cannot be represented by a point function (distribution). For such a representation we need
a set function, and thus its space requirements are superexponential. To avoid these problems, several techniques have been
developed in the past [3,20]. In this context we have to keep in mind that while multidimensionality in probability and
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possibility theories usually involves hundreds of variables, for belief functions several tens of variables bring enormous com-
putational problems.

In the paper we define the operator of composition for basic assignments (Section 2), study its basic properties (Section 3),
and describe how it can be used to represent multidimensional basic assignments (Section 5). In agreement with the fact that
in probability and possibility theories the operator of composition is closely connected with the notion of conditional inde-
pendence, its definition for basic assignments inspired us to revise the notion of conditional independence in evidence the-
ory (Section 4). The paper is concluded with results showing the relationship between operators of composition in
probability and evidence theories (Section 6).

2. Basic notions

The aim of this section is to introduce a notation and briefly overview basic notions from evidence theory. Its last part is
devoted to the definition of the operator of composition.

2.1. Set notation

For an index set N ¼ f1;2; . . . ;ng let fXigi2N be a system of variables, each Xi having its values in a finite set Xi. In this
paper we will deal with multidimensional frame of discernment
1 Let
2 Thi
XN ¼ X1 � X2 � � � � � Xn;
and its subframes (for K # N)
XK ¼ �i2K Xi:
When dealing with groups of variables on these subframes, XK will denote a group of variables fXigi2K throughout the paper.
A projection of x ¼ ðx1; x2; . . . ; xnÞ 2 XN into XK will be denoted x#K , i.e. for K ¼ fi1; i2; . . . ; ikg
x#K ¼ ðxi1 ; xi2 ; . . . ; xik Þ 2 XK :
Analogously, for M � K # N and A � XK ; A#M will denote a projection of A into XM
1:
A#M ¼ fy 2 XM j9x 2 A : y ¼ x#Mg:
In addition to the projection, in this text we will need also an opposite operation, which will be called a join. By a join2 of
two sets A # XK and B # XLðK; L # NÞ we will understand a set
A ffl B ¼ fx 2 XK[L : x#K 2 A & x#L 2 Bg:
Let us note that if K and L are disjoint, then
A ffl B ¼ A� B;
and if K ¼ L
A ffl B ¼ A \ B:
In view of this paper it is important to realize that if x 2 A ffl B (assuming still that A # XK and B # XL it means that x 2 XK[L)
then x#K 2 A and x#L 2 B (and, naturally, x#K\L 2 A#K\L \ B#K\L). However, and it is important to keep this in mind, it does not
mean, analogous to Cartesian product, that for C # XK[L it holds that C ¼ C#K ffl C#L. In this case, from the mentioned proper-
ties one can immediately see that generally C # C#K ffl C#L. For example, considering for i ¼ 1;2;3, Xi ¼ fai; �aig and
C ¼ fa1a2a3; �a1a2a3; a1a2�a3g one gets
C#f1;2g ffl C#f2;3g ¼ fa1a2; �a1a2g ffl fa2a3; a2�a3g ¼ fa1a2a3; �a1a2a3; a1a2�a3; �a1a2�a3g)C:
Let us mention that the sets C # XK[L for which C ¼ C#K ffl C#L are called Z-layered rectangles (for Z ¼ XK\L) in [4].

2.2. Independence in evidence theory

In evidence theory (or Dempster–Shafer theory) two measures are used to model the uncertainty: belief and plausibility
measures. Both of them can be defined with the help of another set function called a basic (probability or belief) assignment m
on XN , i.e.
m : PðXNÞ ! ½0;1�;
us remark that we do not exclude situations when M ¼ ;. In this case A#; ¼ ;.
s term and notation are taken from the theory of relational databases [2].
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where PðXNÞ is power set of XN and
P

A # XN
mðAÞ ¼ 1. Furthermore, we assume that mð;Þ ¼ 0. A set A 2 PðXNÞ is a focal ele-

ment if mðAÞ > 0.
In addition to belief and plausibility measures, which will not be discussed in this paper, also commonality function can be

obtained from basic assignment m:
3 Cou
QðAÞ ¼
X

B # XN :A # B

mðBÞ:
This notion plays an important role in the definition of so-called (conditional) non-interactivity of variables.
For a basic assignment m on XK and M � K a marginal basic assignment of m is defined (for each B # XM):
m#MðAÞ ¼
X

B # XK :B#M¼A

mðBÞ:
Analogously, Q #M will denote the respective marginal commonality function.
Having two basic assignments m1 and m2 on XK and XL, respectively, ðK; L # NÞ, we say that these assignments are pro-

jective if
m#K\L
1 ¼ m#K\L

2 ;
which occurs if and only if there exists a basic assignment m on XK[L such that both m1 and m2 are marginal assignments
of m.

Let us close this section by recalling the notion of independence.3

Definition 1. Let m be a basic assignment on XM and K; L � M be disjoint. We say that groups of variables XK and XL are
independent with respect to basic assignment m (in notation K � L ½m�) if
m#K[LðAÞ ¼ m#KðA#KÞ �m#LðA#LÞ ð1Þ
for all A # XK[L for which A ¼ A#K � A#L, and mðAÞ ¼ 0 otherwise.
Lemma 1. Let K; L be disjoint, then K � L ½m� iff Q #K[LðAÞ ¼ Q #KðA#KÞ � Q #LðA#LÞ for all A # XK[L.
Proof. First assume K � L ½m� and compute for any A # XK[L
Q #K[LðAÞ ¼
X

B # XK[L :A # B

m#K[LðBÞ ¼
X

B # XK[L :A # B
B¼B#K�B#L

m#K[LðBÞ ¼
X

C # XK :A#K # C

X
D # XL :A#L # D

m#KðCÞ �m#LðDÞ

¼
X

C # XK :A#K # C

m#KðCÞ

0
@

1
A X

D # XL :A#L # D

m#LðDÞ

0
@

1
A ¼ Q #KðA#KÞ � Q #LðA#LÞ;
which finishes the first part of the proof.

Now assume that Q #K[LðAÞ ¼ QðA#KÞ � QðA#LÞ for all A # XK[L. To show that K � L ½m� we have to show that mðAÞ ¼ 0 for all
A – A#K � A#L and that for A ¼ A#K � A#L equality (1) holds. So, first, assume that A – A#K � A#L, then (in the following
computations we use only definition of the commonality function and the trivial fact that A # A#K � A#L)
m#K[LðAÞ ¼
X

B # XK[L :A # B

m#K[LðBÞ �
X

B # XK[L :A$B

m#K[LðBÞ ¼ Q#K[LðAÞ �
X

B # XK[L :A$B

m#K[LðBÞ

6 Q #K[LðAÞ �
X

B # XK[L :A#K�A#L # B

m#K[LðBÞ ¼ Q #K[LðAÞ � Q#K[LðA#K � A#LÞ ¼ Q #K[LðAÞ � Q #K[LðA#KÞ � QðA#LÞ ¼ 0:
Since it is clear that
m#K[LðXK[LÞ ¼ m#K[LðXK � XLÞ ¼ Q #K[LðXK � XLÞ ¼ Q#KðXKÞ � Q #LðXLÞ ¼ m#KðXKÞ �m#LðXLÞ;
we can prove validity of equality (1) for all A for which A ¼ A#K � A#L by mathematical induction. Consider such a set A and
assume that validity of equality (1) has already been proven for all B # XK[L, for which B ¼ B#K � B#L and jBj > jAj. Now we can
compute
so et al. [5] call this independence independence in random sets, Klir [15] non-interactivity.
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m#K[LðAÞ ¼
X

B # XK[L :A # B

m#K[LðBÞ �
X

B # XK[L :A$B

m#K[LðBÞ ¼ Q #K[LðAÞ �
X

B # XK[L :A$B

B¼B#K�B#L

m#K[LðBÞ

¼ Q#KðA#KÞ � Q #LðA#LÞ �
X

C # XK :A#K$C

X
D�XL :A#L$D

m#K[LðC � DÞ �
X

C # XK :A#K$C

m#K[LðC � A#LÞ �
X

D�XL :A#L$D

m#K[LðA#K � DÞ

¼
X

C # XK :A#K # C

m#KðCÞ

0
@

1
A X

D�XL :A#L # D

m#LðDÞ

0
@

1
A�

X
C # XK :A#K$C

X
D�XL :A#L$D

m#KðCÞ �m#LðDÞ �
X

C # XK :A#K$C

m#KðCÞ �m#LðA#LÞ

�
X

D�XL :A#L$D

m#KðA#KÞ �m#LðDÞ

¼ m#KðA#KÞ �m#LðA#LÞ: �
Let us note that there exist numerous independence concepts within the broader framework of imprecise probabilities,
e.g. epistemic irrelevance, epistemic independence or strong independence [5,7,17], but their application usually leads to
models beyond the framework of evidence theory (cf., e.g. [24]).
2.3. Operator of composition

Let K and L be two subsets of N. At this moment we do not pose any restrictions on K and L; they may be but need not be
disjoint, one may be a subset of the other. We even admit that one or both of them are empty.4 Let m1 and m2 be basic assign-
ments on XK and XL, respectively.

