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Probabilistic Compositional Models: solution of

an equivalence problem

Ing. Václav Kratochv́ıl

Czech Technical University in Prague, Prague, September 2011

Supervisor: Prof. Radim Jiroušek DrSc.

Compositional model theory (originally developed by Radim Jiroušek) represents
an alternative approach to probabilistic models, mainly graphical ones. A compo-
sitional model may be defined as a multidimensional distribution assembled from
a sequence of low-dimensional unconditional distributions (the so-called generat-
ing sequence), with help from the operator of composition. The main advantage
lies in the fact that those low-dimensional distributions may be easily stored in
computer memory – the size of a joint probability distribution grows exponen-
tially with the number of variables of interest. Fragmenting the multidimensional
distribution into a generating sequence brings forth several complications. While
a model is put together, a system of (un)conditional independencies is simul-
taneously introduced by the structure of the generating sequence. This system
of independencies - the so-called induced independence model – is valid for any
compositional model defined by a generating sequence with this structure.

This text should familiarize the reader with new results in this theory, namely
with complete solution of the equivalence problem. The equivalence problem is
the problem of recognizing whether two given structures over the same set of
variables induce the same independence model. In this case, we present three
different simple rules to recognize that two structures are equivalent. We also
present three elementary operations – IE operations – on structures such that
we can easily convert one structure into an equivalent one in terms of these
operations. Moreover, we show that one can generate all structures equivalent to
a given one using these operations, and the impact of IE operations on generating
sequences is explored.

Using IE operations and our knowledge of equivalence problem solution, we
were able to examine the problem of conditioning a probability distribution rep-
resented by a compositional model, as well as a connected problem of generating
sequence flexibility, from a different perspective. A partial solution of this prob-
lem is published.
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Chapter 1

Introduction

The ability to represent and process multidimensional probability distributions
is necessary for application of probabilistic methods in Artificial Intelligence and
computer-aided reasoning. Among the most popular approaches nowadays are
the methods based on Graphical Markov Models, e.g., Bayesian Networks. An
alternative approach to Graphical Markov Models is represented by the so-called
compositional models, which seem to be more efficient than Bayesian networks
(more efficient in computations, etc.). Nevertheless, many substantial problems
remain to be solved. One of them, the so-called equivalence problem, is a primary
focus of this text.

Artificial Inteligence

The interest in computer-aided reasoning within computer science dates back to
the very early days of Artificial Inteligence (AI), when much work had been ini-
tiated for developing computer programs to solve problems that require a high
degree of intelligence. However, aside from computer science, the intellectual
roots of AI and the concept of intelligent machines may be found even in Greek
mythology. Intelligent artifacts appear in literature published since that time,
along with real mechanical devices actually demonstrating some degree of intelli-
gence. Some authors of texts about AI history like [6],[7], or [58] mention clocks,
the first modern measuring machines, as well as mechanical animals and other
toys created by clockmakers. For example, see DaVinchi’s walking lion (1515)
on youtube.com – [61]. Another, much older, example of AI can be found in
Aristotle’s syllogistic logic – the first formal deductive reasoning system. In the
Middle Ages, there were rumors of secret mystical or alchemical means of placing
mind into matter, such as Prague’s famous Rabbi Judah Loew’s Golem. By the
19th century, ideas about artificial men and thinking machines were developed
in fiction, as in Mary Shelley’s Frankenstein or Karel Čapek’s R.U.R. (Rossum’s
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2 CHAPTER 1. INTRODUCTION

Universal Robots). AI has continued to be an important element of science fiction
into the present. Among other things, let us also mention the legendary three laws
of robotics published by Isaac Asimov in 1950.

The seeds of modern AI were planted by classical philosophers who attempted
to subscribe the process of human thinking as the mechanical manipulation of
symbols. This work culminated in the invention of the programmable digital
computer in the 1940s, a machine based on the abstract essence of mathematical
reasoning. Since then, AI has been inherently tied to computer science.

In 1956, at Dartmouth Conference, the term ”Artificial Intelligence” was
coined by John McCarthy, following by an influential proposal for building au-
tomated reasoning systems. This proposal, depicted in Figure 1.1, calls for a
system with two components: a knowledge base, which encodes what we know
about the world, and a reasoner (inference engine), which acts on the knowledge
base to answer queries of interest. For example, the knowledge base may encode
what we know about the theory of sets in mathematics, and the reasoner may be
used to prove various theorems in this domain.

Knowledge Base Inference Engine Conclusions

Observations

Figure 1.1: A reasoning system in which the knowledge base is separated
from the reasoning process. The knowledge base is often called
a model, giving rise to the term model-based reasoning

McCarthy’s proposal was actually more specific than what was suggested by
Figure 1.1, as he called for expressing the knowledge base using statements in
suitable logic, and for using logical deduction in realizing the reasoning engine.
This approach proved to be ineffective later, and that is why we state it here in its
general form. While the knowledge base can be domain-specific, changing from
one application to another, the reasoner is quite general and fixed. This aspect
became the basis for a class of reasoning systems known as knowledge-based or
model-based systems. We will also subscribe to this knowledge-based approach
for reasoning, except that our knowledge bases will be compositional models and
our reasoning engine will be based on probability theory.

Expert systems

When computers with large memories became available around 1970, AI re-
searchers started to build applications. This led to the development and de-
ployment of expert systems (introduced by Edward Feigenbaum), the first truly
commercial, successful form of AI software. Expert systems are sometimes la-
beled as knowledge-based systems and they strictly follow the structure designed
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by McCurthy’s proposal, shown in Figure 1.1. The expert knowledge is stored
in the form of if/then type statements (rules) – in a rulebase. The principal dis-
tinction between expert systems and traditional problem-solving programs is the
way in which the problem-related expertise is coded. In traditional applications,
problem-related expertise is encoded in both program and data structures. In
the expert system approach, the problem expertise is encoded mostly in data
structures.

In an example related to tax advice, the traditional approach has data struc-
tures that describe the taxpayer and tax tables, and a program that contains
rules (encoding expert knowledge) that relate information about the taxpayer
to tax table choices. In contrast, using the expert system approach, the latter
information is also encoded in data structures. The collective data structures
are called the knowledge base. This approach has a benefit in the form of simple
extending/altering rules. More about expert systems can be found in previously
published literature, such as in [20]. The typical applications are clinical decision
support systems, troubleshooting, or computer games. An example and good
demonstration of limitations of an expert system is the Windows operating sys-
tem troubleshooting software embedded in the Windows XP operating system.
It is designed to provide solutions, advice, and suggestions to common errors
encountered while using this operating system.

Qualification problem

Yet McCarthy’s proposal is very elegant, and as the approach was being applied
to more application areas, a key difficulty called for an alternative proposal. In
particular, it was observed that although deductive logic is a natural framework
for representing and reasoning about facts, it was not capable of dealing with
assumptions that tend to be prevalent. This problem is known as the qualifica-
tion problem and it was stated formally by McCarthy in the late 1970s. Let us
illustrate this difficulty on the example originally published in [11]:

Consider the following statement:

Birds fly.

In this case, the deductive logic would be able to obtain the expected conclusion
when it sees a bird. However, it would meet with an inconsistency if it encounters
a bird that cannot fly. On the other hand, if we write

If a bird is normal, it flies,

deductive logic will not be able to reach the expected conclusion upon seeing a
bird, as it would not know whether the bird is normal or not – contrary to what
humans will do. Note that this is the consequence of monotonicity of deductive
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logic. In fact, deductive logic is monotonic in the sense that once we deduce
something from a knowledge base (the bird flies), we can never invalidate the
deduction by acquiring more knowledge (the bird has a broken wing). Intuitively,
monotonicity indicates that learning a new piece of knowledge cannot reduce the
set of what is known. This is however in conflict with how the human mind works.

Non-monotonic logics

This, together with another of McCarthy’s influential proposals [38], which called
for equipping logic with an ability to jump to certain conclusions, led to the rise
of a new generation of logics, the so called non-monotonic logics, in the 1980s.
These logics are equipped with mechanisms for managing assumptions, criterion
for deciding which assumptions to assert and retract, and when to do so.

During studies of non-monotonic logic, several different problems have been
addressed: reasoning by default (consequences may be derived only because of
lack of evidence to the contrary), abductive reasoning (consequences are only
deduced as most likely explanations) and some important approaches to reasoning
about knowledge (the ignorance of a consequence must be retracted when the
consequence becomes known), and similarly, belief revision. Regarding the scope
of this text, note that belief revision [16] is the process of changing beliefs to
accommodate a new belief that might be inconsistent with the old ones. On the
assumption that the new belief is correct, some of the old ones have to be retracted
in order to maintain consistency. The belief revision approach is an alternative
to the so-called paraconsistent logics, which tolerate inconsistency rather than
attempting to remove it.

Degree of belief

The discovery of the qualification problem, and the associated monotonicity prob-
lem of deductive logic, brought new evidence for alternative probabilistic approach
to AI and gave numerical methods a second chance in AI. Among the most in-
fluential names in this trend are Lauritzen, Pearl, or Shachter. This alternative
direction can be viewed as postulating the existence of a more fundamental no-
tion, sometimes called a degree of belief, which, according to some treatments,
can alleviate the need for assumptions altogether and, according to others, can
be used as a basis for deciding which assumptions to make in the first place.

A degree of belief is a number that one assigns to a proposition in lieu of
having to declare it as a fact (as in deductive logic) or an assumption (as in non-
monotonic logic). For example, instead of assuming that a bird is normal unless
observed otherwise – which leads us to tenuously believe that it also flies – we
assign a degree of belief to the bird’s normality, say, 99%, and then use this to
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derive a corresponding degree of belief in the bird’s ability to fly.
Degrees of belief address the monotonicity problem by being revisable upward

or downward, depending on what else is known. For example we may initially
believe that a bird is normal with a belief of 99%, only to revise this to, say, 20%
after learning that its wing is broken. One can argue that assigning a degree
of belief is more committing than making an assumption. On the other hand,
one can also argue to the contrary that working with degrees of belief is far
less committing as they do not imply any particular truth of the underlying
propositions [42].

The usage of numerical degrees of belief was proposed well before the qual-
ification problem appeared. However, this approach was not warmly welcomed
at first. AI hasits roots in symbolic logic, and for many years AI experts showed
little interest in probability. There were several basic objections:

• Do humans use such degrees of belief in their own reasoning? (In those
times, the correspondence with human cognition was highly valued)

• The availability of degrees of belief – where do the numbers come from?

• Robustness – what happens if I change this .90 to .95?

• Application scale – the size of probability distributions grows exponentially
with the number of involved variables.

A number of different proposals have been published for interpreting degrees
of belief including, for example, the notion of possibility on which fuzzy logic
is based. Another very natural way (at least nowadays) is to interpret them as
probabilities and manipulate them according to the laws of probability.

History of probability

The word probable comes to modern languages from Latin probabilis, and is gener-
ally applied to an opinion to mean plausible or generally approved. Two different
aspects of probability can be considered:

• Likelihood of hypotheses given the evidence for them.

• Behavior of stochastic processes such as throwing coins.

The study of the former is historically older, and one can find it even in ancient
law of evidence – developed for grading degrees of proof, presumptions and half-
proof to deal with the uncertainties of evidence in court.

On the other hand, the mathematical methods of probability arose later – in
the 1650s. In those days in France, gambling was popular and fashionable, not
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even restricted by law. As games became more complicated, and the stakes si-
multaneously became larger, a need arose for mathematical methods to compute
chances. According to [44], a well-known gambler, Chevalier De Mere [15], con-
sulted Blaise Pascal in Paris with questions about some games of chance. (He
suffered severe financial losses for assessing incorrectly his chances of winning
in certain games of dice.) This forced Pascal to begin correspondence with his
friend Pierre Fermat about such problems. This correspondence between Pas-
cal and Fermat represents the origin of the mathematical study of probability.
The method they developed is now called the classical approach to computing
probabilities. The method is as follows:

Suppose a game has n equally likely outcomes, of which m outcomes
correspond to winning. Then the probability of winning is m/n.

Note that this classical approach requires a game to be split into equally likely
outcomes, which is not always possible to guarantee. It may even be unclear
whether all possibilities are equally likely. Later, throughout the 18th century,
the application of probability moved from games of chance to scientific problems
like theory of insurance – the so-called life tables. Recall the book by Pierre-
Simon Laplace from 1812 – Theorie Analytique des Probabilities – in which a
mathematical theory of probability was presented with an emphasis on its scien-
tific application. By 1850, many mathematicians found the classical method to be
unrealistic for general use and were attempting to redefine probability in terms of
the frequency method. This method consists of repeating a game a large number
of times under the same conditions. The probability of winning is then approxi-
mately equal to the proportion of wins in the repeats. Note that this frequency
method was used even by Pascal and Fermat to verify results obtained by the clas-
sical method. Moreover, James Bernoulli proved that the frequency method and
the classical method are mutually consistent in his book Ars Conjectandi in 1713.
In 1763, an influential theorem of Thomas Bayes for calculating inverse proba-
bilities was posthumously published. It was later generalized by Pierre-Simon
Laplace (1749-1827) to approach problems in medical statistics, reliability, and
jurisprudence.

The power of probabilistic methods in dealing with uncertainty was shown by
Gauss’s determination of the orbit of Ceres (1801) [55]. However, the first rig-
orous approach to probability was developed by Andrey Kolmogorov in his 1933
monograph Grundbegriffe der Wahrscheinlichkeitsrechnun. He stated three fun-
damental axioms and built up probability from them in a way comparable with
Euclid’s treatment of geometry. Let us also mention Kolmogorov’s contemporary,
B. de Finetti [9], who rejected Kolmogorov’s axiomatic approach and introduced
a subjectivist interpretation to give particular insights as to the meaning of prob-
ability.
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Probability reasoning

Considering the probability approach to AI, a group of researchers formed around
the UAI conference (organized regularly every year), for the first time in Los An-
geles, California in 1985 . Some of the most influential work from this group came
from Judea Pearl – a key proponent of probabilistic reasoning. He was able not
only to show that many problems and paradoxes in symbolic formalisms (such as
monotonicity) simply do not surface in the probabilistic approach (see a summary
in [42], Chapter 10), but he also created a representational and computational
system that could compete with symbolic systems that were in commercial use
at the time. This system is known as a Bayesian network. A very good summary
of Pearl’s work may be found in his influential book, Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference published in 1988 [42]. On
the computational side of Bayesian networks, we should mention jointree algo-
rithm by Lauritzen and Spiegelhalter from 1988 [36]. Other notable works have
been contributed by Czech researchers Albert Perez, Petr Hájek – [17], Tomáš
Havránek - [17],[18], and Radim Jiroušek – [17, 21, 22, 24, 25, 27, 28]. One
may say that the latter group of researchers did the parallel but independent
research of probability reasoning using both probabilistic and logical/algebraic
approaches.

Graphical models

In the 1970s and early 1980s, the probabilistic and especially decision-theoretic
models were largely out of favor within AI (certainly within the dominant expert-
systems paradigms of the day), due in part to

”a perception that decision-theoretic approaches were hopelessly in-
tractable and were inadequate for expressing the rich structure of
human knowledge.” (Horovitz et al. 1988)

Even as (rule based) expert systems fell out of favor, the logicist paradigm
continued to dominate AI through the early 1990s. However, the introduction of
graphical models to AI in the early 1980s, especially Bayesian networks [42] and
influence diagrams [5] by Howard and Matheson [19], precipitated an enormous
change. Influence diagrams demonstrated that the language of decision theory
was not only rich enough to capture the intricacies of complex decision prob-
lems faced throughout AI but also made possible a suitable decomposition of a
problem into the representational levels. Developments in sophisticated inference
methods for Bayesian networks and solution techniques for influence diagrams
also demonstrated the computational power of these approaches.
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Many reasoning tasks arising in uncertainty reasoning in AI can be consider-
ably simplified if a suitable concept of relevance or irrelevance of symptoms or
variables is taken into consideration. The conditional irrelevance in probabilistic
reasoning is modeled by means of the concept of probabilistic conditional inde-
pendence (CI) [42]. Since every CI-statement can be interpreted as a certain
qualitative relationship among involved variables, the dimensionality of the prob-
lem can be reduced and a more effective way of storing the knowledge base may
be found. Note that the concept of CI has also been introduced and studied in
non-probabilistic calculi for dealing with uncertainty in AI. We can also mention
much earlier work by A.A. Markov, who used the notion of conditional indepen-
dence around 1900 to formulate simple multivariate models, now called Markov
chains. A Markov chain for n categorical variables can be represented by undi-
rected graph (UG) – a sequence of nodes i1, i2, . . . , in just where each consecutive
pair is connected by an edge.

Conditional Independence structures were at first described by means of graphs
in literature. The central idea is that each variable is represented by a node in a
graph. Any pair of nodes may be joined by an edge. For most types of graphs, a
missing edge represents some form of independency between the pair of variables.
Because the independency may be either marginal or conditional on some or all
of the other variables, a variety of types of graphs are needed. Graphs whose
nodes correspond to random variables have been a traditional tool for describing
structures of multidimensional probability distributions.

Graphical models were first developed by Darroch [10] and Wermuth [37] as
special subclasses of log-linear models [1] for contingency tables, and of multi-
variate Gaussian distributions which can be interpreted in terms of conditional
independencies and represented by UGs. Let us mention Tomáš Havránek [18],
a Czech scientist who studied ways to determine which log-linear models are best
supported by the data. We must also mention his influential collaboration with
David Edwards [13] and [14] where they present efficient model-search procedures
for some classes of hierarchical log-linear models. Their approach was recently
reused in the work of Vladislav Bı́na [2] in the area of compositional models.

Two types stand out: UGs and directed graphs without directed cycles that
are usually called acyclic directed graphs (DAG) (probabilistic influence diagrams
[45] [47] or Bayesian network [42]). The early usage of DAGs dates back to the
1930s, when geneticist Sewall Wright [60] introduced and used path diagrams
for recursive linear relations. Nevertheless, Wright and his successors did not
thoroughly analyze their directed graphs in terms of conditional independence.

In addition to DAGs and UGs, various types of hybrid graphs were used. For
example, chain graphs were introduced by Lauritzen and Wermuth in the mid-
1980s [37]. Comparison of all the above-mentioned approaches as well as several
others can be found in [50]. Nevertheless, the graphical approach cannot describe
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all possible probabilistic CI-structures. A natural way to remove this disadvan-
tage is to describe this structure by means of so-called independency models, that
is, lists of CI-statements. But such an approach would be unnecessarily wide:
owing to the above- mentioned formal properties of CI [12], many independency
models cannot be models of probabilistic CI-structures. Therefore, Pearl and
Paz [41] introduced the concept of semigraphoid (resp. graphoid) as an indepen-
dency model closed under four (or five) concrete inference rules expressing the
above-mentioned properties of CI. Note that the graphoid axioms were initially
identified in [12] and [48] and then rediscovered and named by Pearl and Paz.
The graphoid axioms are designed in a way that every model of a probabilis-
tic CI-structure is a semigraphoid as well. Pearl [42] conjectured the converse
statement:

”Every semigraphoid is a CI-model” (or ”every graphoid is a CI model
induced by a strictly positive probability distribution” [41]).

This conjecture was later refuted by Milan Studený [49].

Separation criteria

We interpret a UG by saying that two families of variables U and V are inde-
pendent given a third family Z whenever all paths between U and V go through
Z. We interpret a DAG by saying that each variable u is independent, given its
parents (variables with arrows to u) of its nondescendants (variables to which
there is no directed path from u).

Graphical models are attractive for several reasons. Most importantly, per-
haps, they facilitate the construction of probability models. The conditional in-
dependence assumptions represented by a graph are equivalent to the assumption
that the joint probability density for the variables in the graph can be decomposed
into factors involving only neighboring variables (cliques in UGs, each variable
and its parents in DAGs), and thus the graph represents the first step in model
construction. Graphical representation also serves to facilitate computations, es-
pecially updating after observation of some of the variables. In addition, powerful
separation criterion permits one to read all CI statements induced by the model
directly from the graph. Logically, we use the notion of graph separation to de-
rive a graphical rule (separation criterion) for inferring conditional independence,
especially in the case of undirected graphs.

A first path criterion for directed graphs was given by J. Pearl, who called
it d-separation (for separation in directed graphs). Another equivalent criterion
(the so-called moralization criterion) is due to S.L. Lauritzen.

D-separation is direct in the sense that it defines when a trail connecting
two nodes is d-separated by a set of nodes Z and corresponding variables U are
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conditionally independent of V given Z if every trail from U to V is d-separated
by Z. On the contrary, Lauritzen’s moralization criterion is indirect in the sense
that for every disjoint triple U, V, Z one takes a special induced subgraph that is
converted into its moral graph H . Since the moral graph is undirected, one uses
the classic separation criterion for UGs.

Equivalence problem

While noting the advantages of the graphical representation of CI, we should also
note that the representation is imperfect. On the one hand, not all sets of CI
relations that might be satisfied by a probability distribution can be represented
by a graphical model. On the other hand, two or more graphical models often
represent the same CI relations. When graphical models do represent the same
independence relations, we say they are independence equivalent (sometimes it is
called Markov equivalence.) Figure 1.2 gives an example.

U Z V U Z V

U Z V U Z V

Figure 1.2: These four graphs encode the same CI relation: U and V are
independent given Z.

The so-called equivalence problem is how to recognize whether two given
graphs are independence equivalent. It is also of special importance to have
a simple rule that allows us to recognize this equivalence (solved in [56]), and an
easy way to get from one graph to another in terms of some elementary opera-
tions on graphs (solved in [8]). Another very important aspect is the ability to
generate all graphs equivalent to a given one.

A classic graphical characterization of equivalent graphs [56] by Verma and
Pearl states that they are equivalent iff they have the same adjacencies and im-
moralities, which are special induced subgraphs. Representing a CI structure by
any of the DAGs defining it leads to a non-unique description, causing later iden-
tification problems. It became apparent that each independence equivalence class
can be represented by a unique chain graph, called an essential graph. This repre-
sentation might be used to facilitate selection among models, where enumeration
of essential graphs [29] and hierarchical clustering might also be useful.

Non-graphical/algebraic approach

The idea of an algebraic approach, introduced in [52], is to use an algebraic
representative called a standard imset, which is, at the same time, a unique CI
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structure representative. It is a vector whose components are integers indexed
by subsets of the set of variables (= nodes). The most important point is that
from a geometric point of view, the set of standard imsets is the set of vertices
(i.e., extremal points) of a certain polytope. Then the score-and-search method
for learning a CI structure from data can be re-formulated as a classic linear
programming problem.

Recently, in [54], they propose an even simpler algebraic representative called
the characteristic imset It is a 0-1 vector obtained from the standard imset by
an affine transformation.

State of the Art

The interest in computer-aided reasoning within computer science dates back
to the very early days of Artificial Inteligence (AI), when much work had been
initiated for developing computer programs to solve problems that require a high
degree of intelligence.

The seeds of modern AI were planted by classical philosophers who attempted
to subscribe the process of human thinking as the mechanical manipulation of
symbols. This work culminated in the invention of the programmable digital
computer in the 1940s, a machine based on the abstract essence of mathematical
reasoning. Since then, AI has been inherently tied to computer science.

The ability to represent and process multidimensional probability distribu-
tions is necessary for application of probabilistic methods in Artificial Intelligence
and computer-aided reasoning. Among the most popular approaches nowadays
are the methods based on Graphical Markov Models, e.g., Bayesian Networks. An
alternative approach to Graphical Markov Models is represented by the so-called
compositional models, which seem to be more efficient than Bayesian networks
(more efficient in computations, etc.). Nevertheless, many substantial problems
remain to be solved. One of them, the so-called equivalence problem, is a primary
focus of this text.

In 1956, at Dartmouth Conference, the term ”Artificial Intelligence” was
coined by John McCarthy, following by an influential proposal for building au-
tomated reasoning systems. This proposal, depicted in Figure 1.1, calls for a
system with two components: a knowledge base, which encodes what we know
about the world, and a reasoner (inference engine), which acts on the knowledge
base to answer queries of interest.

While the knowledge base can be domain-specific, changing from one applica-
tion to another, the reasoner is quite general and fixed. This aspect became the
basis for a class of reasoning systems known as knowledge-based or model-based
systems. We will also subscribe to this knowledge-based approach for reasoning,
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except that our knowledge bases will be compositional models and our reasoning
engine will be based on probability theory.

Many reasoning tasks arising in uncertainty reasoning in AI can be consider-
ably simplified if a suitable concept of relevance or irrelevance of symptoms or
variables is taken into consideration. The conditional irrelevance in probabilistic
reasoning is modeled by means of the concept of probabilistic conditional inde-
pendence (CI) [42]. Since every CI-statement can be interpreted as a certain
qualitative relationship among involved variables, the dimensionality of the prob-
lem can be reduced and a more effective way of storing the knowledge base may
be found.

While noting the advantages of the graphical representation of CI, we should
also note that the representation is imperfect. On the one hand, not all sets of CI
relations that might be satisfied by a probability distribution can be represented
by a graphical model. On the other hand, two or more graphical models often
represent the same CI relations. When graphical models do represent the same
independence relations, we say they are independence equivalent (sometimes it
is called Markov equivalence.) Figure 1.2 gives an example. The so-called equiv-
alence problem is how to recognize whether two given graphs are independence
equivalent. It is also of special importance to have CHAPTER 1. INTRODUC-
TION 16 U Z V U Z V U Z V U Z V Figure 1.2: These four graphs encode the
same CI relation: U and V are independent given Z. a simple rule that allows us
to recognize this equivalence (solved in [56]), and an easy way to get from one
graph to another in terms of some elementary operations on graphs (solved in
[8]). Another very important aspect is the ability to generate all graphs equiv-
alent to a given one. A classic graphical characterization of equivalent graphs
[56] by Verma and Pearl states that they are equivalent iff they have the same
adjacencies and immoralities, which are special induced subgraphs. Representing
a CI structure by any of the DAGs defining it leads to a non-unique description,
causing later identification problems. It became apparent that each independence
equivalence class can be represented by a unique chain graph, called an essential
graph. This representation might be used to facilitate selection among models,
where enumeration of essential graphs [29] and hierarchical clustering might also
be useful.

Compositional models are probabilistic models presenting an alternative to
well-known Bayesian networks. But unlike the graphical models, the composi-
tional models represent a purely algebraic approach based on directly assembling
low-dimensional probability distributions with the aid of the operator of compo-
sition, without the necessity to employ graphs. Yet graphs (hypergraphs) can be
used for the sake of visualization.

It can be shown that both approaches – Bayesian networks and compositional
models – are equivalent in the sense that they can both represent the same class
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of probability distributions [23], but the compositional models appear to be less
computationally demanding for the frequent task of computing marginal proba-
bility distributions [3]. Another advantage may be that, by redefining the oper-
ator of composition, three different frameworks for uncertainty description may
be considered: probability and possibility theories, and Dempster-Shafer theory
of belief functions. Special operators of composition are introduced within all
three frameworks in [26]. This fact enables us, among other things, to define
the concept of conditional independence meeting all the semigraphoid axioms.
(It became apparent that while factorization and conditional independence coin-
cide for probability and possibility theories, they differ from each other for belief
functions.)

