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Abstract

It has been published recently that some of the ideas for representation
of multidimensional distributions in probability theory can be transferred
into Dempster-Shafer theory of Evidence [7], [8]. Namely, they showed
that multidimensional basic assignments can be rather efficiently repre-
sented in a form of so-called compositional models. These models are
based on the iterative application of the operator of composition, whose
definition for basic assignments has been introduced in [5]. It appears
that a software tool supporting computations within compositional model
is necessary for additional theoretical research in this framework. In this
paper we will familiarize the reader with our first attempts and basic
problems of the implementation itself.

1 Introduction

Plenty of applications of Artificial intelligence in the field of quantitative rea-
soning and decision under uncertainty is dominated by probabilistic models like
Bayesian networks and their variants. It these models a multidimensional prob-
ability distribution is used to represent the real world problem and capture and
represent uncertainty. We can distinguish two types of uncertainty. The first is
variability that arises from environmental stochasticity, inhomogenity of materi-
als, fluctuations in time, variation in space, or heterogenity or other differences
among components or individuals. This variability is sometimes called aleatory
uncertainty to emphasize its relation to the randomness in gambling and games
of chance. The second kind of uncertainty is the incertitude that comes from sci-
entific ignorance, measurement uncertainty, inobservability, censoring, or other
lack of knowledge. This is sometimes called epistemic uncertainty.

For situations in which the uncertainty about quantities is purely aleatory,
probability theory is usually preferred and it is sufficient for this purpose. When



2 V. KRATOCHVÍL

the gasp in our knowledge involve both aleatory and epistemic uncertainty,
several competing approaches have been suggested: The common practice is to
use probability theory as well. As another example we would like to mention
probability boxes [21] and especially Dempster-Shafer theory of Evidence (D-S)
[1] [15] which we will deal within this paper.

There is one problem when using probability framework to handle uncer-
tainty. Assume that we have no information concerning behavior of a variable.
Using probability theory, one might assume equal priors and distribute the
weight of evidence equally among all possible states of the variable. But, as
Shafer pointed out, here one will fail to distinguish between uncertainty (or lack
of knowledge), and equal certainty. And it is this kind of uncertainty that can
be easily captured in the framework of D-S theory.

In this paper we will deal with D-S theory, especially we will work with the
notion of Compositional models. Compositional models were originally intro-
duced in the probability framework. The intention was to create an algebraic
alternative to the well-known Markov graphical models like Bayesian networks.
The important advantage of compositional models is that they can be general-
ized in the framework of possibility theory as well as D-S theory by introducing
a special operator of composition [8]. The recent research [7] [8] revealed the
necessity of an software tool supporting compositional models in D-S theory.

The intention of this paper is nothing more than to summarize our initial
problems when attempting to implement such a software tool. Here we describe
our first steps, ideas and preliminary solutions.

2 Notation

For an index set N = {1, 2, . . . , N} let {Xi}i∈N be a finite set of finite valued
variables, each Xi having its values in Xi. In this paper we deal with multidi-
mensional frame of discernment XN = X1 ×X2 × . . .×Xn, and its subframes
(for K ⊆ N) XK = ×i∈KXi. The symbol XK will denote a group of variables
{Xi}i∈K . A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted
x↓K , i.e. for K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection
of A into XM :

A↓M = {y ∈ XM |∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will need also an opposite operation,
which will be called a join1. By a join of two sets A ⊆ XK and B ⊆ XL

(K,L ⊆ N) we will understand a set

A ◃▹ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.
1This term and notation are taken form the theory of relational databases
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Let use note that if K and L are disjoint, then A ◃▹ B = A×B, and if K = L
A ◃▹ B = A ∩B.

The symbol P(XK) will denote the powerset of XK , i.e. the set of all subsets
of XK .

2.1 Basic assignments

The role played by a probability distribution in probability theory is replaced
by that of a set function in D-S theory: belief function, plausibility function,
commonality function, or basic (probability or belief ) assignment. Knowing one
of them, one can derive the remaining three. In this paper we will use almost
exclusively basic assignments.