Our goal is to define a new basic assignment on XK[L, denoted m1 .m2, which will contain all of the information contained
in m1 and as much as possible of information of m2 (for the exact meaning see properties (ii) and (iii) of Lemma 2). The re-
quired property is met by the following definition.

Definition 2. For two arbitrary basic assignments m1 on XK and m2 on XL a composition m1 . m2 is defined for all C # XK[L by
one of the following expressions:

[a] if m#K\L
2 ðC#K\LÞ > 0 and C ¼ C#K ffl C#L then
ðm1 .m2ÞðCÞ ¼
m1ðC#KÞ �m2ðC#LÞ

m#K\L
2 ðC#K\LÞ

;

[b] if m#K\L
2 ðC#K\LÞ ¼ 0 and C ¼ C#K � XLnK then
ðm1 .m2ÞðCÞ ¼ m1ðC#KÞ;
[c] in all other cases
ðm1 .m2ÞðCÞ ¼ 0:
Remark. Notice what this definition yields in the following simple special situations:

	 if K \ L ¼ ; then
m1 .m2ðCÞ ¼ m1ðC#KÞ �m2ðC#LÞ

for C ¼ C#K � C#L, and m1 .m2ðCÞ ¼ 0 otherwise; i.e. m1 .m2ðCÞ is basic assignment of independent groups of variables XK

and XL (see Definition 1);
	 if K 
 L then m1 .m2 ¼ m1.

Let us finish this section with a simple example illustrating the application of the particular cases of Definition 2.

Example 1. Let for i ¼ 1;2;3; Xi ¼ fai; �aig and let us consider the following basic assignments m1 and m2 on X1 � X2 and
X2 � X3, respectively:
ice that basic assignment m on X; is defined mð;Þ ¼ 1. Let us note that this is the only case when we accept mð;Þ > 0, otherwise mð;Þ ¼ 0 according to
sical definitions of basic assignment, see [19].



Table 1
Composed basic assignments.

A ðm1 .m2ÞðAÞ ðm2 .m1ÞðAÞ

X1 � X2 � fa3g 0.3 0.5
X1 � X2 � X3 0.3 0.5
X1 � fa2g � X3 0.4 0
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m1ðX1 � fa2gÞ ¼ 0:4;
m1ðX1 � X2Þ ¼ 0:6;
m2ðX2 � fa3gÞ ¼ 0:5;
m2ðX2 � X3Þ ¼ 0:5
(the values of both basic assignments m1 and m2 on the remaining subsets being zero). From Definition 2 one can immedi-
ately see that formula in case [a] can assign a positive value to ðm1 .m2ÞðAÞ and/or ðm2 .m1ÞðAÞ only for those
A # X1 � X2 � X3 for which
A#f1;2g ¼ X1 � fa2g or A#f1;2g ¼ X1 � X2;
and
A#f2:3g ¼ X2 � fa3g or A#f2;3g ¼ X2 � X3:
There are only two such sets
X1 � X2 � fa3g and X1 � X2 � X3:
For these sets we get
ðm1 .m2ÞðX1 � X2 � fa3gÞ ¼
m1ðX1 � X2Þ �m2ðX2 � fa3gÞ

m#f2g2 ðX2Þ
¼ 0:6 � 0:5

1
¼ 0:3;

ðm1 .m2ÞðX1 � X2 � X3Þ ¼
m1ðX1 � X2Þ �m2ðX2 � X3Þ

m#f2g2 ðX2Þ
¼ 0:6 � 0:5

1
¼ 0:3
and similarly
ðm2 .m1ÞðX1 � X2 � fa3gÞ ¼
m2ðX2 � fa3gÞ �m1ðX1 � X2Þ

m#f2g1 ðX2Þ
¼ 0:5 � 0:6

0:6
¼ 0:5;

ðm2 .m1ÞðX1 � X2 � X3Þ ¼
m2ðX2 � X3Þ �m1ðX1 � X2Þ

m#f2g1 ðX2Þ
¼ 0:5 � 0:6

0:6
¼ 0:5:
From case [b] of Definition 2 we will get yet another focal element for m1 . m2, namely
A ¼ X1 � fa2g � X3;
for which
A#f1;2g ¼ X1 � fa2g and A#f3g ¼ X3:
For this set, since m#f2g2 ðA#f2gÞ ¼ 0 and A#f3g ¼ X3, we get
ðm1 .m2ÞðX1 � fa2g � X3Þ ¼ m1ðX1 � fa2gÞ ¼ 0:4:
Notice that when computing a composition m2 .m1, case [b] of Definition 2 does not assign a positive value to any subset A
of X1 � X2 � X3 since if m#f2g2 ðA#f2gÞ > 0 then also m#f2g1 ðA#f2gÞ > 0.

Both the composed basic assignments m1 .m2 and m2 .m1 are outlined in Table 1 (recall once more that for all other
A # X1 � X2 � X3 different from those included in Table 1 both assignments equal 0). It is also evident from the table, that the
operator . is not commutative.
3. Basic properties of the operator

3.1. Background

First of all it is necessary to realize that the operator of composition substantially differs from any other rule of combi-
nation published before. Whether considering classical Dempster’s rule of combination [9,14] or its cautious versions intro-
duced by Dubois et al. [11] or Denœux [10], they, in a way, describe the process of combination of information sources, for



R. Jiroušek, J. Vejnarová / International Journal of Approximate Reasoning 52 (2011) 316–334 321
which the term information fusion is usually used. In contrast to this, the composition introduced in the previous section de-
scribes the process, when global model is assembled from a number of local models. So it rather corresponds to what is often
called knowledge integration.

Before presenting formal properties of the operator of composition let us present (based on a legitime request of the
anonymous referees) some ideas in the background. Definition 2 was inspired by the simple formula defining the operator
of composition in probability theory [12]
pðx; yÞ . qðy; zÞ ¼ pðx; yÞ � qðzjyÞ ¼ pðx; yÞ � qðy; zÞ
qðyÞ :
It should be stressed, however, that this ratio had been used in many formulae of probability theory before. Let us mention
here at least two of its applications clarifying the properties of the operator.

In most of basic textbooks on probability theory there appears a simple formula (by some of authors called a chain rule)
pðx1; x2; x3; . . . ; xsÞ ¼ pðx1Þ � pðx2jx1Þ � pðx3jx1; x2Þ � � � pðxsjx1; . . . ; xs�1Þ;
which can be generalized for an arbitrary partition I1; I2; . . . ; Ir of the index set f1;2; . . . ; sg as

pðx1; x2; x3; . . . ; xsÞ ¼ pðxiÞi2I1

� pððxiÞi2I2
jðxiÞi2I1

Þ � pððxiÞi2I3
jðxiÞi2I1[I2

Þ � � � pððxiÞi2Ir
jðxiÞi2I1[���[Ir�1

Þ;
or, using the operator of composition
pðx1; x2; x3; . . . ; xsÞ ¼ pðxiÞi2I1
. pððxiÞi2I1[I2

Þ . pððxiÞi2I1[I2[I3
Þ . � � � . pððxiÞi2I1[���[Ir

Þ:
Considering a partition I1; I2; . . . ; Ir of the index set f1;2; . . . ; sg and a system of index sets J1; J2; . . . ; Jr such that for all
j ¼ 1; . . . ; r
Ij # Jj # I1 [ � � � [ Ij;
Perez introduced in [18] an approximation (so-called dependence structure simplification approximation) by the formula that
can be written using the operator . in the form
pðx1; x2; x3; . . . ; xsÞ ¼ pððxiÞi2J1
Þ . pððxiÞi2J2

Þ . pððxiÞi2J3
Þ . � � � . pððxiÞi2Jr

Þ:
In the cited paper, when studying properties of these approximations, he took advantage of the fact that they have a specific
dependence structure following from one of the basic properties of the operator of composition (expressed here in its sim-
plest form):
for probability distribution pðx; yÞ . qðy; zÞ; variables X and Z are conditionally independent given Y:
Another field of application of the studied operator appears when one needs to get a projection of a distribution pðx; yÞ
into a set of distributions with a given marginal qðxÞ, i.e. when one needs to find a distribution from the set
fp̂ðx; yÞ : p̂ðxÞ ¼ qðxÞg
as close as possible to pðx; yÞ. It was shown by Csiszár [6] that when measuring the distance of distributions with the help of
Kullback–Leibler divergence then the required projection is exactly qðxÞ . pðx; yÞ. This fact was intuitively exploited as early
as in 1940 in Iterative Proportional Fitting Procedure by Deming and Stephan [8]. All this led us to another requirement con-
cerning the composition: it should preserve the first operand.