The basic properties of compositional models are described well in [24] and
in the recent review paper [27]. But the approaches for understanding how CI is
coded in a model structure are rather undeveloped. Similar to other probabilistic
models, the structure of the model induces a system of CI relations. Moreover,
two different structures may induce the same system. The complete solution of
equivalence problems in the case of compositional model structures has not yet
been published.

Generally, the solution can be inspired by the approaches used in other prob-
ability models, especially in DAGs mentioned above. Here we employ the fact
that compositional models are equivalent with Bayesian networks in such a way
that one can convert a compositional model into equivalent Bayesian network and
vice versa [24].

In case of Bayesian networks and DAGs, the solution of an equivalence prob-
lem is usually split up into two main branches: direct and indirect characteri-
zation of independence equivalence. While the direct characterization contains
invariable properties of independence equivalent structures, the indirect one cov-
ers elementary operations preserving the induced independence model. We use a
similar partition in this text as well.

Goals of the Thesis

This thesis elaborates on two major topics in detail, namely, solution of the equiv-
alence problem in theory of compositional models, and its usage in other areas
like conditioning probability distributions represented by a compositional model.
Concerning the former, we will focus on properties that are invariable for the
class of independence equivalent structures as well as on elementary operations
preserving the induced independence model of those structures. We will demon-
strate that both of these approaches – partial solutions of an equivalence problem
– may be connected by stating them as necessary and sufficient conditions for
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independence equivalence of two arbitrary structures. Next, we will derive ad-
ditional conditions guaranteeing that a probability distribution represented by a
compositional model is invariant with respect to the operations mentioned above.

The latter topic was motivated by an open problem posed by Radim Jiroušek
in [24], i.e., generating sequence flexibility. Note that in the case of conditioning
of a probability distribution represented by a compositional model, the problem
is converted to that of respective generating sequence flexibility. The flexibility
problem will be divided into two sub-problems, where the first one will be solved
using the solution knowledge derived in the first part of this text – the equivalence
problem solution. For the second sub-problem we will illustrate its complexity,
using several examples.



Chapter 2

Notation

We introduce basic probability theory notions in this chapter as a tool for rep-
resenting knowledge. Moreover, we present notation and conventions used thor-
oughout the text. We use the following classification of various important state-
ments. Statements taken from literature are labeled as Assertions and they are
stated without proofs. The original statements implied in this work are labeled
as Lemmata, Theorems and Corollaries with the following difference: While a
lemma comprehends an interesting and nontrivial statement, a theorem indicates
a significant/essential statement. Both of them are always proven. In contrast,
a corollary contains some trivial but important consequence of a lemma (or a
combination of more than one) that is used later.

In addition, further explanatory text is provided within examples and remarks.

2.1 Basic notions of probability theory

In this text, we will deal with a non-empty finite set of finite-valued variables and
the symbol N will denote such a set. The symbols U, V,W, Z will be used for
subsets of N . |U | will denote the number of elements in U , that is, its cardinality.
Symbols u, v,w, x, y,z denote variables as well as singletons {u}, {v}, {w}, {x},
{y}, {z}. Two set inclusion symbols are used thoroughout the paper, namely
⊂ and ⊆. The symbol U ⊆ V (also V ⊇ U) denotes that U is a subset of V
(alternatively V is a superset of U) which involves the situation U = V . However,
strict inclusion is denoted as follows: U ⊂ V or V ⊃ U means that U ⊆ V but
U 6= V . The power set of a non-empty set N is a class of all of its subsets
{U ;U ⊆ N}, denoted by 2N . Each variable u from N is assumed to have a finite
(non-empty) set of values Xu. The set of all combinations of the considered values
will be denoted XN = ×u∈NXu. Analogously for U ⊂ N , XU = ×u∈UXu.

All probability distributions of the considered variables will be denoted by
Greek letters (π, κ, etc. with possible indices); thus for U ⊆ N , we consider a

15
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distribution π(U) which is defined on variables U . Symbol π(U) represents a |U |-
dimensional probability distribution and π(x) a value of probability distribution
π for point x ∈ XU .

Having two distributions π(U) and κ(V ), we say that κ dominates π (in
symbols π ≪ κ) if, for all x ∈ XU∩V ,

κ(x) = 0⇒ π(x) = 0.

2.2 Marginal distribution

For a probability distribution π(U) and V ⊆ U we denote by π(V ) or π↓V the
respective marginal distribution, which can, for all x ∈ XV , be computed as

π↓V (x) =
∑

y∈XU :yV =x

π(y)

where yV denotes the projection of y ∈ XU into XV . For computation of marginal
distributions we need not exclude situations when V = ∅. In accordance with
the formula introduced above, we get π↓∅ = 1. By π(xV ) we denote the value of
marginal probability distribution π(V ) for point xV ∈ XV . That is, the marginal
distributions can be viewed as the projection of the joint distribution onto a
smaller set of variables V .

Example 2.1. Consider a 3-dimensional distribution π(u, v, w) given in Table
2.1. Its marginal distributions π↓{u,v} and π↓{v,w} are shown in Table 2.2

π
u = 0 u = 1

v = 0 v = 1 v = 0 v = 1
w = 0 0.1 0.1 0.2 0.1
w = 1 0 0.1 0 0.1
w = 2 0.2 0 0 0.1

Table 2.1: 3-dimensional distribution

π↓{u,v} u = 0 u = 1
v = 0 0.3 0.2
v = 1 0.2 0.3

π↓{v,w} v = 0 v = 1
w = 0 0.3 0.2
w = 1 0 0.2
w = 2 0.2 0.1

Table 2.2: 2-dimensional marginal distributions
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2.3 Extensions of distribution

Consider U ⊆ V ⊆ N and a probability distribution π(U). By Π(V ) we shall
denote the set of all probability distributions defined for variables V . Π(V )(π)
will denote the system of all extensions of the distribution π to a |V |-dimensional
distribution:

Π(V )(π) =
{

κ ∈ Π(V ) : κ(U) = π(U)
}

.

(Recall that κ(U) is the marginal distribution of κ for variables U .) Having a
system

Ξ = {π1(U1), π2(U2), . . . πn(Un)},

of oligodimensional distributions (U1∪ . . .∪Un ⊂ V ), the symbol Π(V )(Ξ) denotes
the system of all distributions that are extensions of all the distributions from Ξ:

Π(V )(Ξ) =
{

κ ∈ Π(V ) : κ(Ui) = πi(Ui)∀i = 1, . . . , n
}

=

n
⋂

i=1

Π(V )(πi).

Note that the set of extensions Π(V )(Ξ) is either empty or a convex set (nat-
urally, the one-point-set is convex too).

2.4 Consistency

Definition 2.2. We say that distributions π(U) and κ(V ) are consistent if

π↓U∩V = κ↓U∩V .

Remark 2.3. Notice that if U ∩ V = ∅, the distributions π(U) and κ(V ) are
always consistent.

2.5 Conditional distribution

For a distribution π(U) and two disjoint subsets V,W ⊆ U we will often consider
a conditional distribution π(V |W ), which is, for each fixed xW ∈ XW , a |V |-
dimensional probability distribution, for which

π(xV |xW )π(xW ) = π(xV ∪W )

for each x ∈ XV ∪W . It is important to realize that, if π(xW ) = 0 for some combi-
nation(s) of values xW ∈ XW , then π(xV ∪W ) = 0 by the definition of a marginal
distribution and the definition is ambiguous. Nevertheless, the advantage of this
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definition is that the conditional distribution is always defined. Observe that if
V = ∅ then

π(xV |xW ) = 1,

and if W = ∅ then

π(xV |xW ) = π(xV ).

Example 2.4. Since π(w) > 0 for all w = 0, 1, 2 in Table 2.1, the conditional
distributions π(u, v|w), π(u|w), and π(v|w) are uniquely defined by

π(u, v|w) =
π(u, v, w)

π(w)
,

π(u|w) =
π(u, w)

π(w)
,

π(v|w) =
π(v, w)

π(w)

respectively.

2.6 Conditional independence of variables

In this section, we introduce one of the most important notions of this text, the
concept of conditional independence, which generalizes the well-known (uncondi-
tional) independence of variables. For more examples illustrating this notion, the
reader is referred to basic textbooks like [43] or [52]. Here we introduce it along
with its two most important properties.

Definition 2.5. For a probability distribution π(N) and three disjoint subsets
U, V, Z ⊂ N such that U 6= ∅ 6= V , we say that sets of variables U and V are
conditionally independent given Z in π (in symbol U⊥⊥V |Z[π]) if

π↓U∪V ∪Z(x) · π↓Z(x) = π↓U∪Z(x) · π↓V ∪Z(x) (2.6.1)

for all x ∈ XU∪V ∪Z .

Observe that, if Z = ∅, then the conditional independence coincides with the
well-known (unconditional) independence. Recall that the unconditional inde-
pendence of variable sets U and V in π is denoted by U⊥⊥V [π].

Another alternative definition of conditional independence is sometimes used.
We use (2.6.1) to emphasize the symmetry of independence U⊥⊥V |Z[π] in vari-
ables U and V :
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Assertion 2.6. For a probability distribution π(N) and three disjoint subsets
U, V, Z ⊂ N such that U 6= ∅ 6= V , it holds that

U⊥⊥V |Z[π]⇔ ∀x ∈ XU∪V ∪Z : π(xU∪Z) > 0 (π(xV |xZ) = π(xV |xU∪Z)) . (2.6.2)

Note that (2.6.2) is often used to explain the concept of conditional indepen-
dence. It says that conditional probability of variables V given variables Z is the
same as conditional probability of these variables given U ∪ Z. In other words,
if one knows the values of variables Z, the additional knowledge of values of U
does not affect the conditional probability of V .

Assertion 2.7. (Factorization lemma:) Let U, V, Z ⊂ N be disjoint such
that U 6= ∅ 6= V . Then, for any probability distribution π(U ∪ V ∪ Z), it holds
that

U⊥⊥V |Z[π]

if and only if there exists functions

ψ1 : XU∪Z → [0,+∞), ψ2 : XV ∪Z → [0,+∞),

such that for all x ∈ XU∪V ∪Z

π(x) = ψ1(xU∪Z)ψ2(xV ∪Z).

Assertion 2.8. (Block independence lemma:) Let U, V,W, Z ⊂ N be dis-
joint and U 6= ∅, V 6= ∅, W 6= ∅. Then, for any probability distribution
π(U ∪ V ∪W ∪ Z), the following two statements are equivalent

(a) U⊥⊥V ∪W |Z[π],

(b) U⊥⊥W |Z[π] and U⊥⊥V |W ∪ Z[π].

Note that this lemma is a summary of properties of conditional indepen-
dence: while (a) ⇒ (b) is sometimes called decomposition and weak union re-
spectively, the opposite implication (b) ⇒ (a) is usually denoted as contraction.
These properties, combined with the property called symmetry, are known as the
semigraphoid axioms. Symmetry simply states that U⊥⊥V |Z[π] ⇔ V⊥⊥U |Z[π]
logically.
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Chapter 3

Compositional Models

A Bayesian network may be defined as a multidimensional distribution factoriz-
able with respect to a DAG. Alternatively, it may be defined by its graph and
an appropriate system of low-dimensional (oligodimensional) conditional distribu-
tions. Similarly, a compositional model is defined as a multidimensional distribu-
tion assembled from a sequence of oligodimensional unconditional distributions,
with the help of operators of composition. The main advantage of both models lies
in the fact that oligodimensional distributions could easily be stored in computer
memory – the size of a joint probability distribution grows exponentially with
the number of variables of interest. However, computing with a multidimensional
distribution that is split into many pieces may be extremely complicated. The
advantage of compositional models in comparison with Bayesian networks lies
in the fact that compositional models explicitly express some marginals, whose
computation in a Bayesian network may be demanding.

To be able to compose low-dimensional distributions to get a distribution of a
higher dimension, we will introduce an operator of composition. We introduce it
here in the form of a definition along with several of the, from our point of view,
most important properties. They can be found in overview texts of compositional
models, for example [24], or in a recent review paper, such as [27].

3.1 Operator of composition

The keystone of Compositional Models is an operator of composition �. It is
used to compose low-dimensional distributions to get a distribution of a higher
dimension. The composition is described in the following definition.

Definition 3.1. For two arbitrary distributions π(U) and κ(V ) for which π ≪ κ,

21
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their composition is given by the Formula

(π � κ)(x) =
π(xU)κ(xV )

κ(xU∩V )
(3.1.1)

for each x ∈ XU∪V . In a case where π 6≪ κ, the composition remains undefined.
If, for any x ∈ XU∩V , κ(x) = 0, then by dominance π ≪ κ and by definition of a
marginal distribution, there are two zeros in the numerator and we take 0·0

0
= 0

Example 3.2. Let us illustrate Formula (3.1.1) by computing

π(u, v)� π(v, w) =
π(u, v)π(v, w)

π(v)

where the 2-dimensional distributions involved are the marginal distributions from
Example 2.1, Table 2.2. This computation results in a distribution presented in
Table 3.1. One can immediately see that π(u, v, w) 6= π(u, v) � π(v, w). Recall
that the original 3-dimensional distribution corresponding to these marginals can
be found in Table 2.1.

u = 0 u = 1
v = 0 v = 1 v = 0 v = 1

w = 0 0.18 0.08 0.12 0.12
w = 1 0 0.08 0 0.12
w = 2 0.12 0.04 0.08 0.06

Table 3.1: Composed 3-dimensional distribution π(u, v)� π(v,w)

To make it clear from the very beginning, let us stress that this is just a
generalization of the idea of computing the three-dimensional distribution from
two two-dimensional ones introducing the conditional independence

π(u, v)� κ(v, w) =
π(u, v)κ(v, w)

κ(v)
= π(u, v)κ(w|v).

Hence, considering Factorization lemma (Assertion 2.7), application of the op-
erator of composition introduces conditional independence of respective variables.
The exact meaning of this statement can be seen from the following important
assertion.

Assertion 3.3. Let κ(U∪V ) = π1(U)�π2(V ) be defined, and U \V 6= ∅ 6= V \U .
Then

(U \ V )⊥⊥(V \ U)|(U ∩ V )[κ].

One can easily see from the definition of the operator of composition that it
is neither commutative nor associative. However, the commutativity holds under
special conditions:
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u = 0 u = 1
w = 0 0.26 0.24
w = 1 0.08 0.12
w = 2 0.16 0.14

Table 3.2: Marginal distribution (π↓{u,v}
� π↓{v,w})↓{u,w}

Assertion 3.4. Let π ∈ Π(U) and κ ∈ Π(V ). If π and κ are consistent then

π � κ = κ� π.

If either π ≪ κ or κ ≪ π (i.e., π � κ or κ � π is defined respectively) then the
reverse implication also holds true:

π � κ = κ� π ⇒ π and κ are consistent.

The following simple assertion answers the question: What is the result of
composition of two probability distributions?

Assertion 3.5. Let π, κ be probability distributions from Π(U),Π(V ) respectively.
If π ≪ κ (i.e., if π � κ is defined) then π � κ is a probability distribution from
Π(U∪V )(π), i.e., it is a probability distribution and its marginal distribution for
variables U equals π:

(π � κ)(xU ) = π(xU)

for all xU ∈ XU .

In the proofs, we shall often compute a marginal distribution from a distribu-
tion defined as a composition model of two (or more) low-dimensional distribu-
tions. Therefore, it is important to realize that generally for π1(U1), π2(U2) and
V ⊆ U1 ∪ U2

(π1 � π2)
↓V 6= π↓U1∩V

1 � π↓U2∩V
2 . (3.1.2)

To illustrate the situation when equality in Formula (3.1.2) does not hold,
consider π↓{u,v}

� π↓{v,w} from Example 3.2 (see Table 3.1) and its marginal dis-
tribution (π↓{u,v}

� π↓{v,w})↓{u,w}, which is shown in Table 3.2. Examining this
marginal distribution, we see that variables u and w are not independent. There-
fore

(π(u, v)� π(v, w))↓{u,w} 6= (π(u, v))↓u � (π(v, w))↓w

= π(u)� π(w) = π(u)π(v).

The following simple assertion presents a sufficient condition under which the
equality in (3.1.2) holds.

Assertion 3.6. Let U1, U2, V ⊆ N . If U1 ∩ U2 ⊆ V ⊆ U1 ∪ U2, then for any
probability distributions π1(U1) and π2(U2) it holds that

(π1 � π2)
↓V = π↓U1∩V

1 � π↓U2∩V
2 .
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3.2 Generating sequences

In this section we will start considering multidimensional compositional mod-
els, i.e., multidimensional probability distributions assembled from sequences of
oligodimensional distributions using the operator of composition. The result of
the composition (if defined) is a new distribution. We can iteratively repeat the
process of composition to obtain a multidimensional distribution. That is why
such a multidimensional distribution is called a compositional model.

To simplify the following considerations, let us present three important con-
ventions. In this and the following chapters we will consider a system of n oligodi-
mensional distributions π1(U1), π2(U2), . . . , πn(Un). Therefore, whenever distri-
bution πi is used, if not specified otherwise, the distribution will be assumed to
be a distribution from Π(Uk), which means it will be a distribution π(Ui). Thus,
the formula π1 � π2 � . . .� πn, if it is defined, will determine the distribution of
variables U1 ∪ U2 ∪ . . . ∪ Un. Our second convention concerns the fact that the
operator � is neither commutative nor associative. To avoid writing too many
parentheses in the formulas, we will always apply the operator from left to right.
Thus,

π1 � π2 � π3 � . . .� πn = (((π1 � π2)� π3)� . . .� πn)

Therefore, in order to construct such a model it is sufficient to determine a
sequence of oligodimensional distributions π1, π2, . . . , πn – we call it a generating
sequence. Note that there are situations in which the result of the composition
is not defined. That is why, whenever we speak about a generating sequence in
the following, we always assume that the respective compositional model is well
defined. And this is our third convention.

Considering Assertion 3.5 and the fact that we apply the operator of com-
position from left to right, one can easily determine marginal distributions of a
compositional model for variables first appearing in the arguments of the first
distribution in the corresponding generating sequence. Note that this assertion
will be crucial in the following text, particularly in Chapters 8 and 9.

Assertion 3.7. Consider a compositional model π with a generating sequence
π1(U1), π2(U2), . . . , πn(Un) (π = π1 � π2 � . . .� πn). Then, for all i = 1, . . . , n,

π↓U1∪...∪Ui = π1 � . . .� πi.

Among other things, it means that π1 equals a marginal of π1 � π2 � . . .� πn
for variables in arguments of π1, which will mostly be used in subsequent proofs.

3.2.1 Perfect sequences

Not all generating sequences are equally efficient in representing multidimensional
distributions. Among them, so-called perfect sequences hold an important posi-
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tion [28]. From the original definition, one can hardly see the importance of this
class of generating sequences. Instead, for the purpose of this text, let us define
it by another equivalent property which is more suitable for our needs.

Definition 3.8. A sequence of probability distributions π1, π2, . . . , πn is perfect
iff π = π1 � π2 � . . . � πn is defined and all the distributions from this sequence
are marginals of the distribution π.

A compositional model defined by a perfect sequence is called a perfect se-
quence model. Perfect sequences have many beneficial properties which are advan-
tageous for representing multidimensional distributions. One of them – a direct
consequence of the definition – is frequently used in other parts of this text.

Assertion 3.9. If a sequence of distributions is perfect, then all distributions in
this sequence are pairwise consistent.

Remark 3.10. Notice that when defining a perfect sequence, let alone a generat-
ing sequence, we do not impose any conditions on sets of variables for which the
distributions are defined. For example, considering a generating sequence where
one distribution is defined for a subset of variables of another distribution (i.e.,
Ui ⊂ Uj) is fully meaningful and may carry information about the distribution.
If, for π(u, v, w), we state π↓u, π↓v, π as a perfect sequence, it is obvious that

π↓u
� π↓v

� π = π

(because all the elements of a perfect sequence are marginals of the resulting dis-
tribution and therefore π must be marginal to π↓u

� π↓v
� π). Nevertheless, it

can happen that for some reason it may be advantageous to work with model π.
From the model one can immediately see that variables u and v are independent,
which, not knowing the numbers defining the distribution, one cannot say about
distribution π. (How to read all the conditional independence relations from the
structure of a compositional model is shown in Section 3.4.)

3.3 Model structure

Consider a compositional model defined by a generating sequence π1(U1), π2(U2),
. . . , πn(Un). Then the sequence of sets U1, U2, . . . , Un is called its model structure
and it is usually denoted by symbol P. If not specified otherwise, P = U1, . . . , Un

where (U1 ∪ . . . ∪Un) = N , and we say that P is defined over N and Ui ∈ P for
every i ∈ {1, . . . , n}. Moreover, we recognize the auxiliary sets KP

i which reflect
the ordering in P – KP

i is the i-th set from P; e.g., for P = U1, . . . , Un it holds
that KP

i = Ui for all i = 1, . . . , n.
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The reason for the double notation of the same set within this structure is as
follows: Consider P = U1, U2, U3, U4 and let P ′ be a permutation, for example,
such that P ′ = U3, U1, U4, U2. Then U3 is the first set in sequence P ′ and U1 is the
second set in P ′. This can now be easily expressed as U3 ≡ KP ′

1 and U1 = KP ′

2 .
In addition, each set KP

i can be divided into two disjoint parts with respect
to the structure. We denote them RP

i and SP
i , where

RP
1 = KP

1

RP
i = KP

i \(K
P
1 ∪ . . . ∪K

P
i−1) ∀i = {2, . . . , |P|}

and

SP
1 = ∅

SP
i = KP

i ∩ (KP
1 ∪ . . . ∪K

P
i−1) ∀i = {2, . . . , |P|}

It has the following meaning: RP
i denotes the variables first occurring in the i-th

set of the sequence P (taken from left to right). Conversely, SP
i denotes variables

from the i-th set of P which have already been used in a foregoing set. Observe
that KP

i = RP
i ∪ S

P
i . The super index P may be omitted if the context is clear.

|P| denotes the number of sets in the structure, i.e., |P| = n for P = U1, . . . , Un.

Example 3.11. For a generating sequence π1(u), π2(v, w), π3(u, v, x), π4(w, x, y),
π5(x, y, z), its structure is P = {u}, {v, w}, {u, v, x}, {w, x, y}, {w, y, z} and |P| =
5.

KP
1 = u RP

1 = u SP
1 = ∅

KP
2 = {v, w} RP

2 = {v, w} SP
2 = ∅

KP
3 = {u, v, x} RP

3 = x SP
3 = {u, v}

KP
4 = {w, x, y} RP

4 = y SP
4 = {w, x}

KP
5 = {w, y, z} RP

5 = z SP
5 = {x, y}

To be able to simply handle characteristic properties of the respective struc-
tures, we introduce a function

] · [P : 2
N → {1, . . . , |P|}

such that, for fixed structure P, U ⊆ N , ]U [P= maxu∈U{i : u ∈ RP
i }. Hence ]U [P

equals the maximal index i such that u ∈ U and u ∈ RP
i . Due to the previously

established notation, it can be said that KP
]u[P

is that set KP
i for which u ∈ RP

i ,

i.e., ]u[P= i : u ∈ RP
i . The symbol P may be omitted in ]u[P if the context is

clear – for example when dealing with only one structure.
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Example 3.12. Consider structure P from Example 3.11. One can read the fol-
lowing properties: ]u[= 1, ]{u, v}[= 2, ]{u, w}[= 2, ]x[= 3, ]y[= 4, ]{u, v, w, x, y, z}[=
5, and ]z[= 5. Similar to Example 3.11

KP
]u[ = u RP

]u[ = u SP
]u[ = ∅

KP
]v[ = {v, w} RP

]w[ = {v, w} SP
]{v,w}[ = ∅

etc.

Definition 3.13. For a structure P over N we introduce a binary relation �P

such that, for two non-empty sets of variables U, V ⊆ N , the relation U �P V
holds if and only if ]U [P≤]V [P . Moreover, we introduce its strict version ≺P . in
which U ≺P V if and only if ]U [P<]V [P .

The symbol P may be omitted in ≺P and �P if the context is clear.

Example 3.14. Consider the structure from Example 3.11 again. According to
the former Definition, one can see that u ≺ v � w ≺ x ≺ y ≺ z in that structure.
Similarly, for subsets {u, v, w} ≺ z, {u, v} � w, {u, x} ≺ y, etc.

3.3.1 Persegrams

To visualize the structure of a compositional model (and its generating sequence)
we use a tool called a persegram. This visualization tool was designed during
development of a technique to read conditional independence relations from the
structure of a compositional model [25].

Definition 3.15. Persegram of a structure P = U1, U2, . . . , Un is a table in which
rows correspond to variables from U1 ∪ U2 ∪ . . . ∪ Un (in an arbitrary order) and
columns to sets of variables Ui for all i ∈ {1, . . . , n}; ordering of the columns
corresponds to the structure order. A position in the table is marked if the respec-
tive set contains the corresponding variable. Markers for the first occurrence of
each variable (i.e., the leftmost markers in rows) are box-markers, and for other
occurrences there are bullets.

Example 3.16. Let P = U1, . . . , U5 be a structure of a compositional model such
that U1 = {u}, U2 = {v, w}, U3 = {u, v, x}, U4 = {w, x, y}, U5 = {x, y, z}. Note
that this is the very same structure as the one in Example 3.11. Since the row
ordering is not specified in Definition 3.15, the corresponding persegram can be
visualized not only as in Figure 3.1a, but also in many other ways. See another
such persegram in Figure 3.1b.

Since markers in the i-th column of the persegram corresponding to structure
P corresponds to variables KP

i , we usually call sets from a structure its columns.
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U1 U2 U3 U4 U5

z

y

x

w

v

u

(a)

U1 U2 U3 U4 U5

v

w

y

z

x

u

(b)

Figure 3.1: Different persegrams belonging to one model structure P

Observe that bullets in the i-th column correspond to variables from SP
i while

box-markers to variables from RP
i . Compare results of Example 3.11 with Fig-

ure 3.1.

3.4 Induced independence relations

As stated in the introduction, while a model is put together, a system of (un)conditional
independencies valid for the represented multidimensional probability distribu-
tion is simultaneously introduced by the structure of the generating sequence
(see Assertion 3.3). Note that the induced independence relation mentioned in
Assertion 3.3 is guaranteed solely by the structure of the generating sequence.

Example 3.17. Let {u, v} = N , u 6= v. π1(u), π2(v) be a generating sequence
of a compositional model π1 � π2. Then u⊥⊥v[π1 � π2]. Indeed, by applying the
operator of composition one gets

π1(u)� π2(v) =
π1(u)π2(v)

π2(∅)
= π1(u)π2(v),

which corresponds to the definition of independence between variables u and v.
Similarly, assume that {u, v, w} = N are three distinct variables π1(u, w), and

π2(v, w) is a generating sequence of a compositional model π1 � π2. Observe that
u⊥⊥v|w[π1 � π2] by Assertion 3.3.