If m(A) > 0, then A is said to be a focal element of m. The set of focal
elements will be denoted by S. A basic assignment (bpa) m in XK (K ⊆ N) is
a function

m : P(XK) → [0, 1],

for which ∑
∅≠A⊆XK

m(A) = 1.

The quantity m(A) is a measure of that portion of the total belief committed
exactly to A, where A is an element of P(XK) and the total belief is 1. The
portion of belief cannot be further subdivided among the subsets of A and does
not include portions of belief committed ti subsets of A. Since belief in a subset
certainly entails belief in subsets, containing that subset, it would be useful to
define a function that computes a total amount of belief in A. Such a function
is called belief function.

On the contrary, plausible function characterizes the degree in which a pro-
posal A is plausible based on available evidence B expressed by each basic
assignment that contributes to realization of A. Commonality function doesnt
have a simple interpretation but it allows a simple statement of Dempsters com-
bination rule [1].

2.2 Operator of composition

Compositional models theory has been introduced in the framework of probabil-
ity theory [6] as an algebraic alternative to well known and widely used Bayesian
networks for efficient representations of multidimensional measures more than
twelve years ago. Compositional models are based on recurrent application of
an operator of composition. Later, the operator of composition was introduced
also within the framework of D-S theory in [5]:

Definition 2.1. For two arbitrary bpa m1 on XK and m2 on XL (K,L ̸= ∅),
a composition m1 ◃m2 is defined for each C ⊆ XK∪L by one of the following
expressions:
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a) if m↓K∩L
2 (C↓K∩L > 0 and C = C↓K ◃▹ C↓L then

(m1 ◃m2)(C) =
m1(C

↓K) ·m2(C
↓L)

m↓K∩L
2 (C↓K∩L)

b) if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 ◃m2)(C) = m1(C
↓K);

c) in all other cases (m1 ◃m2)(C) = 0.

In the D-S theory, there exists several way how to combine different sources
of evidence and the above defined operator of composition seems to be one of
them. But this is not the case. The classical way is represented by Demp-
ster’s combination rule [1]. A criticism of this rule appeared later caused by
its behavior when combining two conflicting evidences and several additional
combination rules were designed. Recall for example Yager’s rule [23], Ina-
gakis rule [4], Zhangs rule [25], or Dubois and Prades Disjunctive Consensus
[2]. However, the intention of the operator of composition is not to be another
combination rule and combine different sources of evidence. Its intention is
completely different.

Despite the success of D-S theory of evidence as a well founded and general
model of human reasoning under uncertainty, belief functions are rarely used
in concrete applications. One of the most significant arguments raised against
using belief functions in practice is their relatively high computational complex-
ity, especially in comparison with methods based on classical probability theory.
E.g. combining evidence using relatively simple Dempster’s rule of combination
is known to be #P-complete in the number of evidential sources. Recall that
bpa (as well as belief function, plausibility function, and commonality function)
is a set function. We work with the powerset of possible events and the number
of sets that can be focal elements of a bpa can be superexponential within the
number of involved variables.

To overcome these computational limitations, different approximation meth-
ods have been proposed. Previous work can be divided into two categories [3].
The first category consists of Monte-Carlo techniques [22]. The idea is to es-
timate exact values of belief and plausibility by ratios of different outcomes
relative to randomly generated samples. The second category consist of simpli-
fication procedures. They are motivated by the fact that the most algorithms
involving belief functions have a complexity polynomial in the number of fo-
cal elements. The underlying idea is therefore to restrict in different ways the
number of focal elements. A simple method is called Bayesian approximation
[20], where only singletons are allowed - which corresponds to the restriction
on probability distributions only. Other methods like k-l-x approximation [19],
summarization [10], and others try to reduce the number of focal elements by
taking the first k-most important assignments. The sum of the omitted as-
signments is then redistributed in different ways depending on the respective
method.
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The idea of operator of composition goes in a different way: Practically all
methods for efficient computations with multidimensional models take advan-
tage of the fact that the model in question in a way factorizes. It means that
it is possible to decompose the model into its low-dimensional parts, each of
which can be defined with a reasonable number of parameters. This is the ba-
sic idea for computation with probabilistic Graphical Markov Models. Such a
factorization not only decreases the storage requirements for representation of a
multidimensional distribution but it usually also induces possibility to employ
efficient computational procedures.