3.2. Formal properties

Lemma 2. For arbitrary two basic assignments m1 on XK and m2 on XL the following properties hold true:

(i) m1 .m2 is a basic assignment on XK[L;
(ii) ðm1 .m2Þ#K ¼ m1;

(iii) m1 .m2 ¼ m2 .m1 () m#K\L
1 ¼ m#K\L

2 ;
(iv) if K # L then m#K2 .m2 ¼ m2.
Proof. ad (ii). To prove equality (ii) we have to prove that for any B # XK
X
A # XK[L :A#K¼B

ðm1 .m2ÞðAÞ ¼ m1ðBÞ: ð2Þ
Since, due to Definition 2, ðm1 .m2ÞðCÞ ¼ 0 for any C # XK[L, for which C – C#K ffl C#L, we see that

X

A # XK[L :A#K¼B

ðm1 .m2ÞðAÞ ¼
X

A # XK[L :A#K¼B
A¼A#KfflA#L

ðm1 .m2ÞðAÞ ¼
X

C # XL

C#K\L¼B#K\L

ðm1 .m2ÞðB ffl CÞ:
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To prove formula (2), we have to distinguish two situations depending on the value of m#K\L
2 ðB#K\LÞ. If this value is positive

then

X

A # XK[L :A#K¼B

ðm1 .m2ÞðAÞ ¼
X

C # XL

C#K\L¼B#K\L

m1ðBÞ �m2ðCÞ
m#K\L

2 ðB#K\LÞ
¼ m1ðBÞ

m#K\L
2 ðB#K\LÞ

X
C # XL

C#K\L¼B#K\L

m2ðCÞ ¼
m1ðBÞ

m#K\L
2 ðB#K\LÞ

m#K\L
2 ðB#K\LÞ ¼ m1ðBÞ:
If m#K\L
2 ðB#K\LÞ ¼ 0 then, according to Definition 2 (case [b]), there exists only one A # XK[L for which A#K ¼ B and ðm1 .m2ÞðAÞ

may be positive; namely A ¼ B� XLnK . Therefore

X

A # XK[L :A#K¼B

ðm1 .m2ÞðAÞ ¼ ðm1 .m2ÞðB� XLnKÞ ¼ m1ðBÞ:
ad (i). To prove that m1 .m2 is a basic assignment on XK[L we have to show that for each A # XK[L value ðm1 .m2ÞðAÞ is non-
negative (which is evident) and that the sum of all these values equals 1. The latter holds true, too, because (using equality
(2))
X
A # XK[L

ðm1 .m2ÞðAÞ ¼
X

B # XK

X
A # XK[L :A#K¼B

ðm1 . m2ÞðAÞ ¼
X

B # XK

m1ðBÞ ¼ 1:
ad (iii). Let us first assume that m#K\L
1 ¼ m#K\L

2 . To prove that m1 .m2 ¼ m2 .m1 consider an arbitrary A # XK[L. If A – A#K ffl A#L

then both ðm1 .m2ÞðAÞ and ðm2 .m1ÞðAÞ equal 0 (due to Definition 2). Therefore we have to prove the equality only for
A ¼ A#K ffl A#L.

If m#K\L
1 ðA#K\LÞ ¼ m#K\L

2 ðA#K\LÞ > 0 then
ðm1 .m2ÞðAÞ ¼
m1ðA#KÞ �m2ðA#LÞ

m#K\L
2 ðA#K\LÞ

¼ m1ðA#KÞ �m2ðA#LÞ
m#K\L

1 ðA#K\LÞ
¼ ðm2 .m1ÞðAÞ:
If m#K\L
1 ðA#K\LÞ ¼ m#K\L

2 ðA#K\LÞ ¼ 0, then both m1ðA#KÞ and m2ðA#LÞmust equal 0 and therefore (according to [b] of Definition 2)
ðm1 . m2ÞðAÞ ¼ ðm2 .m1ÞðAÞ ¼ 0.

To prove the other side of the equivalence (i.e. m1 .m2 ¼ m2 .m1 implies m#K\L
1 ¼ m#K\L

2 ) it is enough to realize that if
m#K\L

1 – m#K\L
2 then also m1 .m2 – m2 .m1 because, due to already proven item (ii) of this assertion, m#K\L

1 ¼ ðm1 .m2Þ#K\L

and m#K\L
2 ¼ ðm2 .m1Þ#K\L.

ad (iv). This property follows directly from previously proven items (iii) and (ii). h

For a binary operator, natural questions arises: is this operator commutative, associative and idempotent? The answers to
these questions for operator of composition are simple, based on the properties proven in Lemma 2. From properties (i) and
(ii) it follows that the operator is idempotent. On the other hand, from Example 1 one can immediately see that this operator
is not commutative. However, and it should be stressed, property (iii) says that the operator is commutative for projective
basic assignments.

How is it with the associativity of the operator of composition? As it is shown in the following simple example, generally
the operator is not associative. However, similarly to commutativity, there are special situations under which the operator
becomes associative.

Example 2. Let X1 and X2 be two variables with values in X1 and X2, respectively, Xi ¼ fai; �aig; i ¼ 1;2, and let m1; m2 and
m3 be three basic assignments on X1; X2 and X1 � X2, respectively, defined as follows:
m1ðfa1gÞ ¼ 0:5;
m1ðX1Þ ¼ 0:5;
m2ðfa2gÞ ¼ 0:5;
m2ðX2Þ ¼ 0:5;
and
m3ðfa1; a2gÞ ¼ 0:5;
m3ðX1 � X2Þ ¼ 0:5:
Due to (i) and (ii) of Lemma 2 one has
ðm1 .m2Þ .m3 ¼ m1 .m2;
and therefore
ðm1 .m2Þ .m3ðfa1; a2gÞ ¼ 0:25;
ðm1 .m2Þ .m3ðfa1g � X2Þ ¼ 0:25;
ðm1 .m2Þ .m3ðX1 � fa2gÞ ¼ 0:25;
ðm1 .m2Þ .m3ðX1 � X2Þ ¼ 0:25:
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On the other hand (see that all the focal elements of m1 .m2 are computed with the help of case [a] of Definition 2)
5 Let
6 The
m2 .m3ðfa1; a2gÞ ¼ 0:5;
m2 .m3ðX1 � X2Þ ¼ 0:5;
and therefore
m1 . ðm2 .m3Þðfa1; a2gÞ ¼ 0:5;
m1 . ðm2 .m3ÞðX1 � X2Þ ¼ 0:5;
i.e., operator . is not associative.
To illustrate special cases under which the associativity holds for the operator of composition let us present the following

assertion (since we do not need it in this text we do not prove it here).

Lemma 3. Let m1; m2; m3 be basic assignments on XK ; XL and XM, respectively, such that for all C # XK[L[M
m#K\L
2 ðC#K\LÞ () m#K\M

3 ðC#K\MÞ:
If K 
 L \M then
ðm1 .m2Þ .m3 ¼ m1 . ðm2 .m3Þ:
4. Conditional independence

Before starting a deeper study of the concept of conditional independence in this section, let us stress that it is a crucial
notion in most approaches to multidimensional modeling. As it was suggested in the remark in Section 2.3, in the case when
basic assignments are defined on non-overlapping subframes of discernment their composition is a basic assignment of inde-
pendent (and also non-interactive [15]) groups of variables. More precisely, for m1 and m2 defined on XK and XL, respectively,
if K \ L ¼ ; then K � L ½m1 .m2�. In this section we will deal with two generalizations of this concept.

Ben Yaghlane et al. [4] generalized the notion of non-interactivity in the following way: Let m be a basic assignment on XN

and K; L;M � N be disjoint, K – ;– L. Groups of variables XK and XL are conditionally non-interactive5 given XM with respect to
m if and only if the equality
Q #K[L[MðAÞ � Q#MðA#MÞ ¼ Q#K[MðA#K[MÞ � Q #L[MðA#L[MÞ ð3Þ
holds for any A # XK[L[M .
The cited authors proved [4] that conditional non-interactivity satisfies the so-called semigraphoid properties,6 usually

taken as sound properties of a conditional independence relation.
Nevertheless, this notion of independence does not seem to be appropriate for construction of multidimensional models.

As it was shown by Studeny [21], it is not consistent with marginalization. The exact meaning of this statement can be seen
from the following simple example (suggested by Studeny, as cited by Ben Yaghlane et al. in [4]).