The more complex the model structure, the more difficult the seeking of in-
duced independencies is. Note that independencies induced by a structure may
not be all independencies valid for a multidimensional probability distribution
represented by a compositional model with this structure. Some independencies
are implied by properties of the respective low-dimensional distributions from
the respective generating sequence. However, the set of independence relations
induced by a structure is valid for any compositional model with this structure
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regardless of the generating distributions properties. That is the reason we speak
about independence relations induced by a structure and why we connect it with
structures instead of probability distributions in the discussion that follows.

Obviously, one should be able to read induced independencies directly from the
structure. To increase the lucidity and readability of this text, we have decided to
use a persegram as a visualization of a structure, and we present a procedure for
reading the induced independencies using this tool. We demonstrate how to read
the induced conditional independence relations from a persegram representing
the structure of a compositional model in this section. Let us reveal that such
independencies are indicated by the absence of a trail connecting relevant markers
and avoiding others, which is defined below.

Definition 3.18. A sequence of markersm0, . . . , mt of a persegram corresponding
to structure P over N is called a Z-avoiding trail (Z ⊆ N) that connects m0 and
mt if it meets the following five conditions:

0. neither m0 nor mt corresponds to a variable from Z

1. for each s = 1, . . . , t, the couple (ms−1, ms) is either in the same row (i.e.,
horizontal connection) or in the same column (vertical connection);

2. each vertical connection must be adjacent to a box-marker (i.e., one of the
markers in the vertical connection is a box-marker);

3. no horizontal connection corresponds to a variable from Z;

4. a) vertical and horizontal connections regularly alternate with the following
possible exception:

b) at most two vertical connections may be in direct succession if their com-
mon adjacent marker is a box-marker of a variable from Z;

If a Z-avoiding trail connects two markers corresponding to variables u and v, we
say that these variables are connected by a Z-avoiding trail. This situation will
be denoted by u 6⊥⊥v|Z[P].

By investigating Definition 3.18 further, the reader will find that no condition
of this definition is dependent on the order of rows in the considered persegram.
That would be inappropriate, because all persegrams representing the structure
of a generating sequence are equivalent, regardless of the row ordering. (See the
definition of persegram – Definition 3.15). Then the system of Z-avoiding trails
induced by a persegram can be obtained by any other persegram of the considered
structure. In the sense of the previous definition, all persegrams corresponding
to P are equivalent.
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Example 3.19. Consider structure P shown in Figure 3.2. There are two dif-
ferent sequences of markers highlighted in the Figure, each in its respective part
of the Figure. In order to illustrate vertical and horizontal connections and to
highlight the ordering, each two consecutive markers are connected with a line.

There is a sequence of markers [U5, u], [U5, z] in Figure 3.2a. Considering
Z = ∅, it forms a Z-avoiding trail connecting u and z. However, considering
Definition 3.18 we can see that, this sequence avoids many other variables and Z
may have a variable content. In fact, Z can be any subset of {v, w, x, y}. Hence,
u 6⊥⊥v|Z[P] for any (even empty) Z ⊆ {v, w, x, y}.

U1 U2 U3 U4 U5

z

y

x

w

v

u

(a): P : u⊥⊥/z|∅,
u⊥⊥/z|{v, w, x, y}

U1 U2 U3 U4 U5

z

y

x

w

v

u

(b): P : u⊥⊥/x|{z}, u⊥⊥/x|{v, z}

Figure 3.2: Different trails connecting u with some other variables
Similarly, the sequence of markers [U5, u], [U5, z], [U5, y], [U4, y], [U4, w], [U3, w],

[U3, x] in Figure 3.2b is a Z-avoiding trail where Z = z. Contrary to Figure 3.2a,
one cannot replace z by any other variable since z has to always be part of Z
in this case. Indeed, otherwise the Condition 4.b in Definition 3.18 would be
corrupted. However, the trail from Figure 3.2b is {v, z}-avoiding too.

The (un)conditional (in)dependencies induced by a structure are introduced
with the help of Z-avoiding trails.

Definition 3.20. Consider a structure P over N and three disjoint subsets
U, V, Z ⊂ N such that U 6= ∅ 6= V . The sets of variables U and V are condition-
ally independent given Z in P (in symbol U⊥⊥V |Z[P]), if no u ∈ U is connected
with any v ∈ V by a Z-avoiding trail in the corresponding persegram. Otherwise
U and V are conditionally dependent given by Z in P, written U 6⊥⊥V |Z[P].

The induced independence model I(P) and the induced dependence model
D(P) of structure P are defined as follows:

I(P) = {〈U, V |Z〉 ∈ T (N);U⊥⊥V |Z[P]}

D(P) = {〈U, V |Z〉 ∈ T (N);U 6⊥⊥V |Z[P]},

where the symbol T (N) denotes the class of all disjoint triplets over N :

T (N) = {〈U, V |Z〉 : U, V, Z ⊆ N,U 6= ∅ 6= V, U ∩ V = V ∩ Z = Z ∩ U = ∅}
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To avoid any misunderstanding, when talking about a triplet 〈u, v|Z〉 in the
discussion that follows, we always consider a disjoint triplet.

Remark 3.21. Realize that, for any structure P over N , its induced dependence
model D(P) (and hence independence model I(P) as well) is uniquely determined
by the set of ”elementary relations” 〈u, v|Z〉 where u and v are singletons. Indeed,
recall that there is a one-to-one correspondence between the fact 〈u, v|Z〉 ∈ D(P)
and the fact that there exists a Z-avoiding trail connecting u with v in the cor-
responding persegram (u 6⊥⊥v|Z[P]). And these trails are just what determines
whether 〈U, V |Z〉 ∈ D(P) for any disjoint U, V ⊂ N by the previous definition.

The concept of induced (in)dependencies lives up to expectations that there
is a parallel between this and independencies valid in any compositional model
with the respective structure. The connection between independence read from
a compositional model and from its structure (persegram) is elucidated by the
following theorem. The proof of this assertion is rather technical and requires
results proven in lemmata found in other research papers. The reader is referred
to [25].

Theorem 3.22. Consider a generating sequence π1, . . . , πn with structure P over
N and three disjoint subsets U, V, Z ⊆ N such that U 6= ∅ 6= V . Then:

U⊥⊥V |Z[P]⇒ U⊥⊥V |Z[π1 � . . .� πn].

It is important to realize that (analogous to Bayesian networks or decompos-
able models) one can be sure about the validity of the indicated independence
relations for any distribution which is represented by a compositional model with
the given structure.

3.4.1 Other preliminaries

A trivial fact follows from Definition 3.18. It concerns variables appearing for
the first time in the last column. Before we introduce this fact in the form of a
lemma, let us illustrate it with the help of the following example.

Example 3.23. Consider structure U1, . . . , U5 from Figure 3.3. Let us show that
there is no S5-avoiding trail connecting z ∈ R5 (first appearing in the last column)
with w 6∈ U5 (not belonging to the last column). Let us try to construct such a
sequence of markers forming an S5-avoiding trail. Observe that S5 = {u, v, y}.

Three different sequences of markers are shown in Figure 3.3. Let us summa-
rize requirements for Z that are necessary for these sequences to be Z-avoiding
trails:
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• Consider the sequence of markers highlighted in Figure 3.3a: By Condition
3 of Definition 3.18 (i.e., no horizontal connection corresponds to a variable
from Z), Z must not contain a variable y (y 6∈ Z).

• For the sequence of markers in Figure 3.3b: Similarly, v 6∈ Z for the same
reason and y ∈ Z by Condition 4 of Definition 3.18 (i.e., two vertical
connections may be in direct succession if their common adjacent marker is
a box-marker corresponding to a variable from Z).

• Figure 3.3c: u, v 6∈ Z, y ∈ Z for the same reasons.

U1 U2 U3 U4 U5

z
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x

w

v

u

(a): P : y ∈ Z

U1 U2 U3 U4 U5

z
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v

u

(b): P : v ∈ Z
U1 U2 U3 U4 U5

z

y

x

w

v

u

(c): P : u, v ∈ Z

Figure 3.3: Different trails violating Condition 3. of Definition 3.18 for
Z = {u, v, y}.

Combining all of those restrictions on Z together, one gets the following corol-
lary: By choosing Z = S5 = {u, v, y}, none of the above-discussed sequences forms
an S5-avoiding trail, since each of them contains a horizontal connection corre-
sponding to a variable from S5. These horizontal connections violating Condition
3 of Definition 3.18 are drawn by dotted lines. Since there is no other possible
S5-avoiding trail between w and z, w⊥⊥z|S(K5) by Definition 3.20.

Lemma 3.24. Consider a structure P over N and two distinct variables u, v ∈ N
such that u ∈ RP

|P| and v 6∈ K
P
|P|. Then u⊥⊥v|SP

|P|[P].
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Proof. Suppose that |P| = n and consider the respective persegram. Since u
belongs to the last column of P (u ∈ Rn ⇒ u ∈ Kn), every trail from u has to
begin with a vertical connection in Kn to a marker corresponding to a variable
from Sn (otherwise, in a case where the vertical connection joins two variables
from Rn, the horizontal and vertical connections could not regularly alternate).
However, no Sn-avoiding trail may contain a horizontal connection corresponding
to a variable from Sn, and such a trail must not contain any marker out of the
last column. Since u 6∈ Kn, a trail representing u 6⊥⊥v|Sn cannot exist; therefore
u⊥⊥v|Sn[P] by Definition 3.20.

To simplify the following, we introduce the concept of the substructure induced
by a set of variables. Unlike the subgraph which contains exactly those variables
that induce it, the substructure is usually defined for a superset.

Definition 3.25. A substructure of a structure P over N induced by a set U ⊆ N
is its minimal left part containing all variables from U , i.e., P[U ] = KP

1 , . . . , K
P
]U [.

A persegram of P[U ] is created from a persegram of P by removing columns
to the right of the one with the farthest right box-marker corresponding to a
variable from U .

Example 3.26. Consider a structure P = U1, . . . , U5 shown in Figure 3.4a. Put
U = {w, x}. One can find the corresponding substructure P[U ] in Figure 3.4b.
Observe that P[U ] is defined not only over {w, x}, but also over {u, v}.

U1 U2 U3 U4 U5
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U1 U2 U3

x

w

v

u

(b)

Figure 3.4: Structure P and its corresponding substructure P[U ] for U =
{w, x}

Remark 3.27. Accepting the suggested concept that markers from persegram
corresponding to substructure P[U ] coincide with some markers from persegram
of the respective structure P, we can observe the following fact: For given U ⊆ N
and Z ⊂ U , any sequence of markers forming a Z-avoiding trail in a persegram
of P[U ] forms a Z-avoiding trail in a persegram of P.
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The concept of an induced substructure brings one very important advantage.
Searching for an area for Z-avoiding trails connecting u with v may be restricted
to a persegram corresponding to the respective substructure induced by {u, v}∪Z
only.

Lemma 3.28. Consider a persegram of structure P over N , u, v ∈ N , and
Z ⊆ N \ {u, v}. If u 6⊥⊥v|Z[P], then all Z-avoiding trails connecting u with v are
present in the persegram corresponding to P[{u, v} ∪ Z].

Proof. Assume by contradiction that there is a Z-avoiding trail representing
u 6⊥⊥v|Z[P] containing markers out of the area defined by P[{u, v} ∪ Z]. We
are going to show that if the Z-avoiding trail from u leaves the area defined
by P[{u, v} ∪ Z], then it cannot end up in v which contradicts the assumption.
To understand our way of thinking, the reader should have a careful look at
Figure 3.5b while considering the proof.

Assume that τ is a Z-avoiding trail representing u 6⊥⊥v|Z[P] with a marker
out of P[{u, v} ∪ Z], i.e., τ = m0, . . . , mt is a sequence of markers where m0

corresponds to u. Let mi be the first marker in the sequence τ outside of the
area corresponding to P[{u, v} ∪ Z]. Since it is the first marker outside of the
area, a horizontal connection had to be used between mi−1 and mi, and therefore
mi has to be a bullet. By Definition 3.18, the trail now has to continue with a
vertical connection to a box-marker. Since this box-marker cannot correspond
to any variable from Z ∪ v (it is outside of P[{u, v} ∪ Z]), one has to continue
with a horizontal connection (to the right of the box-marker which is always the
first marker in a row, and there is nothing on the left in the same row) to a
bullet. Then a vertical connection to a box-marker has to follow again. It does
not correspond to any variable from Z ∪ v, etc. From such a trail τ , there is
no return to v. Therefore, the respective Z-avoiding trail cannot exist, which
contradicts the assumption.

Example 3.29. Let us illustrate the idea of proving Lemma 3.28. Consider the
structure shown in Figure 3.5, its corresponding structure P, and Z = {x}. First,
we show that there is only one x-avoiding trail representing u 6⊥⊥w|x[P]. One can
find it in the highlighted area corresponding to P[{u, w, x}] in Figure 3.5a.

Let us try to create an x-avoiding trail from w to u containing markers out-
side of the highlighted part corresponding to P[{u, w, x}]. Such an experiment is
depicted by the dotted line in Figure 3.5b.

Let us start with box-marker [U2, w] and continue to [U4, w] outside of P[{u, w, x}].
To satisfy Definition 3.18 of a Z-avoiding trail, one has to continue with a verti-
cal connection to a box-marker. (The only possible box-marker is [U4, y]). Since
y 6∈ Z = x, then by Condition 4 of Definition 3.18, one has to continue with
a horizontal connection (to the right – there is nothing left of any box-marker)
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U1 U2 U3 U4 U5

z

y

x

w

v

u

(a): The shortest x-avoiding
trail connecting u with w. It
is located in the area induced
by {u, w, x}

U1 U2 U3 U4 U5

z

y

x

w

v

u

(b): An attempt to create a x-
avoiding trail outside the area cor-
responding to the induced sub-
structure.

Figure 3.5: Illustration of Lemma 3.28

to a bullet, etc. Since there is no box-marker corresponding to u, x outside of
P[{u, w, x}], the trail cannot end in u. Hence it cannot exist.

Lemma 3.28 basically means that, if we are interested in relation u⊥⊥v|Z[P],
we may focus only on the subpersegram P[{u, v} ∪ Z]. This observation is sum-
marized in the following corollary – a trivial consequence of Lemma 3.28 and
Remark 3.27.

Corollary 3.30. Consider a structure P over N , two distinct variables u, v ∈ N ,
and Z ⊆ N \ {u, v}. Then

u⊥⊥v|Z [P[{u, v} ∪ Z]]⇔ u⊥⊥v|Z [P].
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Chapter 4

Equivalence problem

The equivalence problem is understood as a problem of how to recognize whether
two given structures P and P ′ over the same set of variables N induce the same
independence model (I(P) = I(P ′)). A very readable overview of the solution
to this problem in the area of structures represented by a DAG may be found in
[30].

It is of special importance to have a simple rule to recognize that two structures
are equivalent in this sense (the notion of a rule’s simplicity may differ when
considering whether people or a computer will use it), and an easy way to convert
P into P ′ in terms of some elementary operations on structures. These issues are
addressed in [32], [33] and [34]. Another very important aspect is the ability to
generate all structures which are equivalent to a given structure.

This text covers the solution of all above-mentioned subproblems. In Chapter
5, we introduce and describe several properties of a model structure which are
invariable in the class of equivalent structures. This means that they are necessary
to guarantee the equivalence of different structures. They include the so-called
connection set and F-condition set, non-trivial sets, strong and weak core, and
formal ratio of the respective structure.

In Chapter 6 we introduce four elementary operations, (the so called IE opera-
tions) that allow us to convert any structure into another independence-equivalent
one and (as shown in Chapter 7) to generate the complete class of structures that
are equivalent with the given one – the so-called equivalence class.

We summarize it all in Chapter 7, where we show that some of the invariant
properties from Chapter 5 (or their combinations) are not only necessary, but also
sufficient to guarantee the equivalence of considered structures. In other words,
these properties are real characteristics of equivalent structures.

Definition 4.1. Structures P,P ′ (over the same variable set N) are called inde-
pendence equivalent, if they induce the same independence model I(P) = I(P ′).

37
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Remark 4.2. One may easily see that the above-mentioned definition could be
formulated using a dependence model instead. Structures P,P ′ (over the same
variable set N) are independence equivalent iff D(P) = D(P ′). This alternative
is used in most of the proofs.

Example 4.3. 1. Consider two simple structures P1,P ′
1 over {u, v} shown in

Figure 4.1. Since there is no possible vertical connection in both persegrams,
there can be no Z-avoiding trail for any Z. Therefore u⊥⊥v|∅ in both P1 and
P ′

1. Hence
I(P1) = I(P

′
1) = {〈u, v|∅〉}.

The corresponding structures are independence equivalent.

U1 U2

u

v

(a): P1

U2 U1

u

v

(b): P ′
1

Figure 4.1: Two equivalent structures

2. On the other hand, structures with the same sets (U ∈ P ⇔ U ∈ P ′) in a
different ordering need not be equivalent. Let N = {u, v, w} and consider
the following two structures P2,P ′

2 from Figure 4.2. Observe that u⊥⊥v|∅[P2]
but u 6⊥⊥v|∅[P ′

2]. On the contrary, u 6⊥⊥v|w[P2] and u 6⊥⊥v|w[P ′
2]. Hence

I(P2) 6= I(P
′
2).

This example highlights that set-ordering in the structure is important.

U1 U2 U3

u

v

w

(a): P2

U1 U3 U2

u

v

w

(b): P ′
2

Figure 4.2: Two non-equivalent structures

Recall that each Z-avoiding trail contains one or several vertical connections.
However, contrary to the persegram in Figure 4.2b, there is no possible vertical
connection between markers corresponding to variables u, v in the persegram
in Figure 4.2a. That is why these structures are not equivalent. One of the
characteristic properties of equivalence classes is based on this observation.



Chapter 5

Invariants of independence
equivalent structures

This chapter deals with some of those attributes of compositional model struc-
tures which are invariable with respect to independence equivalence.

5.1 DAG based properties

Now, step by step, we deduce two structural properties necessary for indepen-
dence equivalence of the respective structures: the connection set and the so-
called F-condition set necessary for description of independence equivalence of
the underlying structures. We show later that these properties are sufficient to
guarantee the independence equivalence as well.

Note that these properties were inspired by the equivalence problem solution
in the theory of Bayesian networks. Recall that the structure of a Bayesian net-
work is represented by a DAG. The reason for this inspiration is very simple: As it
is shown in [24], one can transform any perfect compositional model into an equiv-
alent Bayesian network and vice versa. Moreover, in [31] it was shown that any
compositional model structure may be converted into an equivalent Bayesian net-
work structure – DAG, i.e., they both induce the same system of (un)conditional
independence relations, in other words, the same induced independence model.

To increase the similarity as well as to enlighten this for Bayesian network
experts, we decided to use similar notation in this section.

5.1.1 Connection set

While an induced independence relation is highlighted by the fact that there is
no respective Z-avoiding trail in the corresponding persegram, each dependence
relation is represented by at least one such Z-avoiding trail. Two structures are
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equivalent if and only if they induce the same dependence models. Thus, in the
case of two equivalent structures, one should be able to create the same set of
Z-avoiding trails, including the elementary ones that are composed of only two
markers – one vertical connection.

It turns out that the set of vertical connections in the respective persegrams
is a property invariable with respect to a class of equivalence. Hence, in the
following, there is nothing else to show than proper redefinition of a vertical
connection in the area of structures.

Definition 5.1. Consider a structure P over N and two distinct variables u, v ∈
N . We say that u, v are connected in P (u ↔P v) if u ∈ KP

]v[ or v ∈ KP
]u[.

Otherwise u, v are not connected in P (u =P v). The set of all pairs E(P) =
{{u, v} : u, v ∈ N, u↔P v} is called a connection set of P.

Remark 5.2. The previous definition basically means that u, v are connected in
P iff there is a column in its persegram containing markers of both variables and
at least one of them is a box-marker. Hence, connection u ↔P v corresponds to
a vertical connection in Definition 3.18.

The following convention will be used throughout the paper: Given a variable
v ∈ N , U ⊆ N \ v and a structure P over N , the term U ↔P v denotes that
u↔P v for every u ∈ U . The symbol P may be omitted in u↔P v if the context
is clear.

For purposes of the following text, one should realize that when u↔ v, there is
an obvious parallel between ordering of variables u, v and the content of respective
columns K]u[, K]v[. It is summarized in the following remark.

Remark 5.3. Let P be a structure over N and u, v ∈ N be two distinct variables.
By Definition 5.1, u↔P v ⇔ u ∈ KP

]v[∨v ∈ K
P
]u[. If u ≺P v then v 6∈ KP

]u[. Hence

u �P v ∧ u↔P v ⇔ u ∈ KP
]v[. (5.1.1)

Observe that u ∈ SP
]v[ in (5.1.1) in a strict version of u ≺P v.

Example 5.4. Consider non-equivalent structures P2 and P ′
2 from Example 4.3

and structure P3 depicted in Figure 5.1c. Connections as well as connection sets
of all considered structures are highlighted in Figure 5.1.

With the help of Figure 5.1 one can read the following relations:
P2 : {u, v} ↔P2

w E(P2) = {{u, w}, {v, w}}
P ′

2 : u↔P ′
2
w, v ↔P ′

2
w, u↔P ′

2
v E(P ′

2) = {{u, w}, {v, w}, {u, v}}
P3 : u↔P3

w, v ↔P3
w E(P3) = {{u, w}, {v, w}} = E(P2)

As previously stated, the connection u ↔ v corresponds to the possibility of
an existence of a vertical connection between markers corresponding to u and v.
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U1 U2 U3

u

v

w

(a): P2

U1 U3 U2

u

v

w

(b): P ′
2

U4 U5

u

v

w

(c): P3

Figure 5.1: Connections in different structures

Therefore, if there is a connection between two variables, then there is a simple
trail connecting the corresponding variables. Since the trail contains no other
markers, it is Z-avoiding for any Z such that Z ⊆ N \ {u, v}.

Let us introduce the following specific notation, which allows us to express
more than one dependence statement by a single term. Given a structure P
over N , distinct variables u, v ∈ N and a subset U ⊆ N \ {u, v}, the symbol
u 6⊥⊥v|+ U [P] will be interpreted as follows:

u 6⊥⊥v|+ U [P] ≡ ∀W such that U ⊆W ⊆ N \ {u, v} one has u 6⊥⊥v|W [P].

In words, u and v are (conditionally) dependent in P given any superset of U . If
U is empty, we write ∗ instead of +∅.

u 6⊥⊥v| ∗ [P] ≡ ∀W such that W ⊆ N \ {u, v} u 6⊥⊥v|W [P].

Lemma 5.5. Consider a structure P over N and two distinct variables u, v ∈ N .
Then

u↔P v ⇒ u 6⊥⊥v| ∗ [P].

Proof. Without affecting the generality, suppose u �P v. Then by Remark 5.3,
u ∈ K]v[. The sequence of markers [K]v[, u], [K]v[, v] is a W -avoiding trail for any
W ⊆ N \ {u, v}. Hence u 6⊥⊥v| ∗ [P].

As shown below, one can prove that the connection set is one of the properties
common to all equivalent structures using this lemma. That is, E(P) is an in-
variable property for every class of equivalence in the sense that a connection set
of every structure independence that is equivalent with P coincides with E(P).

Lemma 5.6. Let P be a structure over N . Then for any two distinct variables
u, v ∈ N such that u �P v it holds that

u⊥⊥v|SP
]v[[P]⇔ u=P v.

Proof. ⇒ Suppose u⊥⊥v|S]v[[P] and u↔ v. This, however, contradicts Lemma 5.5
based on u↔ v, which asserts that u 6⊥⊥v| ∗ [P] and therefore u 6⊥⊥v|S]v[[P] as
well.



42 CHAPTER 5. INVARIANTS OF EQUIVALENT STRUCTURES

⇐ Suppose u = v. Using assumption u � v, this excludes u ∈ K]v[ by Re-
mark 5.3 and therefore even u 6∈ S]v[. Thus, assume u 6⊥⊥v|S]v[[P]. Since
u � v, and S]v[ ≺ v, then according to Lemma 3.24 u⊥⊥v|S]v[[P[v]]. By
Corollary 3.30, we get u⊥⊥v|S]v[[P], which contradicts our assumption.

Interestingly, under assumption u �P v notice that while a more general
implication of Lemma 5.6

u⊥⊥v|+SP
]v[\{u, v}[P]⇒ u=P v

holds, the opposite one does not. Note that the term+SP
]v[\{u, v} represents any

superset of SP
]v[ not containing u or v. One can find a counterexample to the

validity of the opposite implication in the following example:

Example 5.7. Let P be a structure shown in Figure 5.2. (Recall that u ≺
v together with u = v imply that u⊥⊥v|S]v[[P] by Lemma 5.6). Let us check
whether there is an S]v[-avoiding trail connecting u with v in Figure 5.2a. Due
to Corollary 3.30, we may restrict the searching area to induced substructure
P[{u, v}∪S]v[] ≡ P[v] . The area corresponding to this substructure is highlighted.
Since the only sequence of markers regularly alternating horizontal and vertical
connections joining u with v contains a horizontal connection corresponding to a
variable from S]v[, it cannot be an S]v[-avoiding trail by Definition 3.18 in P[v].
Thus, u⊥⊥v|S]v[[P] by Corollary 3.30.

K]u[ K]v[ K]z[

z

v

u

(a): u⊥⊥v|S]v[

K]u[ K]v[ K]z[

z

v

u

(b): u 6⊥⊥v|+S]v[

Figure 5.2: A counterexample that Lemma 5.6 cannot be generalized.
One can easily find an example that u = v 6⇒ u⊥⊥v|+S]v[[P] in Figure 5.2b.

It is enough to realize that z ∪ S]v[ is just a special case of +S]v[.

With the help of the previous lemma, one can prove the following important
assertion.

Lemma 5.8. Let P be a structure over N and u, v ∈ N be two distinct variables.
Then

u↔P v ⇔ u 6⊥⊥v| ∗ [P].
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Proof. By Lemma 5.5, it is enough to prove the necessity (⇐). Suppose for
contradiction that u 6⊥⊥v|∗[P] and u= v; one can assume without loss of generality
that u � v. Then Lemma 5.6 leads to contradiction, since u⊥⊥v|S]v[[P].

For a structure, the previous lemma puts an induced connection set on the one
hand and a special subset of induced independence relations on the other hand, on
the same level. Hence, for two independence equivalent structures, its connection
sets coincide. The connection set is an invariable property with respect to a class
of independence equivalence:

Corollary 5.9. Let P,P ′ be two structures over N .

If I(P) = I(P ′) then E(P) = E(P ′).