Since we need efficient methods for representation of probabilistic distri-
butions, which require exponential number of parameters, the more we need of
efficient methods for representation of an evidence, which cannot be represented
by a point function. For such a representation we need a set function, and thus
its space requirements are superexponential.

2.2.1 Compositional models

The factorizable evidence will be then represented in a form of the so-called
compositional model. Assume a system of low-dimensional basic assignments
m1,m2, . . . ,mn defined on XK1 ,XK2 , . . . ,XKn , respectively. Composing them
together by multiple application of operator of composition, one get multidimen-
sional basic assignment on XK1∪K2∪...∪Kn . Note that the operator of compo-
sition is neither commutative, nor associative. By ”composing them together”
we understand that the operator of composition is performed successfully from
left to right and m1 ◃2 ◃ . . .◃mn = (. . . ((m1 ◃m2)◃m3)◃ . . .)◃mn.

2.2.2 New Concept of Conditional Independence

For belief functions, two type of factorization were designed in the literature.
One is based on various combination rules mentioned above, the other use an
operator of composition [5]. It has been shown in [7] that approach concerning
Dempster’s rule and the operator of compositions are equivalent each other in
case of unconditional factorization.

The idea of factorization is closely related to the notion of (un)conditional
independence in probabilistic modeling. However, as pointed out by Studený,
the original definition of conditional independence (published in [24]) was not
consistent with marginalization. That is why a new definition of conditional
independence was introduced in D-S theory in [7]:

Definition 2.2. Let m be a basic assignment on XN and K,L,M ⊂ N be
disjoint, K,L ̸= ∅. We say that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote it by K⊥⊥L|M [m]), if the
equality

m↓K∪L∪M (A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓K∪L(A↓K∪L)

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M ◃▹ A↓L∪M , and m(A) = 0
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otherwise. If M = ∅ then we say that groups of variables XK and XL are
independent with respect to m (in symbol K⊥⊥L[m]).

Above that, it has been shown in [8] that the above defined conditional
independence satisfies semigraphoid properties and that there is a link between
operator of composition and conditional independence:

Theorem 2.3. Let m be a joint basic assignment on XM , K,L ⊆ M . Then
(K \ L)⊥⊥(L \ K)|(K ∩ L)[m] iff m↓K∪L(A) = (m↓K ◃ m↓L)(A) for any A ⊆
XK∪L.

This theorem justifies the usage of the operator of composition when factor-
izing an evidence.

3 Implementation

To evaluate various hypotheses and support accelerate further theoretical re-
search, it is necessary to create an experimental tool for calculations with com-
positional models in the framework of D-S theory. In this section we would like
to describe several problems when attempting to implement such a tool. The
tool itself is developed as an extension package for R-Project2 and it is avail-
able at http://dar1.utia.cas.cz/mudim altogether with another tool supporting
compositional models in the probability framework.

During our survey of existing implementation of D-S theory we found out
that there is no successful universal tool supporting theoretical research. The
majority of existing implementations is usually single purpose and base on re-
stricted assumptions. One can find not very up-to-date, but exhausted overview
of applications of D-S theory in [14].

The key problem of the implementation is the representation of belief struc-
tures. Restrict ourselves to finite sets. For a finite set P of possible outcomes
(P ⊆ XN ) with cardinality |P |, there are at most 2|P | unique basic probability
assignments. We assume that rarely is a full set of 2|P | unique bpa used in prac-
tice. It corresponds to the limited sources of information. Within the research
literature there exists four common subclasses of bpa for finite sets [9]:

1. The trivial case of total ignorance where m(P ) = 1 and m(A) = 0 iff
A ̸= P . This is highlighted as a more accurate representation of total
ignorance when compare to traditional probability theory, which must
apply Laplace’s principle of indifference in these circumstances.