Example 3. Let X1; X2 and X3 be three binary variables with values in X1 ¼ fa1; �a1g; X2 ¼ fa2; �a2g; X3 ¼ fa3; �a3g and m1 and
m2 be two basic assignments on X1 � X3 and X2 � X3, respectively, both of them having only two focal elements:
m1ðfða1; �a3Þ; ð�a1; �a3ÞgÞ ¼ m1ðfða1; �a3Þ; ð�a1; a3ÞgÞ ¼ 0:5;
m2ðfða2; �a3Þ; ð�a2; �a3ÞgÞ ¼ m2ðfða2; �a3Þ; ð�a2; a3ÞgÞ ¼ 0:5:

ð4Þ
Since their marginals are projective
m#31 ðf�a3gÞ ¼ m#32 ðf�a3gÞ ¼ 0:5;

m#31 ðfa3; �a3gÞ ¼ m#32 ðfa3; �a3gÞ ¼ 0:5;
there exists (at least one) common extension of both of them, but none of them is such that it would imply conditional non-
interactivity of X1 and X2 given X3. Namely, the application of the equality (3) to basic assignments m1 and m2 leads to the
following values of the joint ‘‘basic assignment”:
�mðX1 � X2 � f�a3gÞ ¼ 0:25;
�mðX1 � fa2g � f�a3gÞ ¼ 0:25;
�mðfa1g � X2 � f�a3gÞ ¼ 0:25;
�mðfða1; a2; �a3Þ; ð�a1; �a2; a3ÞgÞ ¼ 0:5;
�mðfða1; a2; �a3ÞgÞ ¼ �0:25;
which is outside of evidence theory.
us note that the definition presented in [4] is based on conjunctive Dempster’s rule, but the authors proved its equivalence with (3).
reader not familiar with semigraphoid axioms is referred to Theorem 1, where they are formulated for the notion of conditional independence.
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Therefore, instead of the already mentioned conditional non-interactivity, we propose to use the following notion of con-
ditional independence.

Definition 3. Let m be a basic assignment on XN and K; L;M � N be disjoint, K – ;– L. We say that groups of variables XK

and XL are conditionally independent given XM with respect to m (and denote it by K � LjM ½m�), if the equality
m#K[L[MðAÞ �m#MðA#MÞ ¼ m#K[MðA#K[MÞ �m#L[MðA#L[MÞ ð5Þ
holds for any A # XK[L[M such that A ¼ A#K[M ffl A#L[M , and mðAÞ ¼ 0 otherwise.
Notice that for M ¼ ; the concept coincides with Definition 1, which enables us to use the term conditional independence.

Let us also note that (5) resembles, from the formal point of view, the definition of stochastic conditional independence [16].
Before formulating an important theorem justifying the above introduced definition, let us formulate and prove an asser-

tion concerning set joins.

Lemma 4. Let K \ L # M # L # N. Then for any C # XK[L the following condition (a) holds if and only if both conditions (b) and (c)
hold true.

(a) C ¼ C#K ffl C#L;
(b) C#K[M ¼ C#K ffl C#M;
(c) C ¼ C#K[M ffl C#L.
Proof. Before proving the required implications let us realize that evidently
x 2 C ) ðx#K 2 C#K & x#L 2 C#LÞ;
which means that C # C#K ffl C#L. Therefore C ¼ C#K ffl C#L is equivalent to
8x 2 XK[L ðx#K 2 C#K & x#L 2 C#L ) x 2 CÞ:
(a)) (b). Consider x 2 XK[M , such that x#K 2 C#K and x#M 2 C#M . Since x#M 2 C#M there must exist (at least one) y 2 C#L, for
which y#M ¼ x#M . Now construct z 2 XK[L for which z#K ¼ x#K and z#L ¼ y (it is possible because y#M ¼ x#M). From this con-
struction we see that z#K[M ¼ x. Therefore z#K ¼ x#K 2 C#K and z#L ¼ y 2 C#L from which, because we assume that (a) holds,
we get that z 2 C, and therefore also x ¼ z#K[M 2 C#K[M .
(a)) (c). Consider now x 2 XK[L, for which its projections x#K[M 2 C#K[M and x#L 2 C#L. From x#K[M 2 C#K[M we immediately
get that x#K 2 C#K , which in combination with x#L 2 C#L (due to the assumption (a)) yields that x 2 C.
(b) & (c)) (a). Consider x 2 XK[L such that x#K 2 C#K and x#L 2 C#L. From the last property one gets also x#M 2 C#M , which, in
combination with x#K 2 C#K gives, because (b) holds true, that x#K[M 2 C#K[M . And the last property in combination with
x#L 2 C#L yields the required x 2 C. h
Theorem 1. Conditional independence K � LjM ½m� satisfies semigraphoid properties (for I; K; L; M disjoint):

(A1) K � LjM ½m� ) L � KjM ½m�,
(A2) K � L [MjI ½m� ) K � MjI ½m�,
(A3) K � L [MjI ½m� ) K � LjM [ I ½m�,
(A4) K � LjM [ I ½m� ^ K � MjI ½m� ) K � L [MjI ½m�.
Proof. To simplify the formulae we will omit in the proof symbol [ and use, for example, KLM instead of K [ L [M.
ad (A1). The validity of the implication immediately follows from the commutativity of multiplication.
ad (A2). The assumption K � LMjI ½m� means that for any A # XKLMI such that A ¼ A#KI ffl A#LMI the equality
m#KLMIðAÞ �m#IðA#IÞ ¼ m#KIðA#KIÞ �m#LMIðA#LMIÞ ð6Þ
holds, and if A – A#KI ffl A#LMI , then mðAÞ ¼ 0. Let us prove first that also for any B # XKMI such that B ¼ B#KI ffl B#MI , the equality
m#KMIðBÞ �m#IðB#IÞ ¼ m#KIðB#KIÞ �m#MIðB#MIÞ ð7Þ
is valid. To do so, let us compute
m#KMIðBÞ �m#IðB#IÞ ¼
X

A # XKLMI

A#KMI¼B#KIfflB#MI

m#KLMIðAÞ �m#IðA#IÞ ¼
X

A # XKLMI ;A¼A#KIfflA#LMI

A#KMI¼B#KIfflB#MI

m#KLMIðAÞ �m#IðA#IÞ

¼
X

A # XKLMI ;A¼A#KIfflA#LMI

A#KMI¼B#KIfflB#MI

m#KIðA#KIÞ �m#LMIðA#LMIÞ ¼ m#KIðA#KIÞ �
X

C # XLMI

C#MI¼B#MI

m#LMIðCÞ ¼ m#KIðB#KIÞ �m#MIðB#MIÞ;
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as
m#IðB#IÞ ¼ m#IðA#IÞ;
m#KIðB#KIÞ ¼ m#KIðA#KIÞ:
So, to finish this step it remains to prove that if B – B#KI ffl B#MI then m#KMIðBÞ ¼ 0. Also, in this case
m#KMIðBÞ ¼
X

A # XKLMI

A#KMI¼B

m#KLMIðAÞ;
but since B ¼ A#KMI – A#KI ffl A#MI then, because of Lemma 4, also A – A#KI ffl A#LMI for any A such that A#KMI ¼ B. But for these A,
m#KLMIðAÞ ¼ 0 and therefore also m#KMIðBÞ ¼ 0.

ad (A3). Again, let us suppose validity of K � LMjI ½m�, i.e., for any A # XKLMI such that A ¼ A#KI ffl A#LMI equality (6) holds,
and m#KLMIðAÞ ¼ 0 otherwise. Our aim is to prove that for any C # XKLMI such that C ¼ C#KMI ffl C#LMI , the equality
m#KLMIðCÞ �m#MIðC#MIÞ ¼ m#KMIðC#KMIÞ �m#LMIðC#LMIÞ ð8Þ
is satisfied as well, and m#KIðCÞ ¼ 0 otherwise. Let C be such that m#IðC#IÞ > 0. Since we assume that K � LMjI ½m� holds, we
have for such a C
m#KLMIðCÞ �m#IðC#IÞ ¼ m#KIðC#KIÞ �m#LMIðC#LMIÞ;
and therefore we can compute
m#KLMIðCÞ �m#MIðC#MIÞ ¼ m#KLMIðCÞ �m#IðC#IÞ �m
#MIðC#MIÞ

m#IðC#IÞ
¼ m#KIðC#KIÞ �m#LMIðC#LMIÞ �m

#MIðC#MIÞ
m#IðC#IÞ

¼ m#KIðC#KIÞ �m#MIðC#MIÞ
m#IðC#IÞ

�m#LMIðC#LMIÞ ¼ m#KMIðC#KMIÞ �m#LMIðC#LMIÞ;
where the last equality is satisfied due to (A2) and the fact that m#IðC#IÞ > 0. If m#IðC#IÞ ¼ 0 then also m#KMIðC#KMIÞ ¼ 0,
m#LMIðC#LMIÞ ¼ 0 and m#KLMIðCÞ ¼ 0 and therefore (8) also holds true.