Remark 5.10. A compositional model is basically a multidimensional probability
distribution and, as such, it can be represented by a Bayesian network as well.
If one uses the conversion algorithm from [24], then the structure of a created
Bayesian network G(N,E) – DAG – induces the same independence model as
the input compositional model structure P [31]. Moreover, every connection ↔P

defined above corresponds precisely to an edge of the DAG corresponding to this
conversion algorithm, i.e., u ↔P v ⇔ u → v in G or u ← v in G. This gives
us a certain confirmation that our conclusions are correct. Indeed, the set of
connections E(P) (sometimes named as a skeleton) is a characteristic property
of all DAGs equivalent with G by [56].

Example 5.11. The equivalence of different structures was discussed in Exam-
ple 4.3. While the first two structures P1,P ′

1 were equivalent, the second two
(P2,P ′

2) were not. Let us look at that example again in light of the previous
corollary.

1. Let P1,P ′
1 be two simple structures from Figure 4.1. One can easily see that

E(P1) = E(P
′
1) = ∅. The equality

I(P1) = I(P
′
1) = {〈u, v|∅〉}

was shown in Example 4.3.

2. On the other hand, consider structures P2,P ′
2 depicted in Figure 4.2. Notice

that the corresponding connections are highlighted by arrows in Figures 5.1a
and 5.1b. Due to Example 4.3, the reader knows that I(P2) 6= I(P

′
2). Since

E(P ′
2) = E(P2) ∪ {〈u, v〉}, the reason for non-equivalence is obvious now.

3. Consider structure P2 depicted in Figure 5.1a again. Is there any struc-
ture over the same variables not equivalent with P2 but inducing the same
connection set? Indeed, for an example see structure P3 depicted in Fig-
ure 5.1c. Observe that u 6⊥⊥v|w[P2] but u⊥⊥v|w[P3]. Hence, I(P3) 6= I(P2)
while E(P3) = E(P2).
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The 3rd part of Example 5.11 illustrates the fact that the same- connection-set
condition is necessary but not sufficient to guarantee the equivalence of respective
structures. Therefore it is necessary to find an additional property invariant
through a class of equivalent structures.

5.1.2 F-condition set

We know that structures P2,P3 from the third part of Example 5.11 are not inde-
pendence equivalent, despite the fact that E(P2) = E(P3). Considering relation
�P , every structure induces a partial ordering of variables. One can easily verify
that u ≺P2

v ≺P2
w while u �P3

w ≺P3
v. The induced variable ordering is dif-

ferent for non-equivalent structures. May the ordering of variables be some kind
of a characteristic property? Definitely not in this simple way: See Example 4.3
and Figure 4.1, where I(P1) = I(P

′
1) while u ≺P1

v and u ≻P ′
1
v.

It follows that two structures may induce different orderings of variables de-
spite being equivalent. However, if we are interested in the ordering of only groups
of specially connected variables, we obtain another property invariable with re-
spect to a class of equivalent structures. This property is based on the so-called
F conditions defined below.

Definition 5.12. Consider a structure P over N and three disjoint variables
u, v, w ∈ N . We say that the triplet 〈u, v|w〉 forms F-condition if

{u, v} ≺P w ∧ {u, v} ↔P w ∧ u=P v.

The set of triplets F(P) = {〈u, v|w〉 : {u, v} ≺P w ∧ {u, v} ↔P w ∧ u =P v} is
called F-condition set induced by P.

The reason for calling the above-defined condition ”F-condition” is very pro-
saic. Consider, for example, the structure P from Figure 5.3. The reader can
easily verify that 〈u, v|w〉 ∈ F(P). Observe that the shortest w-avoiding trail con-
necting box-markers of u and v evokes a mirror image of letter F. An example of
F-condition can be found in P2 depicted in Figure 5.1a, where 〈u, v|w〉 ∈ F(P2).
There is no F-condition in P2′ (Figure 5.1b) and P3 (Figure 5.1c).

Remark 5.13. Remark 5.3 states that the fact of u ≺P w altogether with u↔P w
is equivalent to u ∈ SP

]w[. Regarding this, the previous definition may be reformu-
lated in the following way: Let P be a structure over N and u, v, w ∈ N be three
distinct variables. F-condition 〈u, v|w〉 ∈ F(P) is a disjoint triplet of variables
such that u, v ∈ SP

]w[ and u=P v.

We have already shown that possessing the same connection sets is a necessary
condition for equivalence of given structures. Therefore, when comparing two
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equivalent structures, the connection set may be considered as fixed. In addition,
we show that the F-condition set is another characteristic property of a class of
equivalent structures.

Lemma 5.14. For structure P over N and any triplet of distinct variables
u, v, w ∈ N such that {u, v} ↔P w and u=P v,

〈u, v|w〉 ∈ F(P)⇔ u 6⊥⊥v|+w[P].

Proof. ⇒ Suppose 〈u, v|w〉 ∈ F(P). Then u, v ∈ S]w[ by Remark 5.13. As one
can see in Figure 5.3, the sequence of markers [K]u[, u], [K]w[, u], [K]w[, w],
[K]w[, v], [K]v[, v] is a W -avoiding trail for every W ⊆ N \ {u, v} such that
w ∈ W . Hence, u 6⊥⊥v|W [P] for every such W , which can be written as
u 6⊥⊥v|+w[P].

K]u[ K]v[ K]w[

w

v

u

Figure 5.3: u⊥⊥/v|+ w

⇐ To prove sufficiency by contradiction, assume that u 6⊥⊥v|+w[P] and not 〈u, v|w〉 ∈
F(P); since the respective connections are fixed by the lemma assumptions,
either u � w or v � w. Assume without loss of generality v ≻ u (equality
may be omitted: if u=P v) then v � w. If ]v[=]w[ then u ≺ w and u ∈ S]w[

by Remark 5.3 as well as v ∈ R]v[ ≡ R]w[. Then u ↔ v, which contradicts
with the lemma assumptions. Hence v ≻ w, which implies that w ∈ S]v[

by assumption of w ↔ v and Remark 5.3. Using the fact that u = v, it
follows that u⊥⊥v|S]v[[P] by Lemma 5.6. This, however, contradicts with
u 6⊥⊥v|+ w[P] because w ∈ S]v[.

Remark 5.15. Regarding assumptions of fixed connections {u, v} ↔P and u=P

v in the previous lemma: While in the left-to-right implication they are also du-
plicated by 〈u, v|w〉 ∈ F(P), and therefore they may seem to be useless, they are
necessary in the opposite – right-to-left – implication.

Using Corollary 5.9, one can easily see that

Corollary 5.16. Let P,P ′ be two structures over N . If I(P) = I(P ′) then
F(P) = F(P ′).
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Remark 5.17. It was mentioned in Remark 5.10 that there is an algorithm in
[24] that enables us to create a DAG G that induces the same independence model
as the structure P – i.e., I(P) = I(G). Moreover, each edge in G corresponds
to a connection within P. Note that there is an edge u ↔ v in G if and only if
u→ v or u← v in G. Since arrow orientation is given by relation ≺P (if u ≺P v
and u ↔P v then u → v in G) in the conversion algorithm, each F-condition
defined above implies an immorality (vee-triple) in the respective DAG G. Recall
that we say that distinct nodes u, v, w form an immorality in a DAG G = (N,E)
if u→ w in G, v → w in G, and u=G v.

We have derived two properties necessary for independence equivalence of
given structures: same connection, and F-condition sets. However, are these
properties also sufficient to guarantee the equivalence of respective structures?
Let us reveal that the answer is positive. However, we will not be able to show
it before the end of this chapter.

5.2 Non-trivial sets

One may disclose a possible non-equivalence of given structures with the help of
the previously introduced structure properties that are invariable with respect
to independence equivalence. A problem arises when the considered structures
are more complex. Then the rule resulting from Corollary 5.9 (If two structures
were equivalent, then their connection sets would have to coincide.) becomes less
easily verifiable. It would be of special importance to have a rule concerning sets
defining the structure instead of connections, i.e., sets {Ui}i=1...n for structure
U1, U2, . . . , Un

Is there such a rule? To cope with this question, we need the following concept
of non-trivial sets. While connection u↔ v is generally a set of cardinality two,
a non-trivial set represents its generalization – a set of an arbitrary cardinality:

Definition 5.18. Let P be a structure over N . We say that a non-empty U ⊆ N
is non-trivial in P if U ⊆ KP

]U [. Otherwise the set U is trivial in P. The set of

all non-trivial sets in P is denoted by N (P).

Remark 5.19. Observe a relationship between Definition 5.1 and Definition 5.18.
Basically, N (P) is a generalization of E(P). Observe that E(P) ⊆ N (P). For
U ∈ N (P) it holds that U ∈ E(P) if and only if |U | = 2. However, note that
E(P) does not aim at representing anything in the sense of a ”minimal skeleton”
for N (P). As one can see in the following example, there are structures that
have the same connection sets but different non-trivial sets, i.e., E(P) = E(P ′) ;
N (P) = N (P ′).
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Example 5.20. Consider two structures P2 and P3 from Example 5.4. In that ex-
ample, it was shown that both of these structures induce identical connection sets:
E(P2) = E(P3). To illustrate the assertion discussed above, E(P) = E(P ′) ;
N (P) = N (P ′), see Figure 5.4 where structure P2 and P3 are again depicted
with highlighted non-trivial sets. In the following summary table, one can com-
pare non-trivial sets corresponding to the respective structures split by their car-
dinalities.

cardinality 1 2 3
N (P2) u,v,w {u,w},{v,w} {u,v,w}
N (P3) u,v,w {u,w},{v,w} -

U1 U2 U3

u

v

w

(a): P2

U4 U5

u

v

w

(b): P3

Figure 5.4: Non-trivial sets in different structures

For a structure P, N (P) generally consists of sets with different cardinali-
ties. Considering two independence equivalent structures, it is obvious that their
classes of non-trivial sets contain the same singletons as well as sets with cardinal-
ity two. Indeed, while it is guaranteed for singletons by the fact that independence
equivalent structures are defined over the same set, for sets of cardinality two it
is guaranteed by Corollary 5.9 (a set of cardinality two represents a connection).
Whether this interesting observation also holds for sets of higher cardinality is a
question answered in Corollary 5.26

The following lemma might serve as an alternative definition of the set N (P).
This lemma will later be used in the proof of equivalence of N (P) with other
structure properties important for the equivalence problem solution, specifically
in Chapter 7.

Lemma 5.21. Let P be a structure over N , U ⊆ N , and I = {i : U ⊆ KP
i }.

U 6∈ N (P)⇔ (I = ∅) ∨ (∀i ∈ I it holds that U ⊆ SP
i )

Proof. Suppose U 6∈ N (P) – i.e., U * KP
]U [; to prove the necessity, suppose by

contradiction that I 6= ∅ and ∃i ∈ I such that U * SP
i . Since U ⊆ KP

i by
definition of I then U ∩ RP

i 6= ∅. Hence ]U [P= i which leads to contradiction.
The converse implication follows directly from Definition 5.18.
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Remark 5.22. Observe that if U ⊆ SP
]v[ then U ∪{v} is non-trivial in P. Indeed,

note that the relation U ⊆ SP
]v[ implies that U ≺P v and therefore ]v[P=]U ∪ v[P .

Since v ∈ KP
]v[ by definition of ] · [,U ∪ v ⊆ KP

]v[ ≡ KP
]U∪v[, which corresponds to

the definition of non-triviality, Definition 5.18.

Example 5.23. Consider structure P in Figure 5.5. Observe that while Ui ∈ P
as well as Ui ∈ N (P) for all i = 1, . . . , 5, the sets {u, x} and {v, x} are necessarily
non-trivial ({u, x} ∈ N (P) but {u, x} 6∈ P etc.).

U1 U2 U3 U4 U5

z

y

x

w

v

u

Figure 5.5: Structure P

The following lemma states the importance of sets of mutually connected
variables. Notice that for sets with cardinality two it coincides with Remark 5.3.
Hence, one could say that the following lemma is a generalization of Remark 5.3
in the same way as a non-trivial set (Definition 5.18) represents a generalization
of a connection defined in Definition 5.1.

Lemma 5.24. Let U be a non-empty set of mutually connected variables in P
(u↔P u

′ for all disjoint u, u′ ∈ U). Then U is non-trivial in P, i.e., U ∈ N (P).

Proof. Choose u ∈ U such that u �P u
′ for all other u′ ∈ U . This choice is always

possible and ensures that ]U [P=]u[P by definition of ] · [P . Moreover U ⊆ KP
]u[.

Indeed, realize that u↔P u
′ by assumption. Hence u′ ∈ KP

]u[ by Remark 5.3 for all

u′ ∈ U \u, which implies that U ⊆ KP
]U [. Hence U ∈ N (P) by Definition 5.18.

With the help of the previous lemma, one can prove the following interesting
assertion relating non-trivial sets to other structure properties (E() and F())
that are invariable with respect to equivalence classes. We show that N (P) is
just another invariable property of equivalent structures.

Lemma 5.25. For any two structures P,P ′ over N it holds that

if E(P) = E(P ′) and F(P) = F(P ′) then N (P) = N (P ′).
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Proof. Since the connection sets of both P,P ′ are identical, we take the connec-
tion set as fixed and we do not use the structure as the index in ↔P ,↔P ′ to
distinguish between the corresponding structures. In addition, the roles of P and
P ′ are interchangeable and therefore it is enough to prove that N (P) ⊆ N (P ′).

Consider an arbitrary U 6= ∅ such that U ∈ N (P) – i.e., U ⊆ KP
]U [ by the

definition of a non-trivial set. Choose u ∈ U such that u �P u′ for all other
u′ ∈ U . This choice is always possible (U 6= ∅) and ensures that ]U [P=]u[P . Then
U ⊆ KP

]u[, which together with Remark 5.3, implies that

u↔ U \ u. (5.2.1)

Let M ⊆ U be the maximal subset of mutually connected variables in P such
that both RP

]U [ ∩ U ⊆ M and M ↔ u′ for all u′ ∈ U \M . Then put V = U \M .

Observe that not only M 6= ∅ (u ∈ M by (5.2.1)) but also V ≺P u. Indeed,
assume for contradiction that ∃v ∈ V such that v �P u. Then ]v[P=]u[P=]U [P
by definition of u and the fact that V ⊂ U . Then v ∈ RP

]U [ which contradicts the
choice of M and the fact that v 6∈M .

Since M is a set of mutually connected variables in P ′ by E(P) = E(P ′), M is
non-trivial in P ′ by Lemma 5.24 and M ⊆ KP ′

]M [. One can distinguish two cases:

V = ∅ and V 6= ∅.
If V = ∅, then U ≡ M and the lemma is proven. Suppose that V 6= ∅.

The next step is to prove that V ⊂ KP ′

]M [ as well. Assume for contradiction that

∃v ∈ V such that v 6∈ KP ′

]M [. Then there exists v′ ∈ V \ v such that v′ = v

(otherwise v ∈ M). Considering the fact V ≺P u and {v, v′} ↔ u by (5.2.1),
we get 〈v, v′|u〉 ∈ F(P) and 〈v, v′|u〉 ∈ F(P ′) by F(P) = F(P ′). The fact that
u ∈ M ⊆ KP ′

]M [ implies that u �P ′ M , which together with v ≺P ′ u (because

of 〈v, v′|u〉 ∈ F(P ′)) can be composed into v ≺P ′ M . Moreover, v ↔ M by
definition of M , and therefore v ∈ KP ′

]M [ by Remark 5.3, which contradicts the
assumption.

Hence, V ∪M ⊆ KP ′

]M [ necessarily and since ]U [P ′= max(]V [P ′ , ]M [P ′) =]M [P ′ ,

U = V ∪M ⊆ KP ′

]M [ ≡ KP ′

]U [ and U ∈ N (P ′) by Definition 5.18.

With respect to the previous lemma and Corollaries 5.9, and 5.16 (i.e.,
I(P) = I(P ′) ⇒ E(P) = E(P ′) ∧ F(P) = F(P ′)) we can easily declare that the
set N (P) is another invariable property of independence equivalent structures:

Corollary 5.26. If two structures over N are independence equivalent then they
induce the same set of non-trivial sets. (I(P) = I(P ′)⇒ N (P) = N (P ′))

Remark 5.27. It became apparent that there is a close connection between the
system of non-trivial sets and characteristic imsets introduced by Studený, Hem-
mecke, and Lindner [54] as a unique algebraic representative of a Bayesian net-
work structure. It is a 0-1 vector indexed by subsets of the set of variables. It
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appears that in the case of Bayesian network structure – DAG – inducing the same
independence model as a given compositional model structure, the characteristic
imset of the DAG takes value 1 on components corresponding to non-trivial sets
only in the respective compositional model structure.

Note that the basic idea for introducing such an algebraic representative lies in
possibility of using classical linear programming methods for learning the Bayesian
network structure. For example, we refer to [54] for solution in the case of undi-
rected forests.

5.3 Column approach

Just as the Connection set E() and F-conditions F(), neither nontrivial sets N ()
represent an appropriate tool for the decision of the non-equivalence of two com-
positional model structures. For this reason we continued in the study of equiva-
lence classes and have discovered other invariants of equivalent structures based
on columns.

The following idea is very simple: if we take into account the maximal non-
trivial sets in the sense of inclusion we can say that, if two structures induce the
same non-trivial set, then they naturally induce the same maximal non-trivial sets
as well. Moreover, as shown below, every maximal non-trivial set corresponds to
a column. This is also why we call this approach a column approach.

Definition 5.28. Let P = U1, . . . , Un be a structure. A set Ui is a non-trivial
column of P if Ui = K]Ui[. Otherwise it is a trivial column of P. The symbol
ntriv(P) denotes the set of all non-trivial columns in P.

Remark 5.29. Observe that ntriv(P) = {KP
i ∈ P : RP

i 6= ∅}.

Remark 5.30. Recall that RP
1 , . . . , R

P
|P| is a disjoint partition of KP

1 ∪. . .∪K
P
|P| =

N for every structure P over N . Since RP
i 6= ∅ for nontrivial column KP

i , it is
obvious that |ntriv(P)| ≤ |N |.

Observe that there is a close relationship between non-trivial columns and non-
trivial sets of variables. In fact, an arbitrary non-trivial column of a structure P
is a non-trivial set in P as well, i.e., ntriv(P) ⊆ N (P). Conversely, if a set U is
non-trivial in P then U is a subset of a non-trivial column from P.

Lemma 5.31. Having fixed structure P, the maximal non-trivial sets (with re-
spect to inclusion) in P coincide with maximal sets in ntriv(P) (with respect to
inclusion), that is, maximal columns with at least one box-marker.

Proof. To prove this assertion it is enough to realize that every non-trivial column
Ui ∈ ntriv(P) represents a non-trivial set of variables U = KP

]U [ at the same
time. Similarly, the existence of a non-trivial set U implies that U ⊆ K]U [ by
Definition 5.18.
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5.3.1 Strong core

By Corollary 5.26 and Lemma 5.25 non-trivial sets are the same for a class of
equivalent structures. Hence maximal non-trivial sets, that is, maximal non-
trivial columns (by Lemma 5.31) in them, coincide as well. In other words,
Lemma 5.25 induces another characteristic property of a class of equivalent struc-
tures. This property is known as the strong core of a structure.

Definition 5.32. For a structure P over N , its strong core C∗(P) is the set
of its maximal non-trivial columns with respect to inclusion. (C∗(P) = {U ∈
ntriv(P) : ∄V ∈ ntriv(P) such that U ⊂ V } where U, V ⊆ N .)

Example 5.33. Consider structure P = U1, U2, . . . , U7 in Figure 5.6. Note that
C∗(P) = {U4, U5, U7}. Indeed, observe that U1 ⊂ U4, U2 ⊂ U4, U3 ⊂ U4 where
U4 ∈ ntriv(P). Since U6 is a trivial column in P, the inclusion U5 ⊂ U6 has no
impact.

U1 U2 U3 U4 U5 U6 U7

z

y

x

w

v

u

Figure 5.6: Structure P

Recall that C∗(P) ⊆ N (P). Since non-trivial sets of two equivalent struc-
tures coincide by Corollary 5.26, the maximal non-trivial sets coincide as well.
Thus, maximal non-trivial columns (by Lemma 5.31) coincide for independence
equivalent structures.

Corollary 5.34. Let P be a structure over N . Then C∗(P) = C∗(P ′) for every
equivalent structure P ′.

Example 5.35. Consider three structures P1,P2,P3 over the same variable set
{u, v, w, x} shown in Figure 5.7. Observe that these structures are composed
from eight different sets – columns: U1, . . . U8. Notice that the strong core is
the same for all three structures: C∗(P1) = C∗(P2) = C∗(P3) = {U3, U4} =
{{u, v, w}, {v, w, x}}. Thus, considering the necessary condition from Corol-
lary 5.34 only, these structures could be equivalent. But they are not, as we
shall see in Example 5.38.
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U1 U2 U3 U4 U5
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w

(a): P1

U6 U4 U3
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(b): P2

U7 U8 U4 U3
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v

w

(c): P3

Figure 5.7: Structures with the same strong core

Remark 5.36. Unlike the invariants previously discussed in Remarks 5.10 and 5.17,
this characteristic property does not correspond to any standard characteristics of
equivalent DAGs. Still, given the definition, strong structure core could corre-
spond to a set of maximal families induced by the corresponding G = (N,E).
Note that family fam(u) means the set u ∪ pa(u) where pa(u) = {v ∈ N : (v →
u) ∈ E}.

Recall we can generate all DAGs which are equivalent to a given one with the
help of the so-called legal arrow reversal. By a legal arrow reversal we understand
the change of DAG G into DAG G′ by replacement of an arrow u→ v (in G) with
u← v (in G′) under the condition that paG(u)∪ u = paG(v). If famG(v) = V =
paG(u) ∪ {u, v} belongs to maximal families (with respect to inclusion), then it
belongs to maximal families in G′ as well. Indeed, since paG′(u) = paG(u)∪v then
famG′(u) = V . Since there are no other arrow changes, all other families remain
the same and V belongs to maximal families in G′ and in all other equivalent
DAGs.

5.3.2 Weak core

Consider two equivalent structures, one of which has a non-trivial column U
which does not exist in the other. What can be said about it? Not much so
far. According to Corollary 5.34, there has to be another non-trivial column V
such that U ⊂ V . Does this superset column V have any special relationship to
U? The reader can immediately see that ]U [<]V [. Indeed, U would otherwise
be trivial. Another very interesting relationship may be discovered by multiple
applications of Lemma 5.25. It appears that it is useful to extend strong structure



5.3. COLUMN APPROACH 53

core to obtain the so-called weak structure core – a more complex set of columns
that are common to all structures equivalent with the given one.

Definition 5.37. For a structure P, its weak core C(P) is the set of non-trivial
columns that are not equivalent to the S-part of any other non-trivial column.
(C(P) = {KP

i ∈ ntriv(P) : K
P
i 6= SP

j for all other KP
j ∈ ntriv(P)}.)

Note that, for any arbitrary structure, the extended weak core includes not
only the already defined strong core but also all non-trivial columns that are not,
let us say, S-subsets of another non-trivial column. (By the term S-subset we
have in mind the situation when KP

i = SP
j . Here K

P
i is an S-subset of KP

j in P.)

Example 5.38. Consider structure P from Figure 5.6 once more. One can see
that C(P) = {U1, U4, U5, U7}. Observe that C∗(P) ⊂ C(P) in this structure.

Observe that a weak core contains almost all non-trivial columns of the struc-
ture. In Example 5.38, C(P) contains all non-trivial columns except U2, U3. Now
we will show that a weak core is another invariant property of a class of equivalent
structures. As a result, we have a very simple and powerful tool in our hands.
Especially in comparison with Corollaries 5.9, 5.16, and 5.34.

First, we have to prove three essential auxiliary assertions. They enable us to
prove the desired invariance of the weak core with respect to a class of equivalent
structures.

Lemma 5.39. Consider a structure P over N, U ⊂ N, and v ∈ N \U such that
(U ∪ v) ∈ N (P). If v 6∈ KP

]U [ then U ⊆ SP
]v[.

Proof. First prove that U ≺ v. Assume for contradiction that U � v while
v 6∈ K]U [. Then ]U ∪ v[=]U [ and (U ∪ v) ⊆ K]U [ by non-triviality of (U ∪ v) in P.
This, however, contradicts the assumption of v 6∈ K]U [. Hence, U ≺ v.

It follows that ]U ∪ v[=]v[ and U ⊂ K]v[ by non-triviality of (U ∪ v) in P.
Combining it with relation U ≺ v, one gets that U ⊆ SP

]v[.

Corollary 5.40. If, for a given structure P, it holds that {u, v, w} ∈ N (P) and
{u, v} ≺P w, then {u, v} ⊆ SP

]w[.

The following lemma is purely technical. It covers a very interesting part of
the reasoning process that was consistent in several previous proofs. Therefore,
for the sake of clarity, it is stated separately and we refer to it in respective proofs.

Note that the most important part is this: If a non-trivial set U is a subset of
S-part of a non-trivial column then, under certain circumstances, there is another
subsequent non-trivial column that contains U in its S-part as well.
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Lemma 5.41. Consider two structures P,P ′ over N such that N (P) = N (P ′),
U ⊂ N , v ∈ N \U , U ∈ N (P), ]U [P<]v[P , and KP

]U [∩K
P
i ⊆ U for all ]U [P< i ≤

]v[P . If
U ⊂ SP

]v[ and SP
]v[ ∩K

P ′

]U∪v[ ⊆ U,

then ∃v′ ∈ N : U ≺P v
′ ≺P v such that

U ⊆ SP
]v′[ and SP

]v′[ ∩K
P ′

]U∪v′[ ⊆ U.

Proof. PutW = SP
]v[\U. Note thatW 6= ∅ by assumption. Choose and fix v′ ∈ W

such that v′ �P w for all other w ∈ W. Realize that

v′ 6∈ KP
]U [ (5.3.1)

by the fact that v′ 6∈ U by its definition and assumption of KP
]U [ ∩K

P
]v[ ⊆ U .

Since U ⊂ SP
]v[ by assumption and v′ ∈ SP

]v[ by its definition, (U ∪ {v, v′}) ∈

N (P) by Remark 5.22. (See Figure 5.8 for illustration where, however, columns
out of focus are omitted for the sake of lucidity. Note that by a set of bullets in
a box in one column we denote the situation in which we are not sure about the
markers’ shapes, but at least one of them is a box-marker. A situation in which
there is definitely no marker in a certain position is marked as a cross at that
position.)

×. . . . . . . . . . . .

KP

]U [ KP

]v′[ KP

]v[

v

W
v′

W ′;w′

U

KP

]U [ \ U

P

(a): part of P

×
×

?. . . . . . . . .