2. Every assignment is made to a singleton of the set P . This corresponds
to a traditional probability measure on the set P .

2R is a free software environment for statistical computing and graphics. It compiles and
runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please visit
http://www.r-project.org/
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3. Every assignment is made to a nested set. In other words, for every two
sets A and B such that m(A) > 0 and m(B) > 0, then A ⊂ B or B ⊂ A.
This arrangement of is known as possibility theory.

4. Every assignment can be made to an arbitrary set.

In our case we focus on the most general case - the last one. However, we
step aside the fact that involved variables can be either contiguous (discrete or
continuous), or categorical. Each of these data types requires a special repre-
sentation in a computer memory. In a survey of real-world application of D-S
theory to infinite sets [16] it has been published that the contiguous frame of el-
ements assigns basic probability statements to the closed intervals [xia , xib ] as a
rule. Thus, in case of contiguous variables, we will store the interval boundaries.
See the overview of various data types in Table 1.

data type example implementation
continuous finite data age - integer interval boundaries
cont. infinite data sensor output - real number interval boundaries
categorical data sex {male, female} set of elements

Table 1: Implementation of various variable types

3.0.3 Problems

Let A ⊆ XK , B ⊆ XL, bpa m on XK , and S set of focal elements of m. The
key problem of the implementation itself is the fact that we have to store every
focal element A ∈ S of m and pair it with the value m(A). This does not sound
very difficult unless we realize that S is a set of sets of vectors and that every set
of vectors A ∈ S is of various cardinality. The implementation of data structure
will will have an enormous impact on overall system performance.

The most basic operation which will be instantly used is the checking whether
a set A is a focal element, i.e. whether A ∈ S. It is logical to assume that if the
data structure will be optimized with respect to this operation, then the system
performance allows to add additional functionalities like operator of composition
etc.

There are multiple ways of implementing set (and map) functionality, that
is:

• ordered (e.g. tree-based) approaches, and

• unordered (e.g. hash-based) approaches

Here we propose the unordered (hash-based) approach, which naturally builds
on top of the value-indexed array technique. The problem here is that we have
set of sets of vectors, which significantly complicates the implementation of
respective hash function.
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However, in this attempt, we simply store the evidence in multidimensional
arrays (tables) of vectors and we implement the search of a set in a set of sets
simply as a full table scan - i.e. the algorithm gradually passes through all
elements of S and compares them with set A. Such a comparison is described
in Algorithm 1. A,B are two sets of possible outputs. Note that we employ
the definition A = B ⇔ A ⊆ B&B ⊆ A. Then, in case of checking e.g. A ⊆ B
(Algorithm 2) we simply check whether ∃b ∈ B such that a = b for all a ∈ A.
In the worst case scenario, the complexity is 2 · |A| · |B| of vector comparisons.
The improvement of this will have an enormous impact on the efficiency of the
tool. Our idea is either implement a specific hash function, or to use embedded
relational database [17] with optimized index-based search algorithms.

Algorithm 1 MySetEqual(A,B ⊆ XK): boolean

1: if MySubset(A,B) and MySubset(B,A) then
2: return TRUE;
3: else
4: return FALSE;
5: end if

Algorithm 2 MySubset(A,SubA ⊆ XK): boolean

1: found: flag if the corresponding element is found in the other set
2: for i = 1 to |SubA| do
3: found=FALSE;
4: for j = 1 to |A| do
5: if SubA[i] == A[j] then
6: found=TRUE; {SubA[i] ∈ A}
7: break; {additional search is useless}
8: end if
9: end for

10: if not found then
11: return FALSE; {SubA[i] ̸∈ A ⇒ SubA ̸⊆ A}
12: end if
13: end for
14: return TRUE;