It remains to be proven that mðCÞ ¼ 0 for all C – C#KMI ffl C#LMI . But in this case, as a consequence of Lemma 4, also
C – C#KI ffl C#LMI and therefore mðCÞ ¼ 0 due to the assumption.

ad (A4). First, supposing K � LjMI ½m� and K � MjI ½m� let us prove that for any A # XKLMI such that A ¼ A#KI ffl A#LMI the
equality (6) holds. Since from A ¼ A#KI ffl A#LMI it also follows due to Lemma 4 that A ¼ A#KMI ffl A#LMI , and therefore (since we
assume K � LjMI ½m�)
m#KLMIðAÞ �m#MIðA#MIÞ ¼ m#KMIðA#KMIÞ �m#LMIðA#LMIÞ: ð9Þ
Now, let us further assume that m#MIðA#MIÞ > 0 (and thus also m#IðA#IÞ > 0). Since from A ¼ A#KI ffl A#LMI Lemma 4 implies
A#KMI ¼ A#KI ffl A#MI , one gets from K � MjI ½m� that
m#KMIðA#KMIÞ �m#IðA#IÞ ¼ m#KIðA#KIÞ �m#MIðA#MIÞ;
which, in combination with equality (9), yields
m#KLMIðAÞ �m#MIðA#MIÞ ¼ m#KIðA#KIÞ �m#MIðA#MIÞ
m#IðA#IÞ

�m#LMIðA#LMIÞ;
which is (for positive m#MIðA#MIÞ) evidently equivalent to (6). If, on the other hand, m#MIðA#MIÞ ¼ 0, then also m#LMIðA#LMIÞ ¼ 0
and m#KLMIðAÞ ¼ 0 and both sides of (6) equal 0.

It remains to prove that m#KLMIðAÞ ¼ 0 for all A – A#KI ffl A#LMI . But m#KLMIðAÞ ¼ 0 because Lemma 4 says that either
A – A#KMI ffl A#LMI (and therefore m#KLMIðAÞ ¼ 0 from the assumption that K � LjMI ½m�) or A#KMI – A#KI ffl A#MI (and then
m#KMIðA#KMIÞ ¼ 0 due to the assumption K � MjI ½m�, and therefore also m#KLMIðAÞ ¼ 0). h
Remark. As the introduced notion generalizes the probabilistic notion of conditional independence, we do not expect that it
satisfies—for general basic assignments—the following property

(A5) K � LjM [ I ½m� ^ K � MjL [ I ½m� ) K � L [MjI ½m�.

This is why we do not consider in this paper so-called graphoid axioms (i.e. (A1)–(A5)) studied by other authors, as, e.g. in
[1,4].
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Theorem 2. Let m be a joint basic assignment on XM, K; L # M: Then ðK n LÞ � ðL n KÞjðK \ LÞ ½m� if and only if
m#K[LðAÞ ¼ ðm#K .m#LÞðAÞ
for any A # XK[L.
Proof. Let XKnL and XLnK be conditionally independent given XK\L with respect to a basic assignment m, and A # XK[L be such
that mðA#K\LÞ > 0. Then Definition 3 guarantees that A ¼ A#K ffl A#L and
m#K[LðAÞ �m#K\LðA#K\LÞ ¼ m#KðA#KÞ �m#LðA#LÞ; ð10Þ
and therefore
m#K[LðAÞ ¼ m#KðA#KÞ �m#LðA#LÞ
�m#K\LðA#K\LÞ

¼ ðm#K .m#LÞðAÞ:
If mðA#K\LÞ ¼ 0 then also mðA#KÞ ¼ 0; mðA#LÞ ¼ 0 and mðAÞ ¼ 0 and therefore ðm#K .m#LÞðAÞ can be obtained via [b] or [c]
depending of whether A ¼ A#K � XLnK or not.

Let, on the other hand, mðAÞ ¼ ðm#K .m#LÞðAÞ for any A # XK[L. First let us show that (10) holds for all A ¼ A#K ffl A#L. If
mðA#K\LÞ > 0 then multiplying both sides of the formula (case [a]) by mðA#K\LÞ we obtain the equality (10). If mðA#K\LÞ ¼ 0
then also mðA#KÞ ¼ 0; mðA#LÞ ¼ 0 and mðAÞ ¼ 0 and therefore both sides of (10) equal 0. If A – A#K ffl A#L, case [c] of Definition
2 is applied, and therefore mðAÞ ¼ ðm#K .m#LÞðAÞ ¼ 0. h
Example 2. (Continued) Let us go back to the problem of finding a common extension of basic assignments m1 and m2

defined by (4). Theorem 2 says that for basic assignment m̂ ¼ m1 .m2 with the following two focal elements
m̂ðX1 � X2 � f�a3gÞ ¼ 0:5;
m̂ðfða1; a2; �a3Þ; ð�a1; �a2; a3ÞgÞ ¼ 0:5;
variables X1 and X3 are conditionally independent given X2.

5. Compositional models

5.1. Iterative application of the operator .

In this section we want to recall the fact that the operator of composition was originally designed to create multidimen-
sional models from a system of oligodimensional (low-dimensional) ones. From this point of view those properties are of
importance which enable us to construct multidimensional basic assignments, to recognize when two different expressions
define the same basic assignments, and which enable us to use the multidimensional models for inference. The situation is
strongly influenced by the fact that the introduced operator of composition . is neither commutative, nor associative. There-
fore we will concentrate our attention on those properties which make it possible to exchange the order of the arguments
without changing the resulting model. In this paper we are presenting only one—the most important assertion of this type—
which will be necessary in the proof of Theorem 3.

Lemma 5. Let m1; m2 and m3 be basic assignments on XK1 ; XK2 and XK3 , respectively. Then
K1 
 K2 \ K3 ) ðm1 .m2Þ .m3 ¼ ðm1 .m3Þ .m2:
Proof. The goal is to prove that for any C # XK1[K2[K3
ððm1 .m2Þ .m3ÞðCÞ ¼ ððm1 . m3Þ .m2ÞðCÞ: ð11Þ
We have to distinguish five special cases.

A. C – C#K1 ffl C#K2 ffl C#K3 .
This is the simplest situation because in this case both sides of formula (11) equal 0 due to Definition 2 (case [c]).

B. C ¼ C#K1 ffl C#K2 ffl C#K3 & m#K1\K2
2 ðC#K1\K2 Þ > 0; m#K1\K3

3 ðC#K1\K3 Þ > 0.
In this case it is enough to realize that (under the given assumptions) K3 \ ðK1 [ K2Þ ¼ K3 \ K1 and, analogously,
K2 \ ðK1 [ K3Þ ¼ K2 \ K1. Then we see that both sides of formula (11) again coincide:
ððm1 .m2Þ .m3ÞðCÞ ¼
m1ðC#K1 Þ �m2ðC#K2 Þ

m#K2\K1
2 ðC#K2\K1 Þ

� m3ðC#K3 Þ
m#K3\ðK1[K2Þ

3 ðC#K3\ðK1[K2ÞÞ
;

ððm1 .m3Þ .m2ÞðCÞ ¼
m1ðC#K1 Þ �m3ðC#K3 Þ

m#K3\K1
3 ðC#K3\K1 Þ

� m2ðC#K2 Þ
m#K2\ðK1[K3Þ

2 ðC#K2\ðK1[K3ÞÞ
:
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C. C ¼ C#K1 ffl C#K2 ffl C#K3 & m#K1\K2
2 ðC#K1\K2 Þ > 0; m#K1\K3

3 ðC#K1\K3 Þ ¼ 0.
In this case, if C#K3nK1 – XK3nK1 then both sides of formula (11) equal 0, because, due to Definition 2, both assignments
m1 .m2 and ðm1 .m3Þ . m2 equal 0. Therefore, consider C ¼ C#K1 ffl C#K2 ffl XK3nK1 . For this we get from Definition 2
ððm1 . m2Þ . m3ÞðCÞ ¼ ðm1 .m2ÞðC#K1[K2 Þ:

For the right-hand side of formula (11) we get

ðm1 .m3ÞðC#K1[K3 Þ ¼ m1ðC#K1 Þ

and therefore

ððm1 . m3Þ . m2ÞðCÞ ¼ ðm1 .m2ÞðC#K1[K2 Þ:
D. C ¼ C#K1 ffl C#K2 ffl C#K3 & m#K1\K2
2 ðC#K1\K2 Þ ¼ 0; m#K1\K3

3 ðC#K1\K3 Þ > 0.
The proof is analogous to that under item C.

E. C ¼ C#K1 ffl C#K2 ffl C#K3 & m#K1\K2
2 ðC#K1\K2 Þ ¼ 0; m#K1\K3

3 ðC#K1\K3 Þ ¼ 0.
It is obvious from Definition 2 that both sides of formula (11) equal 0 for all C but for C ¼ C#K1 ffl XK2nK1 ffl XK3nK1 . For
this special case, however,
ððm1 .m2Þ .m3ÞðCÞ ¼ m1ðC#K1 Þ;
ððm1 .m3Þ .m2ÞðCÞ ¼ m1ðC#K1 Þ: �
Let us formulate an important property generalizing (iv) of Lemma 2.