KP
′

]U∪v[ KP
′

]v′[

P ′

(b): part of P ′

Figure 5.8: Proof of Lemma 5.41

Since we assume that v′ 6∈ KP ′

]U∪v[ (see the assumption SP
]v[ ∩K

P ′

]U∪v[ ⊆ U),

U ∪ v ⊆ SP ′

]v′[ and U ≺P ′ v′ (5.3.2)

by Lemma 5.39. That is why U ∪ v′ ∈ N (P ′) by Remark 5.22. Then, however,

U ⊆ SP
]v′[ (5.3.3)
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by Lemma 5.39, (5.3.1) and the fact that N (P) = N (P ′). It also implies that

U ≺P v
′ ≺P v. (5.3.4)

Put W ′ = SP
]v′[ \ U . Then the choice of v′ guarantees that W ∩ W ′ = ∅.

Let us prove that SP
]v′[ ∩K

P ′

]U∪v′[ ⊆ U . Assume for contradiction that for at least

one w′ ∈ W ′ it holds that w′ ∈ KP ′

]U∪v′[. Observe that KP ′

]U∪v′[ ≡ KP ′

]v′[ by (5.3.2)

and moreover, U ∪ v ⊆ SP ′

]v′[. Then {v, v′, w′} is a non-trivial set in P ′. Since

w′ ≺P v′ ≺P v by definition of W ′ and W then {v′, w′} ⊆ SP
]v[ by Lemma 5.40.

Hence, w′ ∈ W which contradicts withW ∩W ′ = ∅. Therefore, SP
]v′[∩K

P ′

]U∪v′[ ⊆ U .

This, together with (5.3.3) and (5.3.4), proves the lemma.

If we properly investigate the previous lemma, we find out that it might be
applied recursively on its own. Since, moreover, U ≺P v′ ≺P v and the number
of variables is finite, it is clear that there must exist v′′ such that U = SP

]v′′[:

Corollary 5.42. Consider two structures P,P ′ over N such that N (P) = N (P ′).
Let U ∈ N (P) and v ∈ N \U be such that KP

]U [∩K
P
i ⊆ U for all i ∈ N for which

]U [P< i ≤]v[P . If
U ⊂ SP

]v[ and SP
]v[ ∩K

P ′

]U∪v[ ⊆ U

then ∃w ∈ N such that U = SP
]w[.

In a case where U is a non-trivial column, this fact has a very interesting
consequence concerning weak core C(P), stated in the following lemma.

Lemma 5.43. Consider two structures P,P ′ over N with N (P) = N (P ′), and
U ∈ ntriv(P) such that U ⊂ SP

]v[ for some v ∈ N \ U . If SP
]v[ ∩K

P ′

]U∪v[ ⊆ U then

U 6∈ C(P).

Proof. Since U ∈ ntriv(P), U = KP
]U [ and K

P
]U [ ∩ K

P
i ⊆ U for all i = 1, . . . , |P|

and therefore even for ]U [P< i ≤]v[P . Using Corollary 5.42 we get w ∈ N such
that U = SP

]w[. Then, however, U 6∈ C(P) by Definition 5.37.

Now we can prove the professed claim that the weak core is another invariant
property over a class of equivalent structures.

Theorem 5.44. For two structures P,P ′ such that N (P) = N (P ′) it holds that
C(P) = C(P ′).

Proof. Since the roles of P,P ′ are interchangeable, it suffices to verify C(P) ⊆ C(P ′).
Suppose for contradiction that ∃U ∈ ntriv(P) such that U ∈ C(P) and U /∈
C(P ′). We can distinguish two possible cases of U /∈ C(P ′):
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1) U ∈ ntriv(P ′)

2) U /∈ ntriv(P ′)

First, we will show that in both cases there exists a column KP ′

i such that U ⊂
KP ′

i and, moreover, for all v ∈ KP ′

i \ U it holds that U ∪ v is a non-trivial set in
both P,P ′.

1) Assume that U ∈ ntriv(P ′). Since U 6∈ C(P ′), ∃i ∈ N, such that U = SP ′

i

where KP ′

i ∈ ntriv(P
′). Put V = KP ′

i \ U ≡ RP ′

i (note that V 6= ∅) and observe
that U ∪ v ∈ N (P ′) = N (P) for all v ∈ V by Remark 5.22.

2) Similarly, assume U 6∈ ntriv(P ′). Nevertheless, U is a non-trivial set in P ′

by N (P) = N (P ′) and the fact that U ∈ C(P). Therefore there exists a column
such that U ⊂ KP ′

]U [. Put V = KP ′

]U [ \ U . Now U ∪ {v} is non-trivial for all v ∈ V .

Let us point out that i =]U [P ′ in this case.
Observe that

i =]U ∪ v[P ′ (5.3.5)

holds for all v ∈ V in both cases U ∈ ntriv(P ′) and U 6∈ ntriv(P ′).
Since U, V are disjoint and N (P ′) = N (P), U ⊆ SP

]v[ for all v ∈ V by

Lemma 5.39, where the inclusion may be made strict using the fact that U ∈ C(P).
Hence

U ⊂ SP
]v[. (5.3.6)

for all v ∈ V . Indeed, otherwise U = SP
]v[ for some v ∈ V and U 6∈ C(P) by

definition of weak core. Choose and fix v ∈ V and the corresponding KP
]v[ such

that v �P v
′ for all other v′ ∈ V . This choice is always possible and ensures that

SP
]v[ ∩ V = ∅. Given that KP ′

i = U ∪ V , it implies that

SP
]v[ ∩K

P ′

i ⊆ U. (5.3.7)

Using (5.3.5), expression (5.3.7) may be rewritten into

SP
]v[ ∩K

P ′

]U∪v[ ⊆ U. (5.3.8)

Consider our assumption of U ∈ ntriv(P), (5.3.6), and (5.3.8). Then Lemma 5.43
may be applied and one gets U 6∈ C(P), which contradicts with the assumption.

By combining both Corollary 5.26 and the previous lemma, we easily come
to the conclusion that the weak core is another invariant property of a class of
equivalent compositional model structures:

Corollary 5.45. Let P,P ′ be two structures over N . If I(P) = I(P ′) then
C(P) = C(P ′).
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Example 5.46. Consider structures P1,P2,P3 from Figure 5.7 again. By Ex-
ample 5.35, the strong cores of the respective structures coincide. (C∗(P1) =
C∗(P2) = C∗(P3) = {U3, U4}). Thus, considering only Corollary 5.34, these
structures could be equivalent.

Conversely, weak cores of these structures are completely different:

• C(P1): {U1, U2, U3, U4}

• C(P2): {U3, U4}

• C(P3): {U3, U4, U7, U8}

Therefore these structures cannot be equivalent by Corollary 5.45.

The conclusion of the previous Example 5.46 could also be obtained using
another (previously discovered) property invariable for equivalent structures, such
as the F-condition set. However, we believe that this solution is more elegant and
easier to use.
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U1 U3 U2
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(b): P5

U3 U1 U2
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w

v

u

(c): P6

Figure 5.9: Non-equivalent structures with the same weak core.

Nevertheless, even the weak core characteristic is not sufficient to guaran-
tee the equivalence of respective structures. For example, consider structures
P4,P5,P6 in Figure 5.9. Observe that they all induce the same weak structure
core C(P4) = C(P5) = C(P6) = {U1, U2, U3} and, considering only Corollary 5.45,
these structures could be equivalent. Nevertheless, they do not induce equal F-
conditions: F(P4) = {〈u, w|y〉} while F(P5) = F(P6) = ∅. Hence P4,P5 and
P4,P6 cannot be equivalent by Corollary 5.16. (Note that P5,P6 are indepen-
dence equivalent.)

5.4 Reduced structure

Another natural reasoning arises in connection with Corollary 5.45. Consider
a structure P such that all its columns belong to its weak core C(P). Thus,
considering Corollary 5.45, every equivalent structure P ′ contains all columns
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from P. Above that, these columns are not only in its weak core C(P ′), but
they literally represent its complete weak core (i.e., if a column from P ′ does not
belong to P it also lies outside of C(P ′)).

This gives us quite a good notion of possible equivalent structures. Such a
structure in which where all its columns lie in its weak core as well, is literally a
”core” of a class of independence equivalent structures. Beyond that, it explains
why we call such a set of columns a core. It is literally the core of a class of
equivalent structures. We denote such a structure by the epithet reduced.

Definition 5.47. By a reduced structure we understand a structure P in which
KP

i ∈ C(P) for all i = 1, . . . , |P|.

Example 5.48. Observe that structure P1 depicted in Figure 5.7a is not reduced
since KP1

5 ≡ U5 is trivial column, and as such it cannot be a part of the weak core.
Similarly, KP2

1 = SP2

2 in structure P2 from Figure 5.7b and therefore KP2

1 6∈ C(P2)
and P2 is not reduced. On the contrary, structure P3 in Figure 5.7c is reduced.

Remark 5.49. The epithet ”reduced” comes from a parallel with fractions and
their reduction (cancelation). When one writes out operators of composition ap-
plied on a generating sequence π1(K1), π2(K2), . . . , πn(Kn), the following fraction
appears:

π1(K1) · π2(K2) · . . . · πn(Kn)

π2(S2) · . . . · πn(Sn)
(5.4.1)

In the case of structures, we deal only with sets of variables K1, . . . , Kn. One
can imagine the fraction (5.4.1) as

K1 ·K2 · . . . ·Kn

S2 · . . . · Sn

(5.4.2)

in that case. Considering the fact that there are sets instead of numbers in the
respective fractions, we use the expression cancelation for ”reduction” of respec-
tive fractions. If, for example, K2 = Sn, one can then perform the cancelation of
K2 and Sn in (5.4.2). The corresponding structure is not reduced.

For every non-trivial column KP
i ∈ ntriv(P), it holds that RP

i 6= ∅. Hence
such a column introduces at least one new variable into the sequence P =
KP

1 , . . . , K
P
n . Note that {RP

i }i=1,...,n is a partition of KP
1 ∪ . . . ∪ K

P
n . There

is no trivial column in a reduced structure. Since the number of variables is lim-
ited, the number of columns has to be limited too. Moreover, it is limited by the
number of variables |N | over which the structure is defined.

Remark 5.50. Let P be a reduced structure over N . Then |P| ≤ |N |.

Corollary 5.51. Let P be a reduced structure over N . Then every equivalent
structure P ′ contains all columns from P.
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Corollary 5.52. Let P,P ′ be two equivalent and reduced structures over N . Then
P,P ′ consist of the same columns (possibly in different ordering – they are each
other’s ”permutations”).

5.5 Formal ratio

The concept of a reduced structure – or more precisely, Formula (5.4.2) – brought
us to the idea of the so-called formal ratio. Formal ratio is a fraction with sets of
variables in both numerator and denominator, assigned to every structure. Two
formal ratios coincide if their numerators consist of the same sets and, at the
same time, their denominators consist of the same sets.

Definition 5.53. One writes a formal ratio for every structure P as follows: in
the numerator one lists sets KP

i for i = 1, . . . , |P|, while in the denominator one
lists sets SP

i for i = 2, . . . , |P|. Then ”cancelation” is performed: one occurrence
of a set U ⊆ N in the denominator is canceled against one occurrence of U in
the numerator.

Example 5.54. For example the structure P2 in Figure 5.7b induces the following
”ratio”.

{v, x} · {v, w, x} · {u, v, w}

{v, x} · {v, w}
(5.5.1)

Since the set {v, x} is in both the numerator and the denominator, one can per-
forms its ”cancelation” to produce the formal ratio of P2

{v, w, x} · {u, v, w}

{v, w}
. (5.5.2)

Compare this definition with Definition 5.37, the definition of a weak core.
You will find out that these two definitions are symmetrical in a way. Let P be
a structure. In a case where P is reduced, there can be no cancelation during
the formal ratio creation process, and the formal ratio corresponds precisely to
P. This means:

Remark 5.55. In the case of reduced structure P, the numerator of the respec-
tive formal ratio corresponds to columns ({KP

i }i=1,...,|P|) while the denominator
consists of {SP

i }i=2,....|P|.

In the case of non-reduced structure P, there are at least two indices i, j ∈ N

such that KP
i = SP

j . Hence a cancelation may be performed and these two sets
are removed. It follows that:

Corollary 5.56. The numerator of a formal ratio corresponds to the weak core
of the corresponding structure.
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Example 5.57. Consider structures P4, P5, and P6 from Figure 5.9. Note that
all of these structures are reduced. Hence, their formal ratios are as follows:

P4 :
{u, v} · {w, x} · {u, w, y}

{u, w}

P5 :
{u, v} · {w, x} · {u, w, y}

u · w

P6 :
{u, v} · {w, x} · {u, w, y}

u · w

Observe that formal ratios corresponding to P5 and P6 coincide.

The formal ratio is a very important feature of structures. As is shown later, it
is one of the invariable properties of equivalent structures. In addition, it is a suf-
ficient property through which one can decide on equivalence of the corresponding
structures. It is another direct characterization of equivalent structures.

Considering Remark 5.55 and Lemma 5.21, one can prove a very interesting
lemma that relates a formal ratio to non-trivial sets.

Lemma 5.58. If formal ratios of two reduced structures P,P ′ coincide, then

N (P) = N (P ′)

.

Proof. Assume that both P and P ′ are defined over the set of variables N . We
show that (2N \ N (P)) = (2N \ N (P)), i.e., U 6∈ N (P) ⇔ U 6∈ N (P ′) for
U ⊆ N . Since the role of P and P ′ is interchangeable, it suffices to verify
(2N \ N (P)) ⊆ (2N \ N (P)). Assume that formal ratios of both structures
coincide and they are equal to

U1 · U2 · . . . · Un

S2 · . . . · Sn

(5.5.3)

Put I = {i ∈ N : U ⊆ KP
i }. Suppose U 6∈ N (P), then one can distinguish

two cases by Lemma 5.21

I. I = ∅

II. I 6= ∅ and ∀i ∈ I holds that U ⊆ SP
i

If I = ∅ then U * KP
k for all k = 1, . . . , n. Realizing the fact that the numer-

ator of the respective formal ratio (5.5.3) corresponds to columns {KP
k }k=1,...,n as

well as {KP ′

l }l=1,...,n by Remark 5.55, it follows that U * KP ′

l for all l = 1, . . . , n,
which indicates that U 6∈ N (P ′) by Lemma 5.21.
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If |I| ≥ 1 then the number of supersets of U in the numerator of (5.5.3) equals
to |I| as well as the number of supersets of U in its denominator. Since (5.5.3) is
the same for P ′ and P ′ is reduced, then there are |I| columns from P ′ such that
U ⊆ KP ′

k for k ∈ N, and |I| columns where U ⊆ SP ′

l for l ∈ N by Remark 5.55.
The fact (U ⊆ SP ′

i ⇒ U ⊆ KP ′

i ) implies that ∀i ∈ {1, . . . , n} such that U ⊆ KP ′

i

holds that U ⊆ SP ′

i . This concludes U 6∈ N (P ′) by Lemma 5.21.
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Chapter 6

Indirect characterization

Recall that the previously formulated Equivalence problem includes the problem
of how to recognize whether two given compositional model structures P,P ′ over
N induce the same independence model. This includes both:

(a) an easy rule for recognizing that two structures are equivalent in this sense.
(Solution of this subproblem is usually named as direct characterization and
it was partially solved in previous sections.)

(b) an easy way to get from P to P ′ in terms of some elementary operations.
This is usually denoted as indirect characterization.

Note that another very important aspect of the equivalence problem is the
ability to generate all structures that are equivalent to a given structure.

A reasonable solution to this problem would be a group of elementary opera-
tions. We consider those that change structure P while the induced independence
model I(P) remains untouched. Concatenation of these operations would grad-
ually generate a class (preferably the whole class) of equivalent structures.

What type of such operations might be expected? For simplicity, we must
first restrict our attention to reduced structures defined at the end of the previous
section. Recall that, according to Corollary 5.52, equivalent reduced structures
consist of the same columns. Therefore they may differ only in column ordering.
Thus, reduced equivalent structures are their own ”permutations”. In contrast,
non-reduced structures may generally contain some extra columns. However, they
are limited to those that do not affect the weak core C(P); trivial columns (Ki =
Si) and ”strict” subsets of weak core columns (Ki = Sj for some Kj ∈ C(P)).

This means we may basically have only two types of operations: permutations
and adding/removing columns. Considering the definition of a weak core, no other
operations make sense.

By experimenting with equivalent structures, four different elementary oper-
ations on a structure-preserving independence model were discovered. We call

63
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them IE (Independence Equivalent) operations. Let us note that when these op-
erations are applied to a structure, the respective generating sequence of the cor-
responding compositional model is accordingly modified. This issue is addressed
in Chapter 8. We recognize the following operations:

IE operations

• constant transposition

• box transposition

• simple reduction

• simple extension

Furthermore, we distinguish several complex operations. As it will be proven
later, each of these operations may be replaced by a sequence of IE operations.
These complex operations are more than useful in proofs of various assertions.

Composed operations

• left cycle permutation

• right cycle permutation

• box cycle permutation

• reduction

The next subsection deals with permutations using the definitions of elemen-
tary permutations – the so-called transpositions – in which two adjacent columns
exchange their position in a structure. We prove that an induced independence
model is invariant with respect to these transpositions. Similarly, the induced
independence model is invariant to permutations that can be implemented as
sequences of these transpositions.

Operations that add or remove columns are introduced in the last part of this
section. We similarly prove that the induced independence model of the structure
is invariant with respect to these operations. In addition, we present an algorithm
which converts any structure to its equivalent reduced form.
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6.1 Transpositions and permutations

The question of whether two structures are equivalent – that is, whether they in-
duce the same independence models – can be converted to the question of whether
they induce the same dependence models. Recall that induced dependence model
D(P) is a set of triples 〈U, V |Z〉 such that U 6⊥⊥V |Z[P]. Note that we can confine
our efforts to cases where U and V are singletons. Any other complex depen-
dence relation can be replaced by a set of these elementary ones. This nontrivial
consequence was already discussed in Remark 3.21.

By Definition 3.20, a triple 〈u, v|Z〉 ∈ D(P) if and only if there exists a Z-
avoiding trail between markers of u and v (u 6⊥⊥v|Z[P]) in a corresponding perseg-
ram. If a structure and its permutation are independence equivalent, then one
should be able to find ”the same” Z-avoiding trails in both corresponding perseg-
rams (and in all other equivalent permutations). By the same Z-avoiding trails
we understand arbitrary Z-avoiding trails connecting the same couple of vari-
ables. Recall that a Z-avoiding trail is a sequence of markers; every marker is
defined by its coordinates – the column and the variable.

In the case of permutation, we consider the following convention illustrated by
Figure 6.1. We take permutation as a function and hence we can say that both the
structure and its permutation consist of the same columns. Similarly, in case of
persegrams, they consist of the same columns even if the shapes of several markers
may differ. Observe that for structure U1, U2, U3 in Figure 6.1a, its permutation
U3, U1, U2, and variable v ∈ U2, while marker [U2, v] is a box-marker in U1, U2, U3

(Figure 6.1a), it is a bullet in U3, U1, U2 (Figure 6.1b). Hence, we suppose that
markers are tied to columns and they move during permutations as well.

U1 U2 U3

u

v

w

(a)

U3 U1 U2

u

v

w

(b)

Figure 6.1: Marker [U2, v] moving and changing during permutation

Let P be a structure such that u 6⊥⊥v|Z[P]. Then there exists at least one
Z-avoiding trail connecting u with v in the respective persegram. Choose one of
the trails of this type and denote it as τ .

Since columns are moving during a permutation, we move the sequence of
markers τ in a corresponding way during the permutation as well. (Recall that τ is
a sequence of markers in the permutated structure as well – possibly some bullets
have changed into box-markers and vice versa). However, the new sequence of
markers τ may not meet all conditions required from a Z-avoiding trail (see
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Definition 3.18) in the permutated structure. Luckily, several properties from the
definition are invariant with respect to a permutation. We state this observation
in the form of a lemma since we refer to it in several following proofs.

Lemma 6.1. Consider a structure and a sequence of markers τ such that τ is a
Z-avoiding trail in the structure. Then τ meets conditions 0., 1., 3., and 4a. of
Definition 3.18 in every permutation of the structure.

Proof. It is quite obvious: vertical and horizontal connections remain vertical and
horizontal, and if they regularly alternate in P, they do in Pσ as well. Similarly,
no horizontal connection starts to correspond to any variable from Z if it didn’t
before the permutation.

So, the only possibility where τ may not meet the conditions of Definition
3.18 are the following:

• Each vertical connection must be adjacent to a box-marker (one of the mark-
ers is a box-marker).

• Two vertical connections may be in direct succession if their common ad-
jacent marker is a box-marker of a variable from Z. (Notice that this
condition is closely linked to the previous one.)

Remark 6.2. Considering the previous, the only problem that can occur during
a permutation of a structure is when a box-marker of a Z-avoiding trail τ turns
into a bullet. Then τ may not be a Z-avoiding trail in the permuted structure.

One can see the typical feature of Definition 3.18 during a permutation in the
following example:

U1 U2 U3 U4 U5

z

y

x

w

v

u

(a): {v, w}-avoiding trail

U1 U2 U4 U3 U5

z

y

x

w

v

u

(b): a sequence of markers

Figure 6.2: Feature of Condition 2. from Definition 3.18 during a structure
permutation

Example 6.3. Let U1, . . . , U5 be a structure in Figure 6.2a. Observe the high-
lighted sequence of markers [U3, u], [U3, x], [U4, x], [U4, y], [U5, y], [U5, z] which ful-
fils the conditions of Definition 3.18 and which forms a Z-avoiding trial rep-
resenting u 6⊥⊥z|Z[U1, . . . , U5] for Z ⊆ {v, w}. One can see another structure
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U1, U2, U4, U3, U5 depicted in Figure 6.2b – a permutation of U1, . . . , U5. The
sequence of the same markers [U3, u], [U3, x], [U4, x], [U4, y], [U5, y], [U5, z] is high-
lighted there as well. However, this one does not fulfill Condition 2 of Defini-
tion 3.18 – each vertical connection must be adjacent to a box-marker. The
sequence of markers in Figure 6.2b does not represent a Z-avoiding trail (for any
such Z). Moreover u⊥⊥z|{v, w}[U1, U2, U4, U3, U5] and therefore I(U1, . . . , U5) 6=
I(U1, U2, U4, U3, U5).

U1 U2 U6 U7 U5

z

y

x

w

v

u

(a): {x}-avoiding trail

U1 U2 U7 U6 U5

z

y

x

w

v

u

(b): a sequence of markers

Figure 6.3: Permutation causing a breakthrough of Condition 4b. from
Definition 3.18

Similarly, Condition 4b from Definition 3.18 (Two vertical connections may
be in direct succession if their common adjacent marker is a box-marker of a
variable from Z) may be broken. See Figure 6.3 where, in addition, Condition 2
is broken as well.

Considering Lemma 6.1 and especially Remark 6.2, one can find out that
the only way to cancel a Z-avoiding trail for a sequence of markers is when a
box-marker changes into a bullet during the permutation. Hence, when no box-
marker changes its shape during a permutation, one can conclude the following
interesting assertion:

Corollary 6.4. If τ is a Z-avoiding trail in a structure and none of its box-
markers is changed into a bullet during its permutation, then τ is a Z-avoiding
trail in the permuted structure as well.

6.1.1 Basic notions of permutations

To increase the clarity of the text, the standard concept of permutation (including
the notation) is used. Check [59] or [4] for more details. In the following, the
basic notion of permutation is recalled, as well as examples for understanding
permutations in the area of compositional models.

In mathematics, the notion of permutation is used with several slightly dif-
ferent meanings, all related to the act of permuting (rearranging in an ordered
fashion) objects or values. Informally, a permutation of a set of values is an
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arrangement of those values into a particular order. Thus there are six permu-
tations of the set {1, 2, 3}, namely [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], and
[3, 2, 1].

Definition 6.5. Let X be a set, then a permutation of X is a bijection σ : X →
X.

There are several ways to write permutations. We use the product of disjoint
cycles method, since it is well known that one can express every permutation as a
product of disjoint cycles. Let i1, i2, . . . , ir be distinct elements of X . The r-cycle
(i1 i2 . . . ir) is the permutation which maps i1 7→ i2, i2 7→ i3, . . . , ir−1 7→ ir,
ir 7→ i1 and fixes all other points in X . For a permutation of n symbols, the
collection of all permutations of this set is denoted by Tn.

Note that the cycle (1 2 4 5) can also be written as (2 4 5 1), (4 5 1 2), or
(5 1 2 4) since all these expressions contain the same information. It could not
have been written as (5 4 2 1).

If σ is a permutation of the set X , we shall write iσ for the image of the
element i ∈ X under σ (rather then σ(i)). The principal reason for doing this is
that it makes composition of permutations much easier: σ1σ2 will mean we apply
σ1 first and then apply σ2, rather than the other way around.

In case of a compositional model structure (where elements are not integers),
we should first find an association between each element (column) and an integer
– the column index will be used for this purpose. Hence by σ permutation of
structure P = KP

1 , . . . , K
P
n we think of its permutation Pσ where KPσ

iσ = KP
i .

Example 6.6. Let P = U1, U2, . . . , U8 be a compositional model structure and
σ ∈ T5 be a permutation. In a cycle such as σ = (1 2 4 5) we mean that the
permutation maps 1 to 2, 2 to 4, 4 to 5 and 5 to 1.

Since KP
i = KPσ

iσ by definition, then

U1 = KP
1 = KPσ

1σ ≡ KPσ
2

U2 = KP
2 = KPσ

2σ ≡ KPσ
4

U3 = KP
3 = KPσ

3σ ≡ KPσ
3

U4 = KP
4 = KPσ

4σ ≡ KPσ
5

U5 = KP
5 = KPσ

5σ ≡ KPσ
1

U6 = KP
6 = KPσ

6σ ≡ KPσ
6

U7 = KP
7 = KPσ

7σ ≡ KPσ
7

U8 = KP
8 = KPσ

8σ ≡ KPσ
8

by definition of σ. Hence Pσ = U5, U1, U3, U2, U4, U6, U7, U8.
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The ”composition” of two permutations σ1 and σ2 is the function obtained by
applying σ1 first and then applying σ2. Since we are writing maps on the right,
we denote this by σ1σ2. Note that in general σ1σ2 6= σ2σ1.

We put a special emphasis on the following very short cycles – transpositions :
A transposition is a cycle of length two (that is, with two elements) – the so-called
2-cycle. Thus a transposition is a permutation (i j) which simply swaps around
the two elements i and j. Transpositions are useful for the following reason: Is is
well known that every permutation can be expressed as a product of transpositions.

For example,
(1 2 3 4 5) = (1 2)(1 3)(1 4)(1 5)

does what we want for a cycle of length 5. Analogous calculations establish the
same for other lengths.

However, note that a decomposition into a product of transpositions is not
unique nor is the number of transpositions unique. For example, the cycle (1 2 3)
may be written as (1 2)(1 3), or (1 3)(2 3)(1 2)(1 2).

The final thing we need to do with permutations is invert them: Since each
permutation is a bijection, it has an inverse which also is a bijection. The inverse
transposition σ−1 of σ is the permutation that undoes the effect of applying σ.
Thus if σ : i 7→ j, then σ−1 : j 7→ i.)