The other operations that have to be considered when designing a data
structure are:

• marginalization A↓M = {y ∈ XM |∃x ∈ A : y↓M = x}

• join operation A ◃▹ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}

Using above defined functions one can implement the operation of compo-
sition specified in Definition 2.1. See Algorithm 3 for the pseudo-code of the
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implementation. Here two auxiliary boolean flags are employed - found and
marginalComputed. The first one decides between cases a) and b) of Definition

2.1. The second one highlights whether the respective marginal m↓K∩L
2 (C↓K∩L)

from Definition 2.1 has been already computed or not.
The careful reader notices that the loop on lines 18-22 of the previous algo-

rithm may be performed for the same set C↓K∩L several times. This could be
easily improved. Let us define an auxiliary vector m2marginal to store com-
puted marginal of m2 and index it in the same way as m2. Then it is enough
to use the value m2marginal[k] on line 20 if k < l and break respective cycle
(lines 18-22).

Conclusion

Recently, it has been published that some of the ideas for representation of
multidimensional distributions in probability theory can be transferred into
Dempster-Shafer theory of Evidence [7], [8]. Namely, they showed that mul-
tidimensional basic assignments can be rather efficiently represented in a form
of so-called compositional models. However, only an application of the theory
can show which parts still need to be improved. Our goal is to develop not
only an interesting theory but also an efficient tool based on these theoretical
results. In other words, we intend to create a software tool which could be used
for experiments and additional theoretical research.

In this paper we have described our problems when implementing compo-
sitional models in the framework of Dempster-Shafer theory of Evidence. The
tool is implemented as an extension package for R-Project and one can find
it, altogether with another tool supporting compositional models in probability
framework, at http://dar1.utia.cas.cz/mudim. In this paper we described our
first steps and basic problems which we faced during implementation.

The paper contains just a preliminary ideas and gives answers only to very
simple questions. So there are many more that remain to be answered. For
example:

• Does it exist an efficient representation of sets of vectors?

• How does an effective hash function for a set of sets of vectors look like?

• Can be an embedded SQL database used for representation of focal ele-
ments?

• Let X2 = {a2, ā2}. Is it reasonable to combine two elements (a1, a2),
(a1, ā2) into (a1,X2) and store the information in this way?
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Algorithm 3 ◃ operation of composition: m3 = m1 ◃m2

1: input S1: set of focal elements of m1, S1 ⊆ P(XK)
2: input m1: set of basic probability assignments m1[i] = m1(S1[i])
3: input S2: set of focal elements of m2, S2 ⊆ P(XL)
4: input m2: set of basic probability assignments m2[i] = m2(S2[i])
5: output S3: set of focal elements of m3 = m1 ◃m2, S3 ⊆ P(XK∪L)
6: output m3: set of basic probability assignments m3 = m1 ◃m2

7: l = 1;
8: S3 = ∅;
9: m3 = ∅;

10: for i = 1 to |S1| do
11: marginalComputed = FALSE;
12: found = FALSE;
13: marginalValue = 0;
14: for j = 1 to |S2| do
15: if MySetEqual((S1[i])

↓K∩L, (S2[i])
↓K∩L) then

16: found = TRUE; {i.e. m2((S2[i])
↓K∩L) > 0}

17: if not marginalComputed then
18: for k = 1 to |S2| do
19: if MySetEqual(S2[k], S2[j]) then
20: marginalValue = marginalValue + m2[k];
21: end if
22: end for
23: marginalComputed = TRUE;
24: end if
25: S3[l] = S1[i] ◃▹ S2[j]; {case a of the Definition 2.1}
26: m3[l] = (m1[i] ·m2[j])/marginalValue;
27: l = l + 1;
28: end if
29: end for
30: if not found then
31: S3[l] = S1[i]×XL\K ; {case b of the Definition 2.1}
32: m3[l] = m1[i];
33: l = l + 1;
34: end if
35: end for
36: return m3, S3;
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