Lemma 6. Let m1 and m2 be basic assignments on XK1 and XK2 , respectively, and K2 
 L 
 K1 \ K2. Then
m1 .m2 ¼ ðm1 .m#L2 Þ .m2:
Proof. The goal of this proof is to show that
ðm1 .m2ÞðCÞ ¼ ððm1 .m#L2 Þ .m2ÞðCÞ
holds true for any C # XK1[K2 . The proof will be performed in three steps corresponding to cases [a], [b], and [c] of Definition 2.
ad [a]. Assume that C ¼ C#K1 ffl C#K2 and m#K1\K2

2 ðC#K1\K2 Þ > 0. From this and Lemma 4 we get that also C#K1[L ¼ C#K1 ffl C#L,
and therefore (since K1 \ K2 ¼ K1 \ L)
ðm1 .m#L2 ÞðC
#K1[LÞ ¼ m1ðC#K1 Þ �m#L2 ðC

#LÞ
m#K1\K2

2 ðC#K1\K2 Þ
:

In the rest of this step we have to distinguish between two situations depending whether m#L2 ðC
#LÞ equals 0 or not.

If m#L2 ðC
#LÞ > 0 (realize that in this case also m#K1\K2

2 ðC#K1\K2 Þ > 0Þ then
ððm1 . m#L2 Þ .m2ÞðCÞ ¼
ðm1 .m#L2 ÞðC

#K1[LÞ �m2ðC#K2 Þ
m#L2 ðC

#LÞ
¼

m1ðC#K1 Þ�m#L
2
ðC#LÞ

m
#K1\K2
2 ðC#K1\K2 Þ

�m2ðC#K2 Þ

m#L2 ðC
#LÞ

¼ m1ðC#K1 Þ �m2ðC#K2 Þ
m#K1\K2

2 ðC#K1\K2 Þ
¼ ðm1 .m2ÞðCÞ:
If m#L2 ðC
#LÞ ¼ 0 then, according to Definition 2, either
ððm1 . m#L2 Þ .m2ÞðCÞ ¼ ðm1 .m#L2 ÞðC
#K1[LÞ;
in case that C ¼ C#K1[L ffl XK2nL, or
ððm1 . m#L2 Þ .m2ÞðCÞ ¼ 0;
in the opposite case. However, in this case also
ðm1 .m#L2 ÞðC
#K1[LÞ ¼ m1ðC#K1 Þ �m#L2 ðC

#LÞ
m#K1\K2

2 ðC#K1\K2 Þ
¼ 0;
and therefore ððm1 . m#L2 Þ .m2ÞðCÞ ¼ 0 independently of whether C#K2nL ¼ XK2nL or not. Regarding the fact that in the consid-
ered situation (i.e., m#L2 ðC

#LÞ ¼ 0) also m2ðC#K2 Þ ¼ 0, and therefore also
ðm1 .m2ÞðCÞ ¼
m1ðC#K1 Þ �m2ðC#K2 Þ

m#K1\K2
2 ðC#K1\K2 Þ

¼ 0;
we have finished the first step of the proof.
ad [b]. Now we assume that C ¼ C#K1 ffl XK2nK1 , and that m#K1\K2

2 ðC#K1\K2 Þ ¼ 0. In this case, naturally, also m#L2 ðC
#LÞ ¼ 0 and

C ¼ C#K1 ffl XLnK1 ffl XK2nL. Therefore, according to case [b] of Definition 2,
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ðm1 .m#L2 ÞðC
#K1[LÞ ¼ m1ðC#K1 Þ;
and for the same reasons also
ððm1 .m#L2 Þ .m2ÞðCÞ ¼ ðm1 .m#L2 ÞðC
#K1[LÞ ¼ m1ðC#K1 Þ:
In this case ðm1 .m2ÞðCÞ ¼ m1ðC#K1 Þ as well, and we have finished the second step of the proof.
ad [c]. The last step is trivial. In this case, as the reader can immediately see, both ððm1 .m#L2 Þ .m2ÞðCÞ and ðm1 .m2ÞðCÞ

equal 0; therefore, they are equal to each other. h
Lemma 7. Let m1 and m2 be basic assignments on XK1 and XK2 , respectively. Then
K1 [ K2 
 L 
 K1 ) ðm1 .m2Þ#L ¼ m1 .m#K2\L
2 :
Proof. First consider B # XL such that m#K1\K2
2 ðB#K1\K2 Þ > 0. For this B we get
ðm1 .m2Þ#LðBÞ ¼
X

A # XK1[K2
:A#L¼B

ðm1 .m2ÞðAÞ ¼
X

A # XK1[K2
:A#L¼B

m1ðA#K1 Þ �m2ðA#K2 Þ
m#K1\K2

2 ðA#K1\K2 Þ
¼

X
C # XK2

:C#L\K2¼B#L\K2

m1ðB#K1 Þ �m2ðCÞ
m#K1\K2

2 ðB#K1\K2 Þ

¼ m1ðB#K1 Þ
m#K1\K2

2 ðB#K1\K2 Þ

X
C # XK2

:C#L\K2¼B#L\K2

m2ðCÞ ¼
m1ðB#K1 Þm#L\K2

2 ðB#L\K2 Þ
m#K1\K2

2 ðB#K1\K2 Þ
¼ ðm1 .m#L\K2

2 ÞðBÞ:
If m#K1\K2
2 ðB#K1\K2 Þ ¼ 0 for some B # XL, then there is only one A # XK1[K2 such that A#K1 ¼ B#K1 for which ðm1 .m2ÞðAÞ may

be positive, namely A� ¼ B#K1 ffl XK2nK1 with ðm1 .m2ÞðA�Þ ¼ m1ðB#K1 Þ. Thus if B ¼ B#K1 ffl XLnK1 ,
ðm1 .m2Þ#LðBÞ ¼
X

A # XK1[K2
:A#L¼B

ðm1 .m2ÞðAÞ ¼ ðm1 .m2ÞðA�Þ ¼ m1ðB#K1 Þ ¼ ðm1 .m#K2\L
2 ÞðA�#LÞ ¼ ðm1 . m#K2\L

2 ÞðBÞ:
If B – B#K1 ffl XLnK1 and m#K1\K2
2 ðB#K1\K2 Þ ¼ 0 then
ðm1 .m2Þ#LðBÞ ¼ 0 ¼ ðm1 .m#K2\L
2 ÞðBÞ: �
The following theorem shows that, in certain circumstances, computation of a marginal from a composed basic assign-
ment may be very simple.
Theorem 3. Let m1 and m2 be basic assignments on XK1 and XK2 , respectively. Then
K1 [ K2 
 L 
 K1 \ K2 ) ðm1 . m2Þ#L ¼ m#K1\L
1 . m#K2\L

2 :
Proof. In addition to the properties presented in preceding lemmata we will also use an obvious fact which directly follows
from Definition 2:
ðm1 .m2Þ#L ¼ ððm1 .m2Þ#K1[LÞ#L;

ðm1 .m2Þ#L ¼ ððm1 . m2Þ#K1[LÞ#L

¼ ðm1 .m#K2\L
2 Þ#L application of Lemma 7

¼ ððm#K1\K2
1 .m1Þ .m#K2\L

2 Þ#L application of property ðivÞ of Lemma 2

¼ ððm#K1\K2
1 .m#K2\L

2 Þ . m1Þ#L application of Lemma 5

¼ ðm#K1\K2
1 .m#K2\L

2 Þ .m#K1\L
1 application of Lemma 7

¼ ðm#K1\K2
1 .m#K1\L

1 Þ .m#K2\L
2 application of Lemma 5

¼ m#K1\L
1 .m#K2\L

2 application of property ðivÞ of Lemma 2: �
The following simple example demonstrates, that the condition on set inclusion is substantial.
Example 3. Let X1; X2 and X3 be three variables with values in X1; X2 and X3, respectively, Xi ¼ fai; �aig; i ¼ 1;2;3, and let
m1 and m2 be two basic assignments on X1 � X3 and X2 � X3, respectively, defined as follows:
m1ðfa1; a3gÞ ¼ 0:5;
m1ðX1 � X3Þ ¼ 0:5:
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and
7 Nat
m2ðfa2; a3gÞ ¼ 0:5;
m2ðX2 � X3Þ ¼ 0:5:
Applying Definition 2 one gets
m1 .m2ðfa1; a2; a3gÞ ¼ 0:5;
m1 .m2ðX1 � X2 � X3Þ ¼ 0:5:
from which
ðm1 .m2Þ#f1;2gðfa1; a2gÞ ¼ 0:5;

ðm1 .m2Þ#f1;2gðX1 � X2Þ ¼ 0:5
immediately follows. On the other hand
m#figi ðfaigÞ ¼ 0:5;

m#figi ðXiÞ ¼ 0:5;
for i ¼ 1;2; and therefore
m#f1g1 .m#f2g2 ðfa1; a2gÞ ¼ 0:25;

m#f1g1 .m#f2g2 ðfa1g � X2Þ ¼ 0:25;

m#f1g1 .m#f2g2 ðX1 � fa2gÞ ¼ 0:25;

m#f1g1 .m#f2g2 ðX1 � X2Þ ¼ 0:25;
i.e., the equality in Theorem 3 is not generally valid.
5.2. Generating sequences

In this part of the text we will consider a system of low-dimensional basic assignments m1;m2; . . . ;mn defined on
XK1 ;XK2 ; . . . ;XKn , respectively. Composing them together by multiple application of the operator of composition, one gets
multidimensional basic assignments on XK1[K2[���[Kn . However, since we know (from what has been shown in the preceding
sections) that the operator of composition is neither commutative nor associative, we have to properly specify what we
understand by saying ‘‘composing them together”.