To find the inverse of a permutation that is a cycle, all we have to do is write
elements of the cycle in reverse order. Thus, the inverse of (1 2 3 4) is (4 3 2 1).
Since a cycle can be written with any of its elements as the first term, we can also
write the inverse as (1 4 3 2). This provides an alternative way to write down
the inverse of a cycle. Fix the first element in the cycle and write the remaining
element in reverse order. Thus, the inverse of (1 2 3 4 5) is (1 5 4 3 2).

In a case where the permutation is a product of cycles, we must reverse the
order of cycles as well as invert each cycle. For our need it is enough to find
the inverse of a permutation that is a product of transpositions. Since for every
transposition σ = (i j) = (j i) = σ−1 then for the permutation written as the
product of transpositions we need only reverse the order of the transpositions.
Thus if σ = σ1σ2 . . . σr where σi is a transposition for all i = 1, . . . , r then σ−1 =
σrσr−1 . . . σ1, i.e., for σ = (1 2)(1 3)(1 4)(1 5) holds that σ−1 = (1 5)(1 4)(1 3)(1 2).

A permutation of a given compositional model structure is a permutation of
the columns it contains. As an example, if P = U1, . . . , U5 and σ = (1 2 4 5),
then Pσ = U5, U1, U3, U2, U4.

6.1.2 Constant transposition

Definition 6.7. For P with |P| ≥ 2 and k ∈ {2, . . . , |P|} a transposition σ =
(k−1 k) ≡ (k k−1) is said to be constant in P if RP

k−1 ∩K
P
k = ∅. We say that

Pσ is a constant transposition of P.
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Remark 6.8. Notice that, for σ = (k−1 k) and P = U1, . . . , Un, it holds that
Pσ = U1, . . ., Uk−2, Uk, Uk−1, Uk+1, . . . , Un. This means that Pσ is created from
P by swapping the positions of two adjacent columns Uk−1, Uk.

Example 6.9. Let P be the structure in Figure 6.4a. Since RP
1 ∩K

P
2 = {u} ∩

{v, w} = ∅, then by Definition 6.7 σ1 = (1 2) is a constant transposition in P.
Since RPσ1

3 ∩KPσ1

4 = {x}∩ {y, w} = ∅ then similarly σ2 = (3 4) is a constant
transposition in Pσ1. Put σ = σ1σ2, i.e., Pσ – a permutation of P – was created
from P by two constant transpositions. One can find Pσ in Figure 6.4b.

U1 U2 U3 U4 U5

z

y

x

w

v

u

(a): P = U1, U2, U3, U4, U5

U2 U1 U4 U3 U5

z

y

x

w

v

u

(b): Pσ = U2, U1, U4, U3, U5

Figure 6.4: A structure and its permutation caused by a double applica-
tion of constant transposition

Lemma 6.10. Consider structure P and a transposition σ which is constant in
P. Then RP

i = RPσ
iσ and SP

i = SPσ
iσ for all i ∈ {1, . . . , |P|}.

Proof. Since KP
i = KPσ

iσ by definition of σ and Si = Ki \Ri, it is enough to prove
that RP

i = RPσ
iσ for all i ∈ {1, . . . , |P|}.

Let σ = (k−1 k). Since j = jσ for all j ∈ {1, . . . , |P|} \ {k−1, k}, then KP
j =

KPσ
j and therefore RPσ

jσ = RPσ
j = KPσ

j \(K
Pσ
1 ∪. . .∪K

Pσ
j−1) = RP

j for the respective
j. (Note that in the case of j > k, the formula KPσ

(k−1)σ ∪K
Pσ
kσ = KP

k ∪K
P
k−1 is

applied, the validity of which is guaranteed by the nature of transposition – a
transposition only changes the order of columns but not their contents)

For index k − 1:

RPσ
(k−1)σ = RPσ

k

= KPσ
k \ (K

Pσ
1 ∪ . . . ∪K

Pσ
k−2 ∪K

Pσ
k−1)

= KP
k−1 \ (K

P
1 ∪ . . . ∪K

P
k−2 ∪K

P
k )

= RP
k−1 \K

P
k = RP

k−1

where the first and second equations are given by definition of σ and RPσ
k . The

third equation is given by the way any permutation σ works, while the last
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equation is guaranteed by the fact that σ is a constant transposition in P: RP
k−1∩

KP
k = ∅.
The part where RPσ

kσ = RP
k is a direct consequence of the fact thatRPσ

1 , . . . , RPσ
n

is a partition of KPσ
1 ∪ . . . ∪K

Pσ
n = KP

1 ∪ . . . ∪K
P
n .

Lemma 6.11. Let σ be a constant transposition in P. Then the formal ratios of
both P and Pσ coincide.

Proof. Observe that both numerators and denominators of non-canceled ratios
corresponding to P,Pσ are the same by the nature of permutation (KP

i = KPσ
iσ )

and Lemma 6.10. Then the canceled ratios have to be the same as well, which
proves the lemma.

In the case of a persegram the set RP
i , or S

P
i , corresponds to box-markers

or to bullets, respectively, in the corresponding column. If the reader realizes
this link, the adjective ”constant” makes sense. It is summarized in the following
corollary:

Corollary 6.12. No persegram marker changes its shape during repositioning
caused by constant transposition in the respective structure.

Check the validity of Corollary 6.12 in Example 6.9 which deals with constant
transposition. Observe that no box-marker turns into a bullet and vice versa in
persegrams in Figure 6.4. To illustrate, see the following table listing all box
markers of structure P and its transposition Pσ:

Box markers:
column P Pσ
1st [U1, u] [U2, v][U2, w]

2nd [U2, v][U2, w] [U1, u]

3rd [U3, x] [U4, y]

4th [U4, y] [U3, x]

5th [U5, z] [U5, z]

Similarly, one can check all bullets in both structures P and Pσ:

Bullets:
column P Pσ
1st ∅ ∅

2nd ∅ ∅

3rd [U3, u][U3, v] [U4, w]

4th [U4, w] [U3, u][U3, v]

5th [U5, x][U5, y] [U5, x][U5, y]
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Remark 6.13. Notice that if Pσ is a constant transposition of P, then σ is a
constant transposition in Pσ as well. Indeed, considering σ = (k−1 k) – a constant
transposition in P – observe that RPσ

k−1 ∩K
Pσ
k = RP

k ∩K
P
k−1 = ∅ by definition of

σ and RP
k . This also means that that the role of P and Pσ is interchangeable in

a way that if P ′ = Pσ then P = P ′σ.
Notice that since each transposition is its own inversion σ = σ−1, then σσ is

an identical permutation and that is why Pσσ = P.

Lemma 6.14. For a structure P and its constant transposition Pσ it holds that

I(P) = I(Pσ).

Proof. We show that DP = DPσ. Since the roles of P and Pσ are interchangeable
by Remark 6.13, it suffices to verify DP ⊆ DPσ.

Choose an arbitrary u 6⊥⊥v|Z[P]. Then there exists a Z-avoiding trail τ between
markers corresponding to u and v in P. Label each marker of τ uniquely so that it
can be identified in Pσ. Since no marker changes its shape by Corollary 6.12 and
τ is a Z-avoiding trail in P, then τ is a Z-avoiding trail in Pσ by Corollary 6.4
as well. Hence u 6⊥⊥v|Z[Pσ]. DP ⊆ DPσ holds true and the proof is complete.

Observe that the proof of the previous lemma would be valid even for a more
general permutation than a constant transposition defined in Definition 6.7. One
might easily omit the restriction of two consecutive columns and consider an
arbitrary permutation of all columns such that no box-marker from the whole
persegram turns into a bullet and vice versa. The restriction of two consecutive
columns was implemented due to Chapter 8 where the impact of these operations
on the respective generating sequence and compositional model is investigated.

To simplify some of the following proofs, we introduce two special permuta-
tions that can be created by iterative applications of constant transpositions.

6.1.2.1 Left cycle permutation

Definition 6.15. Consider the structure P, i ∈ {1, . . . , |P|−2}, k ∈ {2, . . . , |P|−
i} such that KP

i ⊇ SP
i+k. Then we call a cycle σL = (i+1 i+2 . . . i+k) a left cycle

permutation in P. We say that PσL is a left cycle permutation of P.

Example 6.16. As an example of a left cycle permutation, take the structure
P = U1,. . . , U5 in Figure 6.5a and consider the permutation σ = (2 3 4 5). One
can immediately see that σ is a left cycle permutation in this structure, since
KP

1 = {u, w} ⊆ SP
5 = {u.w}. See permutation Pσ in Figure 6.5d.

Lemma 6.17. If PσL is a left cycle permutation of P then one may obtain PσL
from P by iterative applications of constant transpositions.
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Proof. Let σL = (i+1 i+2 . . . i+k), then KP
i ⊇ SP

i+k by Definition 6.15. Since
every cycle of length k can be rewritten into a product of k − 1 transpositions,
we can express the considered permutation σL as σL = σ1σ2 . . . σk−1 = (i+k i+
k−1)(i+k−1 i+k−2) . . . (i+2 i+1).

Observe that ∀j : i < j < i+k holds SP
i+k ∩R

P
j = ∅ which, using Lemma 6.10,

finishes the proof.

Example 6.18. Consider a structure P in Figure 6.5a. According to the previous
proof, one can easily see that the permutation σ = (2 3 4 5) (note that σ is a
left cycle permutation in P, cf. Example 6.16) may be replaced by a product of
transpositions – σ = (4 5)(3 4)(2 3) – which are all constant transpositions. While
structures P(4 5) and P(4 5)(3 4) are on Figures 6.5b and 6.5c, respectively,
structure P(4 5)(3 4)(2 3) ≡ P(2 3 4 5) is in Figure 6.5d.

U1 U2 U3 U4 U5

z

y

x

w

v

u

(a): P = U1, U2, U3, U4, U5

U1 U2 U3 U5 U4

z

y

x

w

v

u

(b): P(4 5)

U1 U2 U5 U3 U4

z

y

x

w

v

u

(c): P(4 5)(3 4)

U1 U5 U2 U3 U4

z

y

x

w

v

u

(d): P(4 5)(3 4)(2 3) =
P(2 3 4 5)

Figure 6.5: Left cycle permutation as a product of constant transpositions

6.1.2.2 Right cycle permutation

The following special permutation can be similarly replaced by a sequence of
constant transpositions. Nevertheless, it is obviously a simple generalization of
the constant transposition as it is defined in Definition 6.7.
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Definition 6.19. Let P be a structure with |P| ≥ 2 and i ∈ {1, . . . , |P| − 1},
k ∈ {1, . . . , |P| − i}. We call a cycle σR = (i+k i+k−1 . . . i) a right cycle
permutation in P if RP

i ∩ (KP
i+1 ∪ . . . ∪K

P
i+k) = ∅. We say that PσR is a right

cycle permutation of P.

Lemma 6.20. Right cycle permutation PσR of P can by obtained from P by
iterative applications of constant transpositions.

Proof. The proof is conducted in the same style as the proof of the previous lemma
– Lemma 6.17. Assume σR = (i+k i+k−1 . . . i), then RP

i ∩(K
P
i+1∪. . .∪K

P
i+k) =

∅ by Definition 6.19. Observe that σR = σ1 . . . σk where σx = (i+x−1 i+x) for
every x ∈ {1, . . . , k}. Put P0 = P and Px = Px−1σx for all x = 1, . . . , k.

Let us prove by induction on x that σx is a constant transposition in Px−1. It
is obvious for x = 1. Assume that the induction hypothesis holds for x − 1 and
Px−1 is obtained from P by a sequence of constant transpositions σ1, . . . , σx−1.
To prove that σx is a local transposition in Px−1, it is sufficient to show that
RPx−1

i+x−1 ∩ K
Px−1

i+x = ∅. Note that to make it clear, there is an index number in
brackets, while parentheses contain transpositions in what follows. Since

[i+ x− 1](σ1 . . . σx−1)
−1 = [i+ x− 1]σ−1

x−1 . . . σ
−1
1

= [i+ x− 1]σx−1 . . . σ1

= [i+ x− 1](i+x−1 i+x−2)(i+x−2 i+x−3) . . . (i+1 i)

= i

and

[i+ x](σ1 . . . σx−1)
−1 = [i+ x]σ−1

x−1 . . . σ
−1
1

= [i+ x]σx−1 . . . σ1

= [i+ x](i+x−1 i+x−2)(i+x−2 i+x−3) . . . (i+1 i)

= i+ x

then RPx−1

i+x−1 ∩ K
Px−1

i+x = RP
i ∩ K

P
i+x by induction assumption and Lemma 6.10

where RP
i ∩K

P
i+x ⊆ RP

i ∩ (K
P
i+1 ∪ . . .∪K

P
i+k) = ∅ by the assumption and the fact

that 1 ≤ x ≤ k.

Since an induced independence model is invariable with respect to a constant
transposition by Lemma 6.14, we get that an induced independence model is in-
variant with respect to left and right cycle permutations as well, by Lemmata 6.17
and 6.20. This observation is summarized in the following corollary:

Corollary 6.21. If σ is a left or right cycle permutation in P, then I(P) = I(Pσ).
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6.1.3 Box transposition

Definition 6.22. For P with |P| ≥ 2 and k ∈ {2, . . . , |P|} we call transposition
σ = (k−1 k) ≡ (k k−1) a box transposition in P if SP

k−1 ⊆ SP
k ⊆ KP

k−1. We say
that Pσ is box transposition of P.

Example 6.23. Let P = U1, U2, U3, U4, U5 be a structure from Figure 6.6a. Ob-
serve that for adjacent columns U2 ≡ KP

2 and U3 ≡ KP
3 holds: SP

2 ⊂ SP
3 ⊂ KP

2 .
By Definition 6.22 the transposition σ = (2 3) is a box transposition in P:
Pσ = U1, U3, U2, U4, U5 was created from P by box-transposition. See both, struc-
ture P and its box transposition Pσ, in Figure 6.6.

U1 U2 U3 U4 U5

z

y

x

w

v

u

(a): P: original structure

U1 U3 U2 U4 U5

z

y

x

w

v

u

(b): Pσ – box transposition of
P

Figure 6.6: Box transposition

If one examines the two structures in Figure 6.6 more closely, one finds out
that, regardless of the permutation, all bullets seem to hold their positions. The
only thing that has changed is the location of some box-markers. This observation
holds for any box-transposition and that is also the reason why we call this
transposition a box transposition. This observation is precisely formulated in the
following assertion.

Lemma 6.24. If σ is a box transposition in P then SP
i = SPσ

i for all i =
1, . . . , |P|.

Proof. Suppose σ = (k−1 k). First, we will show that

(KP
i ∩K

P
k−1) = (KP

i ∩K
P
k ) for all i ∈ {1, . . . , k−2}. (6.1.1)

To do so, realize that since σ is a box transposition in P (SP
k−1 ⊆ SP

k ⊆ KP
k−1)

and i < k−1 then

KP
i ∩K

P
k−1 = (KP

i ∩ S
P
k−1) ∪ (KP

i ∩ R
P
k−1)

= KP
i ∩ S

P
k−1

⊆ KP
i ∩ S

P
k

⊆ KP
i ∩K

P
k−1.



76 CHAPTER 6. INDIRECT CHARACTERIZATION

As the first and last member of the previous inclusion sequence are the same,
then all elements are equal and therefore KP

i ∩ K
P
k−1 = KP

i ∩ S
P
k = KP

i ∩ K
P
k

since KP
i ∩R

P
k = ∅ by the fact that i < k. So we have proven that (6.1.1) holds.

Now, since j = jσ for all j ∈ {1, . . . , |P|} \ {k−1, k} then KP
j = KPσ

j and
therefore SPσ

j = KPσ
j ∩ (KPσ

1 ∪ . . . ∪ KPσ
j−1) = SP

j (note that in case of j > k
the knowledge of KPσ

k−1 ∪K
Pσ
k = KP

k ∪K
P
k−1 is successfully applied, which follows

from the nature of permutations).
Using (6.1.1) let us show for index k:

SPσ
k = KPσ

k ∩ (KPσ
1 ∪ . . . ∪K

Pσ
k−1)

= KPσ
k ∩ (KPσ

1 ∪ . . . ∪K
Pσ
k−2) ∪ (KPσ

k ∩K
Pσ
k−1)

= KP
k−1 ∩ (KP

1 ∪ . . . ∪K
P
k−2) ∪ (KP

k−1 ∩K
P
k )

= (KP
1 ∩K

P
k−1) ∪ . . . ∪ (KP

k−2 ∩K
P
k−1) ∪ (KP

k−1 ∩K
P
k )

= (KP
1 ∩K

P
k ) ∪ . . . ∪ (KP

k−2 ∩K
P
k ) ∪ (KP

k−1 ∩K
P
k )

= SP
k

Similarly one can see that for index k − 1:

SPσ
k−1 = KPσ

k−1 ∩ (KPσ
1 ∪ . . . ∪K

Pσ
k−2)

= KP
k ∩ (KP

1 ∪ . . . ∪K
P
k−2)

= (KP
1 ∩K

P
k ) ∪ . . . ∪ (KP

k−2 ∩K
P
k )

= (KP
1 ∩K

P
k−1) ∪ . . . ∪ (KP

k−2 ∩K
P
k−1)

= SP
k−1

Example 6.25. Consider again structures P,Pσ from Figure 6.6 where σ = (2 3)
is a box transposition in P. Observe that SP

2 = u = SPσ
2 , SP

3 = {u, w} = SPσ
3 ,

etc.
While box-marker [K2, w]P remains at its position – i.e., [K2, w]Pσ is also

box marker, the box-marker corresponding to y moves from the third column to
the second one ([K3, y]P ≡ [K2, y]Pσ) and box-marker [K2, v]P moves to the third
column on position [K3, v]Pσ.

Remark 6.26. Observe that if σ is a box transposition in P, then it is a box
transposition in Pσ as well. To prove this, check σ = (k−1 k) for the validity
of SPσ

k−1 ⊆ SPσ
k ⊆ KPσ

k−1. It corresponds to SP
k−1 ⊆ SP

k ⊆ KP
k by definition of σ

and Lemma 6.24. While the first inclusion is guaranteed by the fact that σ is a
box transposition in P, the second follows from the definition of SP

k . Moreover,
since any transposition is its own inversion: σ = σ−1 then Pσσ = P. Hence the
roles of P and Pσ are interchangeable with respect to σ. (P ′ = Pσ if and only if
P = P ′σ)
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We have shown that no marker changes its shape during constant transposi-
tion. The question, ”How do markers behave during box transposition?” naturally
arises. Note that a box transposition affects only two adjacent columns. All other
columns (as well as shape of the corresponding markers) remain untouched.

Lemma 6.27. Let σ = (k−1 k) be a box-transposition in structure P =
U1, . . . , Un. Then no box-marker turns into a bullet during box-transposition σ
in all columns except for Uk−1.

Proof. Recall that iσ = i for all i ∈ {1, . . . , n}\{k−1, k} by definition of σ. Since
SP
i = SPσ

i by Lemma 6.24 then the lemma is proven for all i ∈ {1, . . . , n}\{k−1, k}
and corresponding columns Ui.

Check the lemma also in the case of Uk. Observe that Uk ≡ KP
k = KPσ

k−1 and
SPσ
k−1 = SP

k−1 ⊆ SP
k by Lemma 6.24 and Definition 6.22. This has the following

meaning: All bullets from the column corresponding to Uk in Pσ (i.e., SPσ
k−1)

are bullets in the column corresponding to Uk in P as well (i.e., SPσ
k−1 ⊆ SP

k ).
Hence, no box-marker could change into a bullet in the column corresponding to
Uk during the transposition σ from P to Pσ.

Example 6.28. See Figure 6.6 to illustrate Lemma 6.27. We list box mark-
ers corresponding to all sets from the structure. Note that structure Pσ =
U1, U3, U2, U4, U5 from 6.6b was obtained from P = U1, U2, U3, U4, U5 (depicted
in Figure 6.6a) by box transposition σ = (2 3). Observe that, as Lemma 6.27
claims, no box-marker, except for those from U2, changes into a bullet during the
transposition.

Box markers:
column P Pσ
U1 [U1, u] [U1, u]

U2 [U2, v] [U2, w] [U2, v]

U3 [U3, y] [U3, w] [U3, y]

U4 [U4, x] [U4, x]

U5 [U5, z] [U5, z]
Observe that while the emphasized box-marker corresponding to variable w

appears for structure P in U2, for P(2 3) it is in U3.

Lemma 6.29. If σ is a box transposition in P then the formal ratio is the same
for both P and Pσ.

Proof. Observe that both numerators and denominators of non-canceled ratios
corresponding to P,Pσ are the same by the nature of permutation (KP

i = KPσ
iσ )

and Lemma 6.24 (SP
i = SPσ

i ). Then the formal ratios have to be the same as
well, which proves the lemma.
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The fact that a formal ratio is an invariable attribute with respect to box
transpositions implies that a weak structure core is invariable in relation to box
transpositions as well. Realizing the fact that a weak core is invariable with
respect to independence equivalence, another natural question arises in connec-
tion with Lemma 6.29: is the induced independence model D(P) invariant with
respect to box transpositions? The answer is yes:

Lemma 6.30. If σ is a box transposition in P then I(P) = I(Pσ).

Proof. We show that D(P) = D(Pσ). Since the roles of P and Pσ are in-
terchangeable by Remark 6.26 it suffices to verify D(P) ⊆ D(Pσ). Let P =
U1, . . . , Un and σ = (k−1 k) where k ≤ n.

Assume for contradiction u 6⊥⊥v|Z[P] while u⊥⊥v|Z[Pσ]. Without loss of gener-
ality, consider a trail τ = [Ui0 , uj0], [Ui1 , uj1], . . . [Uim , ujm] representing u 6⊥⊥v|Z[P]
such that τ involves the minimal number of markers among all trails of this type.
(Observe that uj0 = u and ujm = v.) Based on Lemma 6.1 and Corollary 6.4, one
can distinguish two cases:

I) No marker of τ turns from a box-marker into a bullet during the transposi-
tion σ.

II) At least one box-marker from τ turns into a bullet during the transposition
σ.

In a case where no box marker turns into a bullet during the transposition, τ
is a Z-avoiding trail by Corollary 6.4 in Pσ as well, and the proof is complete.

Assume that there is at least one marker of τ which turns from a box-marker in
P into a bullet in Pσ. Every Z-avoiding trail consists of horizontal and vertical
connections, where each vertical connection must be adjacent to a box-marker
by Definition 3.18. Assume the existence of at least one marker such that the
respective vertical connection is adjacent only to bullets. (Otherwise τ fulfills
Definition 3.18 and the proof is complete.) Note that by Lemma 6.27 the only
opportunity for this to happen is when the marker corresponds to a variable from
Uk−1.

Hence τ = [Ui0 , u], . . . , [Uk−1, ux−1], [Uk−1, ux], . . . , [Uim , v] where

{ux−1, ux} ⊆ SPσ
k (6.1.2)

while {ux−1, ux} * SP
k−1 by our assumptions (indeed, recall that τ is a Z-avoiding

trail in P, and each vertical connection is adjacent to a box-marker; box markers
of KP

k−1 correspond to RP
k−1). Without loss of generality, let us assume that

ux ∈ R
P
k−1, (i.e. ux 6∈ S

P
k−1). (6.1.3)
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Then, however, {ux−1, ux} ⊆ SP
k ⊆ Uk by (6.1.2) and Lemma 6.24. One

can move the respective vertical connection to the columns corresponding to Uk.
Then ux ∈ RPσ

k−1 by the fact that KPσ
k−1 = Uk, Lemma 6.24, and (6.1.3), the

new vertical connection is adjacent to a box marker. Repeat the process for all
”broken” vertical connections and then denote the new sequence of markers by
τ ′ – note that each of its vertical connections is adjacent to a box-marker now.
See Figure 6.7 for illustration – however, columns out of focus are omitted in this
Figure for the sake of lucidity.

Uk−1 Uk

(a): P : τ

Uk Uk−1

(b): Pσ : τ

Uk Uk−1

(c): Pσ : τ ′

Figure 6.7: Correction of a trail damaged by box transposition σ = (k −
1, k)

A careful reader may object that Condition 4.a in Definition 3.18 may be
corrupted during execution of the previous correcting algorithm (vertical and
horizontal connections may not regularly alternate in τ ′); see Figure 6.8 for illus-
tration:

Uk−1 Uk

(a): P : τ

Uk Uk−1

(b): Pσ : τ

Uk Uk−1

(c): Pσ : τ ′

Uk−1 Uk

(d): P: trail
shorter than
τ

Figure 6.8: First trail, which leads to two verticals, contradicts with the
trail on fourth figure which is shorter.

Considering Lemma 6.1 and the fact that τ is a Z-avoiding trail in P, it
may happen that by moving an invalid vertical connection from Uk−1 to Uk, two
adjacent vertical connections appear in Uk. (See Figure 6.8c.)
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In that case, however, τ is not the shortest Z-avoiding trail in P, which
contradicts the assumption (Compare Figures 6.8a and 6.8d).

6.1.3.1 Box cycle permutation

Definition 6.31. Consider a structure P with |P| ≥ 2, i ∈ {1, . . . , |P|−1} and
k ∈ {1, . . . , |P|−i}. We call a cycle σB = (i i+1 . . . i+k) a box cycle permutation
in P if SP

i ⊆ SP
i+k ⊆ KP

i . We say that PσB is a box cycle permutation of P.

Lemma 6.32. If PσB is a box cycle permutation of P, then one may obtain
PσB from P by a sequence of constant and box transpositions.

Proof. Let σB = (i i+1 . . . i+k) for some i ∈ {1, . . . , |P|−1} and k ∈ {1, . . . , |P|−i}.
Since σB is a box cycle permutation in P,

SP
i ⊆ SP

i+k ⊆ KP
i (6.1.4)

by Definition 6.31. If k = 1, then σB coincides with box transposition (i i+1) and
the lemma is proven.

Suppose that k ≥ 2. In that case σB may be expressed as a convolution
σB = σLσb where σL = (i+1 . . . i+k) and σb = (i i+1). Observe that σL is a left
cycle permutation in P by (6.1.4). Recall that any left cycle permutation may be
replaced by a sequence of constant transpositions due to Lemma 6.17, and that
is also why

SPσL

i ⊆ SPσL

i+1 ⊆ KPσL

i (6.1.5)

holds by Lemma 6.10 and the fact that (i + k)σL = i + 1, iσL = i, and (6.1.4).
Hence, however, σb is a box transposition in PσL by (6.1.5). And the lemma is
proved.

Remark 6.33. Following the proof of Lemma 6.32, one may notice that, since
σL = (i+1 . . . i+k) is a left cycle in P, then SP

i+k = SPσL

i+1 by Lemma 6.17 and
Lemma 6.10. Considering σb = (i i+1) – a box transposition in PσL – Lemma
6.24 implies that SPσL

i+1 = SPσLσb

i+1 . Then, σB = σLσb implies

SPσB

i+1 = SP
i+k. (6.1.6)

Note that

KPσB

i+1 = KP
i (6.1.7)

by definition of cycle σB (recall that σB maps i to i+1).

The observations (6.1.6) and (6.1.7) discussed in the previous remark have a
very important and interesting impact on non-reduced structures. Recall that a
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structure is not reduced if at least one of its columns does not simultaneously
belong to its weak core.

Let P be a non-reduced structure with a non-trivial column KP
i such that

KP
i 6∈ C(P). Then, by the definition of a weak core – Definition 5.37 – there

exists k ≥ 0 such that
KP

i = SP
i+k. (6.1.8)

Observe that
S

P

i
⊆ KP

i = S
P

i+k
= K

P

i
(6.1.9)

by our assumptions where the first inclusion is guaranteed by the general rela-
tionship between Ki and Si. Then, however, considering the emphasized parts
in (6.1.9), one gets that σB = (i i+1 . . . i+k) is a box cycle permutation
in P. If we use the consequences following from the previous remark, then
SPσB

i+1 = SP
i+k = KP

i = KPσB

i+1 . Note that the respective equations correspond

to (6.1.6), (6.1.8), and (6.1.7), in this order. Hence, KPσB

i+1 6∈ ntriv(P) and Pσ is
a little bit closer to be a reduced structure while I(P) = I(PσB) by Lemma 6.32
and Lemmata 6.14 and 6.30.

This is consistent with the concept of a weak structure core: the column
not belonging to the corresponding weak structure core need not be included in
all equivalent structures. (Recall that the trivial column brings no additional
information with respect to the induced independence model I(P)).

U1 U2 U3 U4

(a): P

U1 U4 U2 U3

(b): PσL

U4 U1 U2 U3

(c): PσLσb
Figure 6.9: Sequence of independence equivalent structures

Example 6.34. Consider structure P = U1, . . . , U4 in Figure 6.9a. Observe that
KP

1 = SP
4 . Hence, following the proof of Lemma 6.32, one can easily apply the left

cycle permutation σL = (2 3 4) where PσL can be found in Figure 6.9b. Observe
that σb = (1 2) is a box transposition in PσL. PσLσb is shown in Figure 6.9c.
Note that σLσb = (1 2 3 4) is a box cycle permutation in P.

Example 6.35. Consider structure U1, U2, U3 for U1 = {u, v, w}, U2 = {v, w, x},
and U3 = {w, x, y} in Figure 6.10a. Recall that there are six permutations of
the set {1, 2, 3}, namely [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], and [3, 2, 1].
Similarly, there are six permutations of U1, U2, U3 including the identical one.
Note that only four of them are independence equivalent with U1, U2, U3 in this
case. See the overview in the following table, and the explanation below:
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permutation equivalence with U1, U2, U3

U1, U2, U3 X

U1, U3, U2 ×

U2, U1, U3 X

U2, U3, U1 X

U3, U1, U2 ×

U3, U2, U1 X

Regardless of the fact that we do not have any necessary and simultaneously
sufficient conditions for independence equivalence between two given structures
yet, verification of the table from above is simple. Using Figures 6.11a and
6.11b, observe that C(U1, U2, U3) = {U1, U2, U3, } while C(U1, U3, U2) = {U1, U3} =
C(U3, U1, U2). Hence I(U1, U3, U2) 6= I(U1, U2, U3) 6= I(U3, U1, U2) by Corol-
lary 5.45, which claims the equality of the corresponding weak cores to be a con-
dition necessary for independence equivalence.

The independence equivalence of the other permutations is given by the fact
that one can easily organize these structures into a sequence such that:

• U1, U2, U3 is the first structure in the sequence.

• Any other structure in the sequence may be obtained from the previous one
by a constant or box-transposition.

Then by Lemmata 6.14 and 6.30 these structures are independence equiva-
lent. In detail: realize that U2, U1, U3 (see Figure 6.10b) is a box transposition
of U1, U2, U3. Similarly, U2, U3, U1 is a constant transposition of U2, U1, U3 and
finally U3, U2, U1 is a box transposition of U2, U3, U1. See the sequence in Fig-
ure 6.10.

6.2 Extensions and Reductions

At the beginning of Chapter 6 we mentioned the operations that can add or
remove a column to/from the structure. Since any two equivalent structures
must have the same weak core due to Corollary 5.45, it is not so surprising that
subsequent operations may only add or remove columns in a way not affecting
the corresponding weak core. In other words: The following operations add and
remove only those columns that do not belong to the weak core of the structure.
We call them extensions and reductions.

After thorough investigation of the weak core definition (Definition 5.37), one
realizes that there are generally two types of columns not belonging to the weak
core in a structure. They are:
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U1 U2 U3

u

v

w

x

y

(a): P = U1, U2, U3

U2 U1 U3

u

v

w

x

y

(b): Pσ1

σ1 = (1 2)

U2 U3 U1

u

v

w

x

y

(c): Pσ1σ2
σ2 = (2 3)

U3 U2 U1

u

v

w

x

y

(d): Pσ1σ2σ3
σ3 = (1 2)

Figure 6.10: Another sequence of independence equivalent structures
U1 U3 U2

u

v

w

x

y

(a)

U3 U1 U2

u

v

w

x

y

(b)

Figure 6.11: Non-equivalent permutations of U1, U2, U3

(a) trivial columns,

(b) non-trivial columns that equal S-parts of another non-trivial column.

Having this structure in mind, we introduce an operation that removes trivial
columns first. Then, using Remark 6.33 and its resulting considerations, we
introduce an operation able to remove any non-trivial columns not belonging to
the weak core of the corresponding structure.

Recall that the so-called reduced structure was introduced in Section 5.4. Sum-
marizing, these two operations make reduction of any structure possible. In other
words: One can convert any structure into its equivalent and reduced form with
the help of the following operations.
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6.2.1 Simple reduction/extension

Definition 6.36. Simple reduction means a change of structure P into structure
P ′ by removing a trivial column. The structure formed by iterative applications
of simple reductions from P such that all trivial columns are removed is denoted
by red(P). (P ′ = red(P)).

Simple extension means a change of structure P into structure P ′′ by the
addition of any trivial column.

Remark 6.37. Observe that ntriv(P) = ntriv(P ′) = ntriv(P ′′) for all P,P ′,P ′′

mentioned in the previous definition.

Example 6.38. Using an example of simple reduction we can bring removal of
the next to last column from the structure in Figure 6.11a, or similarly from
the structure in Figure 6.11b. Observe that the resulting structures are box-
transpositions of each other.

Observe that adding/removing of a trivial column corresponds to the cance-
lation during the creation process of a formal ratio. Hence one can conclude with
the following assertion. We state it here in the form of a labeled corollary, since
we refer to it later:

Corollary 6.39. Consider two structures P and P ′ such that P ′ can be obtained
from P by a simple reduction/extension. Then these structures have the same
formal ratio.

Lemma 6.40. Let P and P ′ be two structures over N such that P ′ is obtained
from P by a simple reduction/extension. Then I(P) = I(P ′).

Proof. Suppose that a column was added to (removed from) the considered
persegram in such a way that all its markers are only bullets, i.e., every added
variable has to appear in some preceding column. According to Definition 3.18 of
a Z-avoiding trail, no vertical connection can pass through the column without
a box-marker. Therefore, the addition (removal) of such a column will bring no
change in its Z-avoiding trail system, and subsequently it causes no change in its
dependence or independence model.

6.2.2 Reduction

In Remark 6.33 and the following considerations we showed a very interesting
impact of a box cycle permutation on a structure column not belonging to the weak
core of the structure. To recall, a column KP

i does not belong to a structure’s
weak core C(P) if it is the so called S-subset of a superset column KP

i+k, i.e.,
KP

i = SP
i+k. An application of the box-cycle permutation σ between such a KP

i
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and the respective KP
i+k (σ = (i i+1 . . . i+k)) on structure P results in a structure

whose originally non-trivial column KP
i became trivial KPσ

i+1 = SPσ
i+1.

Note that the following operation is not an elementary one. It can be substi-
tuted by a sequence of constant and box transpositions and one simple reduction.
That is the reason why we do not classify it as one of the IE operations although
it has a special importance in the process of creating a reduced equivalent for
every structure. We call it reduction.

Definition 6.41. Consider a structure P without trivial columns, and two indices
i ∈ {1, . . . , |P|} and k ∈ {0, . . . , |P| − i}. Reduction means a change of P into
red(Pσ) such that σ = (i i+1 . . . i+k) and KP

i = SP
i+k. We say that structure

red(Pσ) is a reduction of P.

Lemma 6.42. If red(Pσ) is a reduction of P, then one may obtain red(Pσ)
from P by iterative applications of IE operations.

Proof. Since red() is one of the IE operations, it is enough to prove that Pσ
may be obtained from P by iterative applications of IE operations. Assume
σ = (i i+1 . . . i+k). Then by Definition 6.41:

KP
i = SP

i+k (6.2.1)

If k = 0, then σ is a trivial transposition, σ = (i i), and the above-defined
reduction coincides with the simple reduction from Definition 6.36.

Consider k ≥ 1. Note that in that case SP
i ⊆ KP

i = SP
i+k = KP

i by definition
of Si and (6.2.1), which guarantees that σ is a box cycle permutation in P by
Definition 6.31. Recall that by Lemma 6.32, any box cycle permutation may be
replaced by a sequence of IE operations. Hence the proof is finished.

Regarding the fact that each of the IE operations preserves the induced inde-
pendence model (see Lemata 6.14, 6.24 and 6.42), Lemma 6.42 has a very natural
consequence concerning reduction and the induced independence model.

Corollary 6.43. Let P,P ′ be two structures over N such that P ′ is a reduction
of P. Then I(P) = I(P ′).

Example 6.44. Consider structure P = U1, . . . , U4 in Figure 6.12a. Since
KP

1 = SP
4 , one can apply a reduction. Put σ = (1 2 3 4) where Pσ can be

found in Figure 6.12b. Observe that KPσ
2 6∈ ntriv(Pσ) and one can apply a sim-

ple reduction and remove this column. The final reduced structure is shown in
Figure 6.12c.
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U1 U2 U3 U4

(a): P

U4 U1 U2 U3

(b): Pσ

U4 U2 U2

(c): red(Pσ)

Figure 6.12: Process of a structure reduction

6.2.2.1 Reduction algorithm

Considering assertions of the previous subsection, one can remove any column
not belonging to the weak core of the corresponding structure using a reduction
operation. So if we apply reductions for long enough to a certain structure, in
the end we get a reduced structure equivalent with the original one. Recall that
reduction may by replaced by a sequence of IE operations. Hence, every structure
can be converted into a reduced form that is independence equivalent with the
respective structure. See a simple algorithm to do this:

Lemma 6.45. Let P be a compositional model structure. Then P can be trans-
formed into its reduced form P ′ by iterative applications of IE operations.

Proof. Suppose that P is a non-reduced structure. Hence there exists a pair
i, k ∈ N such that KP

i = SP
i+k. Use the following algorithm to convert P into its

equivalent and reduced form :

1: P = red(P); {simple reduction – removing of all trivial columns}
2: while P is not reduced do
3: Find i, k such that KP

i = SP
i+k; {such a pair exists since P is not reduced}

4: σ = (i i+1 . . . i+k);
5: P = red(Pσ); {reduction of P}
6: end while
7: P ′ = P;
8: return P ′;

Since reduction may be replaced by a sequence of IE operations by Lemma
6.42, the lemma is proven.

Example 6.46. Following the algorithm presented in the previous lemma and
structure P shown in Figure 6.13a, one can create the following sequence of equiv-
alent structures (see Figure 6.13) where the last one is reduced: U1, . . . , U7 ⇒
U1, U2, U3, U4, U5, U7 ⇒ U1, U3, U4, U5, U7 ⇒ U1, U7, U4, U5 = P ′. Observe that P ′

contains columns only from C(P ′) = C(P).
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U1 U2 U3 U4 U5 U6 U7

z

y

x

w

v

u

(a)

U1 U3 U4 U5 U7

z

y

x

w

v

u

(b)
U1 U7 U4 U5

z

y

x

w

v

u

(c)

Figure 6.13: Complete reduction by reduction algorithm

6.3 IE operations

At this moment we have defined and explored all of the IE operations mentioned
in the beginning of this chapter. Based on Lemmata 6.14, 6.30, and 6.40, we can
make the following conclusion:

Corollary 6.47. Each of the IE operations preserves the induced independence
model I(P).

Similarly, using Lemmata 6.11 and 6.29, and Corollary 6.39 it follows that:

Corollary 6.48. Each of the IE operations preserves the induced formal ratio.

Remark 6.49. If an operation belongs to IE operations in an induced substructure
P[U ] of structure P, then it is an IE operation in the structure P itself as well.
Indeed, observe that whether the operation belongs to IE operations depends on
the involved and foregoing columns – and that is exactly the definition of the
induced substructure. See Definition 3.25.



88 CHAPTER 6. INDIRECT CHARACTERIZATION



Chapter 7

Solution to the Equivalence
problem

We have already found several operations on structures that preserve the induced
independence model. The most elementary of them are called IE operations. With
the help of these operations, we can iteratively change any structure and simulta-
neously create a class of independence equivalent structures (the so called class of
equivalence). Since we want to find a simple characterization of equivalence, we
should restrict our attention to a representative or a special subclass to simplify
the following lemmata and clarify the whole theory. To do so, we will use reduced
structures.

Lemma 7.1. Let P,P ′ be two reduced structures such that N (P) = N (P ′). Then
one can transform P ′ to have the same last column as P with the help of box and
constant transpositions (including the division into Si and Ri).

Proof. Observe that C(P) = C(P ′) by Theorem 5.44. This, together with the
fact that P,P ′ are reduced, implies that |P| = n = |P ′| and P ′ = Pσ for some
permutation σ. Then, however, KP

n = KPσ
nσ . Recall that since both P and Pσ

are reduced, RP
n 6= ∅ and KPσ

nσ is the only column from Pσ containing variables
from RP

n :
RP

n ∩K
Pσ
i = ∅ for all i 6= nσ. (7.0.1)

Therefore, RP
n ⊆ RPσ

nσ . Put R = RPσ
nσ \ R

P
n and U = SP

n . Observe that R ⊆ U .
We can distinguish two cases:

1. R = ∅

2. R 6= ∅, which means that

]U [Pσ= nσ and therefore U ⊆ KPσ
]U [ (7.0.2)

89
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If R = ∅ then RPσ
nσ = RP

n and RPσ
nσ ∩ (KPσ

nσ+1 ∪ . . . ∪ K
Pσ
n ) = ∅ by (7.0.1).

Put σR = (n n−1 . . . nσ). Then σR is a right cycle permutation in Pσ by
Definition 6.19. Hence, KPσσR

n = KPσ
nσ = KP

n and the proof is finished using
Lemma 6.20.

If R 6= ∅ then U ∈ N (Pσ) by (7.0.2). Since N (P) = N (Pσ) by assumption,
then

U ⊆ KP
]U [ (7.0.3)

?

. . . . . . . . .

KPσ

]S[ ≡ KPσ
nσ KPσ

]u[

V
v

U

RP
n

R

Pσ

(a): part of Pσ

. . . . . .

KP

]S[ KP
n

P

(b): part of P

Figure 7.1: Proof of Lemma 7.1 – illustration of where R 6= ∅
Observe that KP

]U [ = U ∪ V where V 6= ∅. (Indeed, otherwise KP
]U [ = U = SP

n

would hold and P would not be reduced, which would contradict the assumption.)
Moreover, v ∪ U ∈ N (P) for all v ∈ V . (See Figure 7.1 where, however, columns
out of focus are omitted for the sake of clarity. We use the same notation as in the
proof of Lemma 5.41, where bullets in a box in one column denote the situation
when we are not sure about the markers’ shapes, but at least one of them is a
box-marker.) Since v 6∈ KPσ

nσ ≡ KPσ
]U [ by definition of V , then

U ⊆ SPσ
]v[ (7.0.4)

by Lemma 5.39 applied to Pσ for all v ∈ V . Choose and fix v ∈ V such that
v �Pσ v′ for all other v′ ∈ V . This choice is always possible (V 6= ∅) and it
guarantees that SPσ

]v[ ∩ V = ∅. It follows that

SPσ
]v[ ∩K

P
]U [ = SPσ

]v[ ∩ (U ∪ V )

= (SPσ
]v[ ∩ U) ∪ (SPσ

]v[ ∩ V )

= U (7.0.5)

by (7.0.4) and the choice of v. Furthermore, since KPσ
]U [ \U = RP

n by the fact that

KPσ
]U [ ≡ KPσ

nσ , and we obtain that

(KPσ
]U [ \ U) ∩K

Pσ
i = ∅ for all i 6=]U [Pσ (7.0.6)
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in particular KPσ
]U [ ∩K

Pσ
i ⊆ U for i >]U [Pσ= nσ using (7.0.1).

Considering (7.0.4) one can distinguish two cases:

1. U = SPσ
]v[

2. U ⊂ SPσ
]v[

However in the latter case we can apply Corollary 5.42 (using both (7.0.5) and
(7.0.6)). The conclusion is that ∃w ∈ N ]w[Pσ>]U [Pσ such that U = SPσ

]w[ . Put

v = w in that case. Hence U = SPσ
]v[ in both cases. Realizing that SPσ

]U [ ⊆ U , it
follows that

SPσ
]U [ ⊆ U = SPσ

]v[ ⊆ KPσ
]U [ . (7.0.7)

Put i =]U [Pσ and k = (]v[Pσ−i) for easier orientation in the problem. Then
σB = (i i+1 . . . i+k) is a box-cycle permutation in Pσ by (7.0.7), which means
that

KPσσB

i+1 = KPσ
i = KP

n

SPσσB

i+1 = SPσ
i+k = U = SP

n

by Remark 6.33 and the definition of i and k.
Then RPσσB

i+1 ∩ (KPσσB

i+2 ∪ . . . ∪ KPσσB
n ) = ∅ by the fact that KP

n is the only
column containing RP

n = KP
n \ S

P
n . Therefore σR = (n n−1 . . . i+1) is a right

cycle permutation in PσσB . Observe that KP
n = KPσσBσR

n .
Since both σB and σR may be internally replaced by IE operations through

use of Lemmata 6.32 and 6.20, the proof is finished.

The following theorem provides a complete solution of the Equivalence prob-
lem as it was defined in the beginning of this section.

Theorem 7.2. Supposing PA and PB are structures over N , the following five
conditions are mutually equivalent:

(1) I(PA) = I(PB)

(2) E(PA) = E(PB) and F(PA) = F(PB)

(3) N (PA) = N (PB)

(4) there exists a sequence P1, ...,Pm, m ≥ 1 of structures over N such that P1 =
PA,Pm = PB and Pi+1 is obtained from Pi using one of the IE operations
for i = 1, . . . , (m−1).

(5) formal ratios of PA and PB coincide
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Proof. We show (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1) and (4) ⇒ (5) ⇒ (3). While the
implication (1)⇒ (2) is a combination of Corollaries 5.9 and 5.16, the implication
(2)⇒ (3) is asserted in Corollary 5.26.

The proof of (3)⇒ (4) is carried out first for reduced structures by induction
on |PA|, where |PA| = |PB| by Corollary 5.52. The induction statement for n ≥ 1
is that (3) ⇒ (4) holds for any pair of reduced structures PA,PB over N with
|PA| = |PB| ≤ n. The implication is evident for n = 1. Assume n = |C(PA)| ≥ 2
and that the implication holds for reduced structures P over N with |C(P)| < n.

Observe that N (PA) = N (PB) implies the existence of a sequence of struc-
tures PA = P1, . . . ,Pk such that KPk

n = KPB
n and Pi+1 is obtained from Pi by

box or constant transposition according to Lemma 7.1 for all i = 2, . . . k. Then
introduce P ′

k or P ′
B as the induced substructures of Pk or PB, respectively, over

N \ RPk
n . Observe that N (P ′

k) = N (P ′
B) by Corollaries 6.47, 5.26 and the fact

that removed the same set of non-trivial set from both N (Pk) = N (PB) in-
duced by common last column with the same division to Ri and Si. Moreover
|P ′

k| = n− 1 = |P ′
B|. By the induction hypothesis there exists a desired sequence

of P ′
k, . . . ,P

′
k+m = P ′

B where m ≥ 1,. Introduce Pk+i as a structure over N ob-
tained from P ′

k+i by adding a column KPk
n at the last position for i = 1, . . . , m.

Since P ′
k+i is a substructure of Pk+i, Pk+i+1 is obtained from Pk+i by box and

constant transpositions for i = 1, . . . , m− 1 according to Remark 6.49.

If PA or PB is not reduced, then one may easily create sequences of structures
PA = PA1

, . . . ,PAl
and PB = PB1

, . . . ,PBn
where both PAl

and PBn
are reduced

and PAi+1
or PBj+1

is obtained from PAi
or PBj

, respectively, by an IE operation
for i = 1, . . . , l − 1 and j = 1, . . . , n − 1 by Lemma 6.42. Then Case I occurs
for the pair (PAl

,PBn
), which has already been dealt with. This concludes the

induction step.

The proof of (4)⇒ (1) follows from repetitive applications of Corollary 6.47,
then (4) ⇔ (3); the proof of (4) ⇒ (5) follows from repetitive applications of
Corollary 6.48.

To finish the proof of the theorem, let us show the validity of the last non-
proven implication (5)⇒ (3). Recall that by Lemma 6.42, any structure may be
transformed into its equivalent and reduced form by repetitive applications of IE
operations. Using this, denote by P ′

A or P ′
B an equivalent and reduced form of PA

or PB, respectively. Since each of the IE operations preserves the corresponding
formal ratio by Corollary 6.48, the formal ratios of both P ′

A and P ′
B coincide.

Now we can apply Lemma 5.58 which asserts that for two reduced structures
with equal formal ratio, their non-trivial sets coincide (N (P ′

A) = N (P ′
B)), which

finishes the proof.

It has already been mentioned that an arbitrary permutation may be expressed
as a product of transpositions [4]. Imagine a slightly modified algorithm from
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Lemma 6.45 where columns out of respective weak core are not removed by
simple reduction, but they are moved at the end of the structure using right
cycle permutation. Then, we can transform any structure P into the form where
first |C(P)| columns represent its reduced form and the rest are trivial columns.
Following the induction in the (3) ⇒ (4) part of the previous proof, (as well as
the notion of the previous theorem itself), one can conclude:

Corollary 7.3. A structure and its permutation are independence equivalent if
and only if one can be obtained from the other by repetitive applications of box
and constant transpositions.
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Chapter 8

Equivalent structures and
generating sequences

Considering a generating sequence, its structure is inherently tied to the rep-
resented multidimensional probability distribution – the compositional model.
Since the operator of composition is neither commutative nor associative, an arbi-
trary change of the generating sequence may result in a change of the represented
compositional model.

Let us generalize IE operations in a way that instead of changing structure,
we change (permute, extend/reduce) the respective generating sequence, i.e., op-
erations originally introduced for columns in the compositional model structures
will also be used for distributions in the generating sequences.

Example 8.1. For example, let π2, π1 be a sequence that arose from a generating
sequence π1, π2 by transposition (1 2), which is constant in the structure of π1, π2.
Then we will say that π2, π1 is a constant transposition of sequence π1, π2.

It has been proven at the end of the previous chapter that two structures are
equivalent if (and only if) there exists a sequence of IE operations such that one
can transform one structure to the other one using these operations. Now, if we
consider generating sequences instead of structures, the obvious question arises:
If there are two arbitrary generating sequences such that one is obtained from the
other one by iterative applications of IE operations, are they equivalent? (i.e., do
they represent the same multidimensional probability distribution?)

The answer for this question is generally negative:

Remark 8.2. Note that, generally, box transposition π2, π1 of a generating se-
quence π1, π2 does not have to be a generating sequence (i.e., π2 � π1 may be
undefined even if π1 � π2 is defined).

IE operations applied on a generating sequence consequently change the entire
compositional model – the represented multidimensional probability distribution.

95
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So it is appropriate to examine how the resulting model changes, and under which
additional conditions the resulting model is the same.

In order to simplify the following lemmata, we will work with the model whose
generating sequence consists only of three distributions π1(U1), π2(U2), π3(U3),
and we will apply IE operations on π2 and π3. This simplification is not in any
way at the expense of generality. Indeed, realize that π1(U1) can be internally
composed from several distributions and π1(U1), π2(U2), π3(U3) can represent the
beginning of a much longer sequence, and as such it coincides with its correspond-
ing marginal distribution by Assertion 3.7.

8.1 Constant transposition

Lemma 8.3. Consider three distributions π1(U1), π2(U2), and π3(U3). If (2 3) is
a constant transposition in structure U1, U2, U3, then

π1 � π2 � π3 = π1 � π3 � π2. (8.1.1)

The proof of a similar assertion can be found in [24] with the difference that
a constant transposition is not defined there due to different approach. However,
for the sake of this text’s completeness , we present the proof here as well.

Proof. First, let us show that the left side expression in (8.1.1) is not defined iff
the right side of the formula is not defined. Put P = U1, U2, U3 and σ = (2 3).
From the definition of operator � we know that π1 � π2 � π3 is not defined iff

π
↓SP

2

1 6≪ π
↓SP

2

2

or

(π1 � π2)
↓SP

3 6≪ π
↓SP

3

3 .

Analogously, considering the fact that structure of π1, π3, π2 coincides with Pσ,
π1 � π3 � π2 is not defined iff

π
↓SPσ

2

1 6≪ π
↓SPσ

2

3

or

(π1 � π3)
↓SPσ

3 6≪ π
↓SPσ

3

2 .

Under the given assumption that (2 3) is a constant transposition in P =
U1, U2, U3, these two conditions coincide because:

SP
2 = SPσ

3 and SP
3 = SPσ

2 (8.1.2)
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by Lemma 6.10 and

(π1 � π2)
↓SP

3 = (π1 � π2)
↓SPσ

2 = π
↓SPσ

2

1

(π1 � π3)
↓SPσ

3 = (π1 � π3)
↓SP

2 = π
↓SP

2

1

where the last equation in each row is guaranteed by Assertion 3.7 and the fact
that both SP

2 and SPσ
2 are subsets of KP

1 = U1. Indeed, realize that in the case
of SPσ

2 it holds that SPσ
2 ⊆ KPσ

1 = KP
1 by the nature of transposition σ = (2 3).

Now, let us assume that both expressions in (8.1.1) are defined. Because of
(8.1.2), the expressions

π1 � π2 � π3 =
π1π2π3

π
↓SP

2

2 π
↓SP

3

3

π1 � π3 � π2 =
π1π2π3

π
↓SPσ

2

3 π
↓SPσ

3

2

are equivalent to each other, which finishes the proof.