To avoid using too many brackets let us make the following convention. Whenever we put down the expression
m1 .m2 . . . . .mn we will understand that the operator of composition is performed successively from left to right7:
m1 .m2 . . . . .mn ¼ ð� � � ððm1 .m2Þ .m3Þ . � � �Þ .mn:
Therefore, when we want to describe a multidimensional model that is a composition of many low-dimensional basic assign-
ments, it is enough to specify an ordered sequence of these assignments; we will say that a generating sequence
m1;m2; . . . ;mn represents multidimensional basic assignments m1 . m2 . � � � .mn.

Example 4. In this simple example we will show that the ordering in which the basic assignments are considered is
substantial. Consider three variables X1; X2 and X3 with values in X1; X2 and X3, respectively, Xi ¼ fai; �aig; i ¼ 1;2;3. Let
m1; m2 and m3 be three basic assignments on X1 � X2; X2 � X3 and X1 � X3, respectively, each mi having only one focal
element Ai
A1 ¼ fða1; a2Þ; ð�a1; �a2Þg;
A2 ¼ fða2; a3Þ; ð�a2; �a3Þg;
A3 ¼ X1 � X3;
i.e. miðAiÞ ¼ 1.
These basic assignments are pairwise projective (any one-dimensional marginal has only one focal element, namely Xi),

but the sequence is not perfect (cf. definition following this example). Therefore, application of the operator of composition
to different orderings of these three basic assignments leads to different joint basic assignments on X1 � X2 � X3. Each of
these composed basic assignments has again only one focal element, namely
A1 ffl A2 ¼ fða1; a2; a3Þ; ð�a1; �a2; �a3Þg
urally, if we want to change the ordering in which the operators are to be performed we will do so with the help of brackets.
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for m1; m2; m3 and m2; m1; m3,
fða1; a2Þ; ð�a1; �a2Þg � X3
for m1; m3; m2,
X1 � fða2; a3Þ; ð�a2; �a3Þg
for m2; m3; m1 and, finally,
X1 � X2 � X3
for m3; m1; m2 and m3; m2; m1.
When representing knowledge in a specific area of interest, a special role is played by the so-called perfect sequences, i.e.,

generating sequences m1;m2; . . . ;mn, for which
m1 . m2 ¼ m2 .m1;

m1 . m2 .m3 ¼ m3 . ðm1 .m2Þ;

..

.

m1 . m2 . � � � .mn ¼ mn . ðm1 . � � � .mn�1Þ:
The property explaining why we call these sequences perfect is expressed in the following assertion.

Theorem 4. A generating sequence m1;m2; . . . ;mn is perfect if and only if all m1;m2; . . . ;mn are marginal assignments of the
multidimensional assignment m1 .m2 . � � � .mn:
ðm1 .m2 . � � � . mnÞ#Kj ¼ mj;
for all j ¼ 1; . . . ;n.
Proof. The fact that all assignments mj from a perfect sequence are marginals of ðm1 .m2 . � � � .mnÞ follows from the fact
that ðm1 . � � � .mjÞ is marginal to ðm1 . � � � .mnÞ (due to (ii) of Lemma 2), and mj is marginal to
mj . ðm1 . � � � .mj�1Þ ¼ m1 . � � � .mj.

Suppose now that for all j ¼ 1; . . . ;n, mj are marginal assignments to m1 . � � � .mn. This means that all of the assignments
from the sequence are pairwise projective, and that each mj is projective with any marginal assignment of m1 . � � � .mn, and
consequently also with m1 . � � � .mj�1. Hence we get that
m
#Kj\ðK1[���[Kj�1Þ
j ¼ ðm1 . � � � . mj�1Þ#Kj\ðK1[���[Kj�1Þ
for all j ¼ 2; . . . ;n, which is equivalent, due to property (iii) of Lemma 2, to the fact that
m1 .m2 . � � � .mj ¼ mj . ðm1 . � � � .mj�1Þ;
which corresponds to the definition of perfect sequence. h

Let us interpret this assertion in the language of artificial intelligence. If low-dimensional assignments m1;m2; . . . ;mn cor-
respond to pieces of local knowledge, then the global knowledge represented by multidimensional assignment
m1 .m2 . � � � .mn contains all these pieces of local knowledge. The next theorem shows that each generating sequence defin-
ing a compositional model m1 . � � � .mn can be transformed into a perfect sequence without changing the represented mul-
tidimensional assignment. In other words, any basic assignment representable by a generating sequence m1;m2; . . . ;mn can
also be represented by a perfect sequence m̂1; m̂2; . . . ; m̂n. First, we shall formulate this property just for two basic assign-
ments, then it will be generalized to an arbitrary generating sequence.

Lemma 8. Let m1; m2 be basic assignments on XK1 ; XK2 , respectively. Then
m1 .m2 ¼ m1 . ðm#K1\K2
1 . m2Þ:
Proof. Due to (ii) of Lemma 2, assignments m1 and ðm#K1\K2
1 .m2Þ are projective and therefore (due to property (iii) of the

same lemma), these arguments may be commuted
m1 . ðm#K1\K2
1 .m2Þ ¼ ðm#K1\K2

1 .m2Þ .m1:
The last expression meets the assumptions of Lemma 5 and therefore we can exchange the second and third arguments, from
which the required expression is obtained by application of (iv) of Lemma 2:
ðm#K1\K2
1 .m2Þ .m1 ¼ ðm#K1\K2

1 .m1Þ .m2 ¼ m1 .m2: �
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Theorem 5. For any generating sequence m1;m2; . . . ;mn the sequence m̂1; m̂2; . . . ; m̂n computed by the following process
8 In c
m̂1 ¼ m1;

m̂2 ¼ m̂#K2\K1
1 .m2;

m̂3 ¼ ðm̂1 . m̂2Þ#K3\ðK1[K2Þ . m3;

..

.

m̂n ¼ ðm̂1 . � � � . m̂n�1Þ#Kn\ðK1[���[Kn�1Þ . mn
is perfect and
m1 . � � � . mn ¼ m̂1 . . . . . m̂n:
Proof. The perfectness of the sequence m̂1; . . . ; m̂n follows immediately from property (ii) of Lemma 2 and from the defini-
tion of this sequence as
m̂#Ki\ðK1[���[Ki�1Þ
i ¼ ðm̂1 . � � � . m̂i�1Þ#Ki\ðK1[���[Ki�1Þ
yields equivalence
m̂1 . m̂2 . � � � . m̂i ¼ m̂i . ðm̂1 . � � � . m̂i�1Þ:
So, we have only to prove that
m1 . � � � . mn ¼ m̂1 . � � � . m̂n:
We will do so by mathematical induction. Since m1 ¼ m̂1 by definition, it is enough to show that
m1 . � � � . mi ¼ m̂1 . � � � . m̂i
also implies
m1 . � � � . miþ1 ¼ m̂1 . � � � . m̂iþ1:
In the following computations we will use the fact that due to Theorem 3
ðm̂1 . � � � . m̂iÞ#Kiþ1\ðK1[���[KiÞ .miþ1 ¼ ððm̂1 . � � � . m̂iÞ .miþ1Þ#Kiþ1 ;
and afterwards we will employ Lemma 8
m̂1 . � � � . m̂iþ1 ¼ m̂1 . � � � . m̂i . ððm̂1 . � � � . m̂iÞ#Kiþ1\ðK1[���[KiÞ .miþ1Þ ¼ m̂1 . . . . . m̂i . ððm̂1 . � � � . m̂iÞ .miþ1Þ#Kiþ1

¼ m̂1 . � � � . m̂i .miþ1 ¼ m1 . � � � .mi .miþ1;
where the last modification is an application of the inductive assumption. h
6. Bayesian basic assignments

As already mentioned in Section 1, the operator of composition was originally designed for probability theory. Let us re-
call this definition.

Definition 4. Consider two arbitrary probability distributions p1 and p2 defined on XK1 ; XK2 , respectively, (K1 – ;– K2). If
p#K1\K2

1 is dominated by p#K1\K2
2 , i.e.,
8z 2 XK1\K2 p#K1\K2
2 ðzÞ ¼ 0) p#K1\K2

1 ðzÞ ¼ 0;
then p1 . p2 is for all x 2 XK[L defined by the expression8
ðp1 . p2ÞðxÞ ¼
p1ðx#K1 Þ � p2ðx#K2 Þ
p#K1\K2

2 ðx#K1\K2 Þ
:

Otherwise the composition p1 . p2 remains undefined.
ase of necessity we define 0�0
0 ¼ 0.
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A basic assignment m degenerates into a probability distribution if all of its focal elements are singletons (in other words:
mðAÞ > 0) jAj ¼ 1). In agreement with [19] we will call such assignments Bayesian basic assignments. It would be inconsis-
tent if the operator of composition we have introduced in this paper did not coincide with the probabilistic one when applied
to Bayesian basic assignments. Fortunately, that is not the case.

Lemma 9. Let m1 and m2 be Bayesian basic assignments on XK1 and XK2 , respectively, for which
9 Not
m#K1\K2
2 ðfzgÞ ¼ 0) m#K1\K2

1 ðfzgÞ ¼ 0 ð12Þ
for any z 2 XK1\K2 . Let p1 and p2 be probabilistic distributions on XK1 and XK2 , respectively, such that
m1ðfx#K1gÞ ¼ p1ðx#K1 Þ;
m2ðfx#K2gÞ ¼ p2ðx#K2 Þ;
for any x 2 XK1[K2 . Then m1 . m2 is a Bayesian basic assignment and
ðm1 .m2ÞðfxgÞ ¼ ðp1 . p2ÞðxÞ
for all x 2 XK1[K2 .
Proof. To prove that basic assignment m1 . m2 is Bayesian, it is enough to show that if A # XK1[K2 is not a singleton then
ðm1 . m2ÞðAÞ ¼ 0.

Consider any A # XK1[K2 that is not a singleton. Therefore there must exist two different elements x; y 2 A. Since x – y then
either x#K1 – y#K1 or x#K2 – y#K2 (or both). Therefore, either A#K1 or A#K2 is not a singleton and therefore
m1ðA#K1 Þ �m2ðA#K2 Þ ¼ 0. This means that if m#K1\K2

2 ðA#K1\K2 Þ > 0 (notice that A#K1\K2 can be a singleton) then, due to
Definition 2, ðm1 .m2ÞðAÞ ¼ 0.

If m#K1\K2
2 ðA#K1\K2 Þ ¼ 0 then, because we assume the validity of implication (12),m#K1\K2

1 ðA#K1\K2 Þ ¼ 0 and therefore also
m1ðA#K1 Þ ¼ 0. Therefore, according to Definition 2, ðm1 .m2ÞðAÞ ¼ 0 as well. So, we have proven that m1 .m2 is Bayesian.

Now, consider a singleton fxg for some x 2 XK1[K2 . If m#K1\K2
2 ðfxg#K1\K2 Þ ¼ p2ðx#K1\K2 Þ > 0, point [a] of Definition 2 yields
ðm1 .m2ÞðfxgÞ ¼
m1ðfxg#K1 Þ �m2ðfxg#K2 Þ

m#K1\K2
2 ðfxg#K1\K2 Þ

¼ p1ðx#K1 Þ � p2ðx#K2 Þ
p#K1\K2

2 ðx#K1\K2 Þ
¼ ðp1 . p2ÞðxÞ
by Definition 4. Similarly, if m#K1\K2
2 ðfxg#K1\K2 Þ ¼ p2ðx#K1\K2 Þ ¼ 0, we get according to point9 [c] of Definition 2
ðm1 .m2ÞðfxgÞ ¼ 0;
and according to Definition 4
ðp1 . p2ÞðxÞ ¼
p1ðx#K1 Þ � p2ðx#K2 Þ
p#K1\K2

2 ðx#K1\K2 Þ
¼ 0 � 0

0
¼ 0;
which finishes the proof. h

The reader should, however, notice that the definition of the operator of composition for Bayesian basic assignments is
not fully equivalent to the definition of composition for probabilistic distributions. They equal each other only if the prob-
abilistic version is defined. This is anchored in Lemma 9 by assuming the implication (12). In case it does not hold, the prob-
abilistic operator is not defined, even though its belief version introduced in this paper is always defined. Nevertheless, in
this case, the result is not a Bayesian assignment. We will illustrate this fact with the aid of a simple example.

Example 5. Let X1; X2 and X3 be as in the previous example and consider the following Bayesian basic assignments m1 and
m2 on X1 � X2 and X2 � X3, respectively:
m1ðfða1; a2ÞgÞ ¼ m1ðfða1; �a2ÞgÞ ¼ m1ðfð�a1; a2ÞgÞ ¼ m1ðfð�a1; �a2ÞgÞ ¼ 0:25;
m2ðfða2; a3ÞgÞ ¼ m2ðfða2; �a3ÞgÞ ¼ 0:5;
m2ðfð�a2; a3ÞgÞ ¼ m2ðfð�a2; �a3ÞgÞ ¼ 0:
(Naturally, since m1 and m2 are Bayesian, m1ðAÞ ¼ m2ðAÞ ¼ 0 for any A # Xf1;2;3g for which jAj > 1.)
Let us compute m1 . m2 for all singletons fx1x2x3g 2 X1 � X2 � X3. If x2 ¼ a2, then
ðm1 .m2Þðfðx1; a2; x3ÞgÞ ¼
m1ðfðx1; a2ÞgÞ �m2ðfða2; x3ÞgÞ

m#22 ðfa2gÞ
¼ 0:25 � 0:5

1
¼ 0:125:
ice that for singleton fxg# XK1[K2 ; fxg ¼ fxg
#K1 ffl fxg#K2 but fxg– fzg#K1 � XK2nK1 .
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For a singleton fðx1; �a2; x3Þg we get
ðm1 .m2Þðfðx1; �a2; x3ÞgÞ ¼ 0;
because m#22 ðf�a2gÞ ¼ 0. In this case, however, we get
ðm1 .m2Þðfðx1; �a2Þg � X3Þ ¼ m1ðfðx1; �a2ÞgÞ ¼ 0:25:
In other words, there are six focal elements of m1 .m2, namely, four singletons:
fðx1; a2; x3Þg for x1 2 X1; x3 2 X3;
and two two-element sets
fðx1; �a2Þg � X3 for x1 2 X1:
Let us remark that in contrast to m1 .m2; m2 .m1 is a Bayesian basic assignment, because whenever m#f2g1 ðx2Þ ¼ 0 then also
m#f2g2 ðx2Þ ¼ 0. Basic assignment m1 .m2 has four focal elements:
ðm2 .m1Þðfða1; a2; a3ÞgÞ ¼ ðm2 .m1Þðfða1; a2; �a3ÞgÞ ¼ ðm2 . m1Þðfð�a1; a2; a3ÞgÞ ¼ ðm2 .m1Þðfð�a1; a2; �a3ÞgÞ ¼ 0:25:
7. Conclusions

In this paper we have introduced a new definition of conditional independence for basic assignments (and thus also for
belief functions, though we even have not recalled the notion of a belief function in the paper). The new concept is closely
related to previously defined notions of conditional non-interactivity of Ben Yahlane et al. [4] but these two notions are not
equivalent to each other. They coincide only for unconditional independence and for conditional independence of Bayesain
basic assignments. In general, although each of these concepts meets semigraphoid axioms, they differ from each other.
Since the newly introduced notion does not suffer from the drawback explained in Example 3, we believe it better corre-
sponds to the requirements laid on the notion of conditional independence.

The newly introduced definition was motivated by the operator of composition, which was for belief functions (or, more
precisely, for basic assignments) originally introduced in [13]. This operator, which was designed for construction of multi-
dimensional models, was formerly introduced in probability theory [12] and later also in possibility theory [22]. Since it is
well known that probability and possibility theories are (in a way) special cases of evidence theory, a legitimate question
arises whether the operator of composition introduced for basic assignments corresponds in these special cases to the oper-
ators introduced in the respective theories. While for probability theory the positive answer was presented in Section 6, for
possibility theory, i.e., for consonant bodies of evidence, the situation is quite different. The situation is much more compli-
cated, since the operator of composition in possibility theory is parameterized by a continuous t-norm. One could hardly ex-
pect that the possibilistic operator of composition would be a special case of the one for basic assignments for any
continuous t-norm. Nevertheless, it should hold for one of them and if it were so, this relationship would help us to distin-
guish among the t-norms (and consequently also among resulting models). Unfortunately, the situation is substantially dif-
ferent. If we compose (following Definition 2) two basic assignments corresponding to consonant non-vacuous bodies of
evidence on different frames of discernment, the resulting basic assignment never corresponds to a consonant body of evi-
dence. In other words: application of Definition 2 to possibility distributions leads to results beyond the possibilistic frame-
work. This is so because the independence concept in evidence theory does not preserve consonancy. For more details see
[23].
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