8.2 Box transposition

Lemma 8.4. Consider three distributions π1(U1), π2(U2) and π3(U3) such that
π2 and π3 are consistent. If (2 3) is a box transposition in structure U1, U2, U3,
then

π1 � π2 � π3 = π1 � π3 � π2. (8.2.1)

Proof. Let us start, again, by showing that, under the given assumption, π1�π2�
π3 is undefined iff π1 � π3 � π2 is undefined. Put P = U1, U2, U3 and σ = (2 3).
Similarly as in the proof of Lemma 8.3 π1 � π2 � π3 is not defined iff

π
↓SP

2

1 6≪ π
↓SP

2

2 (8.2.2)

or
(π1 � π2)

↓SP
3 6≪ π

↓SP
3

3 . (8.2.3)

Analogously, (realizing the fact that Pσ represents the structure of π1, π3, π2)
π1 � π3 � π2 is not defined iff

π
↓SPσ

2

1 6≪ π
↓SPσ

2

3 (8.2.4)

or
(π1 � π3)

↓SPσ
3 6≪ π

↓SPσ
3

2 . (8.2.5)
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Moreover, since (2 3) is a box transposition in P = U1, U2, U3 then

SP
2 = SPσ

2 and SP
3 = SPσ

3 . (8.2.6)

Now, since π2 and π3 are consistent by our assumption, (8.2.2) and (8.2.4)
coincide. To prove the same for (8.2.3) and (8.2.5), put S = SP

3 . Definition 6.22
of a box transposition induces that SP

2 ⊆ SP
3 ⊆ U2. Considering the fact SP

2 =
(U1 ∩ U2), this implies not only

(U1 ∩ U2) ⊆ S ⊆ (U1 ∪ U2) (8.2.7)

(where the second inclusion is guaranteed by the fact that U2 ⊆ (U1 ∪ U2)) but
also

(S ∩ U2) = (S ∩ U3) = S (8.2.8)

(where the second equation is guaranteed by the choice of S).
Then

(π1 � π2)
↓S = π↓S∩U1

1 � π↓S∩U2

2

= π↓S∩U1

1 � π↓S∩U3

3

= (π1 � π3)
↓S

where the first equation is guaranteed by (8.2.7) and Assertion 3.6, the second
one by (8.2.8) and the assumption of consistency on π2 and π3, and finally the
last one by Assertion 3.6 again. Thus we got that (8.2.3) is equivalent to (8.2.5)
and both conditions coincide.

Let us now assume that both expressions in Formula (8.2.1) are defined. Be-
cause of (8.2.6) and the fact that π2 and π3 are consistent, the expressions

π1 � π2 � π3 =
π1π2π3

π
↓SP

2

2 π
↓SP

3

3

,

π1 � π3 � π2 =
π1π3π2

π
↓SPσ

2

3 π
↓SPσ

2

2

are mutually equivalent, which finishes the proof.

8.3 Simple extension/reduction

Lemma 8.5. Consider three distributions π1(U1), π2(U2), and π3(U3) such that
π1 � π2 is defined. If U2 is a trivial column in structure U1, U2, U3 then

π1 � π2 � π3 = π1 � π3. (8.3.1)
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Proof. First, we start by showing that, under the given assumptions, π1�π2�π3
is undefined iff π1 � π3 is undefined. Considering the fact that π1 � π2 is defined
by our assumption, π1 � π2 � π3 is not defined iff

(π1 � π2)
↓(U1∪U2)∩U3 6≪ π

↓(U1∪U2)∩U3

3 .

Analogously, π1 � π3 is not defined iff

π↓U1∩U3

1 6≪ π↓U1∩U3

3 .

Under the given assumption that U2 is a trivial column in U1, U2, U3, these two
conditions coincide because U2 ⊆ U1 by definition of non-triviality – this induces
that

(U1 ∪ U2) ∩ U3 = U1 ∩ U3 (8.3.2)

and the fact that
(π1 � π2)

↓U1∩U3 = π↓U1∩U3

1 (8.3.3)

which is illustrated by Assertion 3.7 and its statement of (π1 � π2)
↓U1 = π↓U1

1 .
Now, assume that both expressions in Formula (8.3.1) are defined. Because

of (8.3.2) and the fact that U2 ∩ U1 = U2 (i.e., π↓U1∩U2

2 = π2), the expressions

π1 � π2 � π3 =
π1π2π3

π↓U1∩U2

2 π
↓(U1∪U2)∩U3

3

,

π1 � π3 =
π1π3

π↓U1∩U3

3

are mutually equivalent, which finishes the proof.

8.4 Other properties

Consider a generating sequence, which represents a multidimensional probability
distribution – π – the so-called compositional model. Denote by P the structure of
the corresponding generating sequence of compositional model π. It was proven
in Chapter 7 that every structure P ′ equivalent with P can be obtained from
P by iterative applications of IE operations. In the previous three lemmata we
added a link between IE operations and their respective compositional models –
generating sequences.

If one focuses on the relationships between compositional models that differ
by one of the IE operations (i.e., one arose from the other one by applying one of
IE operations on its generating sequence), the following conclusions can be drawn
about their equality or inequality:

Two sequences of probability distributions represent the same multidimen-
sional probability distributions if one is a generating one and:
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a) the other one is its constant transposition, or

b) the other one is its box transposition and the respective (the permuted) prob-
ability distributions are consistent, or

c) the other one arose from the original one by a simple reduction. (The assump-
tion of Lemma 8.5 – i.e., π↓U2

1 ≪ π2 in that case – is guaranteed by the fact
that we consider a generating sequence, i.e., all the operators of composition
are defined when applied on the corresponding generating sequence.)

Remark 8.6. One may conclude with similar assertions for composed operations
( left and right cycle permutation, box cycle permutation, and reduction as well).
It has been proven that one may replace any of these composed operations by a
sequence of IE operations. It is therefore sufficient to answer the question, ”What
are these sequences composed of?” Recall that the answer to this question can be
found in Lemmata 6.17, 6.20,6.32, and 6.42 (or in their proofs in the cases of
the box cycle permutation and reduction).

Two sequences of probability distributions represent the same multidimensional
probability distribution if one is a generating sequence and

i. the other one is its left or right cycle permutation, or

ii. the other one is its box cycle permutation with σ = (i i+1 . . . i+k), and the
i-th and (i+k)-th distributions are consistent.

Since a reduction can be replaced by a box-cycle transposition and simple reduc-
tion, one can conclude:

iii. A generating sequence represents the same multidimensional distribution as
its reduction, where the i-th distribution was removed and the (i+k)-th one was
moved into its position (i-th) simultaneously, if the respective distributions
were consistent.

Now, focus only on permutations of generating sequences.

Definition 8.7. For a generating sequence, we understand its equivalent permu-
tation to be a generating sequence composed from the same distributions (in a
different order) representing the same multidimensional probability distribution.

On the other hand, we understand an IE permutation to be a sequence of the
same distributions inducing independence equivalent structures.

Observe that while for a generating sequence, its equivalent permutation is a
generating sequence as well, its IE permutation is a common sequence of distribu-
tions (not a generating sequence, generally). So for a sequence π1, π2, . . . , πn and
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its permutation πi1 , πi2 , . . . , πin such that the respective structures are indepen-
dence equivalent, the expression πi1 � πi2 � . . .� πin does not have to be defined.
Thus a sequence πi1 , πi2, . . . , πin (an IE permutation of π1, π2, . . . , πn) does not
have to be a generating sequence.

Recall that an arbitrary permutation can be expressed as a product of trans-
positions [4]. In the case of IE permutations, they can be expressed as a product
of constant and box transpositions (see Corollary 7.3). Regarding equality of
the represented multidimensional distributions, while a constant transposition
needs no additional requirement by Lemma 8.3, a box transposition demands
consistency of the involved distributions.

Hence, in the case of IE permutations, they represent the same multidimen-
sional distribution as the original one if certain pairs of low-dimensional distribu-
tions in the sequence are consistent. Thus, considering pairwise consistency, one
can easily prove the following simple assertion:

Lemma 8.8. Let π1, π2, . . . , πn be a sequence of pairwise consistent distributions.
Then for its arbitrary IE permutation πi1 , πi2 , . . . , πin holds that

π1 � π2 � . . .� πn = πi1 � πi2 � . . .� πin .

Proof. Denote by P the structure of π1, π2, . . . , πn. Let πi1 , πi2, . . . , πin arose from
π1, π2, . . . , πn by permutation σ. Observe that then the permutation πi1 , πi2 , . . . , πin
has a structure Pσ and that both P and Pσ are independence equivalent by the
lemma assumption. Then σ can be expressed as a product of constant and box
transpositions by Corollary 7.3. The proof follows from repetitive applications of
Lemmata 8.3 and 8.4.

Remark 8.9. Note that pairwise consistency is an unnecessarily strong condi-
tion in the previous lemma. Recall that the only IE operation that requires the
consistency of involved distributions is a box transposition (Lemma 8.4). Hence
it would be sufficient to demand consistency of those pairs of distributions that
are transposed just by a box transposition. More about this problem can be found
in Sections 9.3.1 and 9.3.2.

Considering the fact that distributions in a perfect sequence are pairwise con-
sistent (see Assertion 3.9), one can apply the previous lemma and conclude that
any IE permutation of a perfect sequence is its equivalent permutation as well.
Moreover, every distribution in the sequence is its marginal by Definition 3.8, and
any of its IE permutations is perfect as well:

Corollary 8.10. Let π1, π2, . . . , πn be a perfect sequence. Then its IE permuta-
tion for permutation πi1 , πi2, . . . , πin is perfect and represents the same multidi-
mensional distribution (i.e., it is its equivalent permutation).



102 CHAPTER 8. EQUIV. STRUCTURES AND GENERATING SEQ.



Chapter 9

Conditioning

Let us introduce the problem of conditioning a distribution that is represented
in the form of a compositional model. Generally, the conditioning process can be
viewed as a transformation of one probability distribution into another. When
representing a distribution in the form of a compositional model, we understand
conditioning as a transformation of its generating sequence into another one –
preferably with the smallest number of local changes (inspired by Lauritzen-
Spiegelhalter’s local computations [36]). By a local change we understand either
a change of just one distribution in the corresponding generating sequence (its
recalculation), or a permutation of the generating sequence.

The conditioning problem was briefly discussed in [24]. In the same publica-
tion, the following example is also given. It illustrates conditioning in a simple
distribution π(u, v, w) represented by a compositional model with a generating
sequence π1(u, v), π2(v, w). A theorem was also stated for how to deal with the
case when a conditioning variable appears in the argument of the first distribu-
tion of the corresponding generating sequence – Assertion 9.1 in here – as well
as the concept of flexible sequences. We further investigate flexible sequences in
this text – primarily using new evidence about IE permutations of generating
sequences.

9.1 Illustrating example

To illustrate the problems with computation of a conditional distribution given by
one variable, we repeat the following example from [24]. Consider a generating
sequence of two distributions π1(u, v), π2(v, w) and compute three conditional

103
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distributions for some xu ∈ Xu, xv ∈ Xv, xw ∈ Xw:

(π1 � π2)(v, w|u = xu),

(π1 � π2)(u, w|v = xv),

(π1 � π2)(u, v|w = xw).

By definition of a conditional distribution, let us express

(π1 � π2)(u = xu, v, w) = π1(u = xu, v)π2(w|v)

= π1(u = xu)π1(v|u = xu)π2(w|v)

= π1(u = xu)(π1(v|u = xu)� π2(v, w)),

which implies (using the fact that π1 is a marginal of π1�π2 by Assertion 3.7) that
the respective conditional distribution may be expressed as a compositional model
with a generating sequence similar to the original one. The involved distribution
was slightly changed:

(π1 � π2)(v, w|u = xu) = π1(v|u = xu)� π2(v, w).

Analogously, we can express

(π1 � π2)(u, v = xv, w) = π1(u, v = xv)π2(w|v = xv)

= π1(v = xv)π1(u|v = xv)π2(w|v = xv)

= π1(v = xv)(π1(u|v = xv)� π2(w|v = xv)),

where the last equation is guaranteed by the fact that distributions π1(u|v = xv)
and π2(w|v = xv) are one-dimensional distributions defined on different variables.
That is why the operator of composition degenerates to a product of the respective
distributions. (Note that this corresponds to the fact u⊥⊥w|v[P] where P =
{u, v}, {v, w} is the structure of the respective compositional model.) However,
(using the fact that π1 is marginal of π1�π2 by Assertion 3.7 as well), the second
considered conditional distribution may be expressed as a compositional model
that is transformed from π1 � π2 by ”local operations” only.

(π1 � π2)(u, w|v = xv) = π1(u|v = xv)� π2(w|v = xv).

In contrast to the previous two cases, the conditional distribution (π1 �

π2)(u, v|w = xw) cannot be expressed as a compositional model of π1(u, v) in
the first position and some other distribution. In this case, namely

(π1 � π2)(u, v, w = xw) = π1(u, v)π2(w = xw|v).
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Note that π2(w = xw|v) is a function of variable v and as such it is generally not a
probability distribution. Assume the consistency of π1 and π2 for now. Moreover,
realizing the fact that the transposition of the first two distributions is always
either a box or constant transposition (the specific situation depends on whether
the intersection of the sets of their arguments is nonempty – i.e., (1 2) is a box
transposition in this case), then

π1 � π2 = π2 � π1 (9.1.1)

by either Lemmata 8.3 or 8.4 and hence (π1 � π2)
↓{v,w} = π2 by Assertion 3.7. It

implies that

(π1 � π2)(u, v|w = xw) = π1(u, v)
π2(w = xw|v)

π2(w = xw)
.

Observe that the ratio π2(w = xw|v)/π2(w = xw) (as a function of v) can achieve
values greater than one. Therefore (π1 � π2)(u, v|w = xw) cannot be expressed
as a composition of π1(u, v) and another distribution.

Nevertheless, one can easily see that (9.1.1) holds if π1, π2 are consistent, and
one can show it similarly for (π1 � π2)(v, w|u = xu) that

(π1 � π2)(u, v|w = xw) = π2(v|w = xw)� π1(u, v).

This example illustrates a general fact: computation of a conditional distribu-
tion π(·|u = xu) (for π = π1� . . .�πn) is easy only if the conditioning variable u
appears among the arguments of the first distribution π1. In the following asser-
tion, originally published in [24], one can see the process of such a conditioning.

Assertion 9.1. Let π1, π2, . . . , πn be a generating sequence with structure P over
N and u ∈ KP

1 . Then, for any value xu of the variable u for which π1(u = xu) >
0, the following formula holds

(π1 � π2 � . . .� πn)
(

(KP
1 ∪ . . . ∪K

P
n ) \ u|u = xu

)

= κ1 � κ2 � . . .� κn,

where for all i = 1, 2, . . . , n

κi(K
P
i \ u) =

{

πi(K
P
i ) if u 6∈ KP

i ,

πi(K
P
i |u = xu) if u ∈ KP

i .

9.2 Flexible sequence

Assume a generating sequence π1, π2, . . . , π6 with structure P = U1, U2, . . . , U6

and permutation σ ∈ T6. Let, for example, σ = (1 2 4 5). Then Pσ =
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U5, U1, U3, U2, U4, U6. Similarly, in case of the sequence π1, π2, . . . , π6 we logically
assume that its σ permutation coincides with π5, π1, π3, π2, π4, π6. Observe that
the interpretation of the permutation σ is that the 1st distribution moves to the
2nd position, the 2nd one to the 4th position, etc. Then, when one writes the final
permutated sequence, one asks: Which distributions moved to the 1st position,
to the 2nd one, etc.? The answer is, the 1σ−1th one, the 2σ−1th one, etc. Hence
the σ permutation of π1, π2, . . . , π6 can be written also as π1σ−1 , π2σ−1 , . . . , π6σ−1 .
This notation will be used several times in the following.

In light of Assertion 9.1, it seems reasonable to study the question it raises: ”In
which case may we reorder the generating sequence in such a way that the desired
variable appears among the arguments of its first probability distribution?” To
specify the problem, we define the so-called flexible sequences. Note that the
concept of generating sequence flexibility was originally introduced in [24] during
studies of a stronger property – the so-called decomposability.

Definition 9.2. A generating sequence π1, π2, . . . , πn with structure P is called
flexible if, for all u ∈ KP

1 ∪ . . .∪K
P
n , there exists a permutation σ ∈ Tn such that

u ∈ KPσ
1 and

π1σ−1 � π2σ−1 � . . .� πnσ−1 = π1 � π2 � . . .� πn.

In other words, flexible sequences are those which can be reordered in many
ways so that each variable can appear among the arguments of the first distribu-
tion. However, it does not mean that each distribution appears at the beginning
of the generating sequence. If this were the case, a flexible sequence would be a
subclass of perfect sequences (since each distribution would be a marginal of the
composed distribution by Assertion 3.7).

Observe that the problem of conditioning by a variable turns into a problem
of flexibility in light of Assertion 9.1. We avoid the study of other possible con-
ditioning algorithms and we require that the conditional variable is among the
arguments of the first distribution in the generating sequence.

Recall that we have already dealt with permutations in this text. By Corol-
lary 5.52: Two reduced and equivalent structures are permutations of each other.
Since each independence equivalent permutation of a structure may be equiva-
lently obtained by iterative applications of IE operations (specifically using only
box and constant transpositions by Corollary 7.3), we may use the knowledge
from Chapter 8, where a connection between a permutation of a structure and
its corresponding generating sequence was introduced. Consistency of some cor-
responding pairs of distributions in a generating sequence ensures that both gen-
erating sequences represent the same multidimensional probability distribution.

To illustrate this consequence, recall Lemma 8.8: Let π1, π2, . . . , πn be a se-
quence of pairwise consistent distributions. Then, for its IE σ-permutation holds

π1 � π2 � . . .� πn = π1σ−1 � π2σ−1 � . . .� πnσ−1 .
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In the light of this knowledge, we distinguish between two different approaches
to flexible sequences:

I. In our first approach, we restrict ourselves only to those flexible sequences
whose all appropriate permutations induce structures that are mutually in-
dependence equivalent.

II. In our second approach, we focus on permutations with non-equivalent struc-
tures as well.

9.3 Flexible structure

To explore our first approach to flexible sequences from above (where we restrict
ourselves to those flexible sequences that simultaneously induce independence
equivalent structures only), we will define the so-called flexible structure. But
as we shall see, structure flexibility coincides with another well-known property
called running intersection property sometimes abbreviated as RIP.

Definition 9.3. Let P be a structure over N . P is flexible if ∀u ∈ N exists a
permutation σ such that u ∈ KPσ

1 and I(P) = I(Pσ).

The problem of independence equivalent structures was well examined in
Chapter 7. Recall that several characterizations of independence equivalence
exist. In this context let us highlight the so-called F-condition set – one of in-
dependence equivalence invariants (Corollary 5.16). Besides, they form, along
with the Connection set, E(P) one of direct characterizations of independence
equivalence. See Theorem 7.2.

Non-emptiness of the induced F-condition set has a major impact on the
flexibility of the respective structure. Judge for yourself: recall that that the
disjoint triplet 〈u, v|w〉 ∈ F(P) if all of the following conditions hold:

(a) {u, v} ≺P w,

(b) {u, v} ↔P w,

(c) u=P v.

Hence, if 〈u, v|w〉 ∈ F(P) then by (a) and the fact that F(P) is an inde-
pendence class invariant, it follows that there is no structure P ′ equivalent with
P such that w ∈ KP ′

1 . Indeed, there always have to be some foregoing columns
introducing u and v first in P ′. Moreover, considering the condition (c), it implies
that if 〈u, v|w〉 ∈ F(P) then variable w cannot appear earlier than in the third
column of any independence equivalent structure for the first time. Therefore the
emptiness of F(P) is a necessary condition for the flexibility of P:



108 CHAPTER 9. CONDITIONING

Corollary 9.4. If a structure P is flexible, then F(P) = ∅.

9.3.1 Column covering

In this section we shall see that the emptiness of F(P) is not only necessary but
also a sufficient condition for the flexibility of the respective structure P. To prove
this, we need to employ the specific consequence of F(P) = ∅. This consequence
deals with specific structure’s behavior regarding any non-trivial column – the so
called column covering.

Definition 9.5. Consider structure P over N and variable u ∈ N . Column KP
]u[

is covered in structure P if either ]u[P= 1 or if there exists variable v ∈ N :
v ≺P u such that SP

]u[ ⊆ KP
]v[. We say that KP

]v[ is a covering column of KP
]u[.

The essential feature of F(P) = ∅ lies in the fact formulated in the following
lemma:

Lemma 9.6. Let P be a structure such that F(P) = ∅. Then all of its non-trivial
columns are covered in it.

Proof. While the first column of structure P is covered by definition, it holds
that SP

2 = KP
1 ∩K

P
2 ⊆ KP

1 . So, if K
P
2 is non-trivial, it is covered as well.

Choose an arbitrary w ∈ N such that ]w[P≥ 3. One can distinguish two cases:

I. |SP
]w[| ≤ 1

II. |SP
]w[| ≥ 2

In the case of SP
]w[ ≤ 1, either SP

]w[ = ∅, and then KP
1 can be its covering column,

or |SP
]w[| = 1. Put u = SP

]w[ and observe that KP
]u[ is its covering column by

Definition 9.5.
Assume now that |SP

]w[| ≥ 2. Choose and fix v ∈ SP
]w[ such that v �P v′ for

all other v′ ∈ SP
]w[. Now, let us show that SP

]w[ ⊆ KP
]v[ by considering the opposite

for a contradiction – i.e., let ∃u ∈ SP
]w[ such that u 6∈ KP

]v[. Then u ≺P v by

the choice of v and u =P v by Definition 5.1. It implies that 〈u, v|w〉 ∈ F(P)
by Remark 5.13, which contradicts the lemma supposition F(P) = ∅. Hence,
SP
]w[ ⊆ KP

]v[ and K
P
]w[ is covered by KP

]v[ in this case, which finishes the proof.

The notion of a covering column has a close connection to the so-called left
cycle permutation. More precisely, in the view of Definition 6.15, any covered col-
umn may be moved just behind its covering column using a left cycle permutation.
Indeed, let KP

i , K
P
i+k be a couple of covering and covered column,i.e., KP

i ⊇ SP
i+k

by Definition 9.5. Then (i+1 i+2 . . . i+k) is a left cycle permutation in
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P. Using this and the fact that (1 2) is either a box transposition or a constant
one in any structure P, one can easily prove that in the case of F(P) = ∅, any
non-trivial column may be moved to the first position in the structure using IE
operations only:

Lemma 9.7. For structure P over N with F(P) = ∅ and every variable u ∈ N ,
there exists a permutation σ ∈ T|P| such that (]u[P)σ = 1 (KP

]u[ ≡ KPσ
1 ) and

I(P) = I(Pσ).

Proof. We will prove a little bit stronger version of this assertion by induction
on N (we organize the set of variables using the relation �P): The induction
hypothesis for u ∈ N such that ]u[P≥ 1 is that there exists a permutation σ such
that (]u[P)σ = 1, (]v[P)σ =]v[P for all v ≻P u, and I(P) = I(Pσ). It is evident
for u ∈ N such that ]u[P= 1, consider identical permutation in this case.

Assume u ∈ N such that ]u[P≥ 2 and that the implication holds for every
v ∈ N such that v ≺P u. Then KP

]u[ is covered by Lemma 9.6, i.e., ∃KP
]v[ ∈ P

such that

SP
]u[ ⊆ KP

]v[. (9.3.1)

Since v ≺P u then by induction hypothesis, there exists σ ∈ T|P| such that

(]v[P)σ = 1 (9.3.2)

and (]w[P)σ =]w[P for all w ∈ N such that w ≻P v.
Observe, however, that then

SP
]w[ = SPσ

]w[ for all such w ∈ N,w ≻P v (9.3.3)

by definition of S ·
]w[. Combining all of the expressions (9.3.1), (9.3.2), and (9.3.3)

with the fact that u ≻P v, we can easily obtain the relationship SPσ
]u[ ⊆ KPσ

1

guaranteeing that σL = (2 3 . . . ]u[P) is a left cycle permutation in Pσ. Put
σcb = (1 2). Then σ′ = σσLσcb guarantees that (]u[P)σ

′ = 1, (]v[P)σ =]v[P for all
v ≻P u by their definition. Moreover, since σcb = (1 2) is either a constant or a
box transposition in every structure |P| ≥ 2, then I(P) = I(Pσ) = I(PσσLσcb)
by induction hypothesis and Theorem 7.2 respectively.

Realizing the fact that a set of non-trivial columns of a structure over N
contains all variables from N , it follows that F(P) = ∅ is a sufficient condition
for flexibility of the respective structure P. Hence, using Corollary 9.4, emptiness
of F(P) is not only necessary but also a sufficient condition for flexibility of
structure P:

Corollary 9.8. Structure P is flexible ⇔ F(P) = ∅.
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Notice that the condition of F(P) = ∅ means the existence of an equivalent
permutation of P for every variable so that the selected variable appears in the
first column of this permutation. But perhaps there could be non-trivial columns
in P that do not appear at the beginning of any such an equivalent structure.
However, F(P) = ∅ guarantees the existence of an equivalent permutation for
every non-trivial column such that this column appears at the beginning of the
equivalent permutation.

In other words, it allows us to move any non-trivial column to the beginning
of the sequence using an IE permutation. See the following example to illustrate
the difference:

Example 9.9. Consider U1 = {u, v}, U2 = {v, w}, and U3 = {w, x}. Observe
that for structures U1, U2, U3 and U3, U2, U1, the corresponding formal ratios co-
incide:

U1, U2, U3 :
{u, v} · {v, w} · {w, x}

v · w
,

U3, U2, U1 :
{u, v} · {v, w} · {w, x}

v · w
.

Then structures U1, U2, U3 and U3, U2, U1 are independence equivalent by The-
orem 7.2. Moreover, if any of u, v, w, and x appears in the first column of one of
those structures, then this fact is sufficient for the flexibility of U1, U2, U3.

Note that since F(U1, U2, U3) = ∅, there also exists an equivalent permuta-
tion with U2 at the first position by Lemma 9.7 and Corollary 6.47 (specifically
U2, U1, U3). However, its existence is not sufficient for the flexibility of U1, U2, U3

in this case.

9.3.2 Flexible structures versus flexible sequences

For a generating sequence and its IE permutation (the corresponding structures
are independence equivalent), the pairwise consistency of the considered distri-
butions guarantees that both sequences are equivalent simultaneously (they rep-
resent identical multidimensional distributions) by Lemma 8.8. Considering the
definition of structure flexibility, flexible structures are closely connected with
independence equivalence and thus with IE operations as well. The impact of
IE operations on an arbitrary distribution represented by a compositional model
was described in Chapter 8. Recall that every equivalent structure permutation
may be obtained by iterative applications of constant and box transpositions. To
guarantee the same compositional model, consistency of those pairs of distribu-
tions that were affected by a box-transposition is required. Then, in the case of
pairwise consistency, one can derive the following deduction:
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Lemma 9.10. If π1(U1), π2(U2), . . . , πn(Un) is a sequence of pairwise consistent
probability distributions with flexible structure U1, U2, . . . , Un, then this sequence
is flexible.

Proof. This is a simple consequence of Corollary 9.8, Lemma 9.7, and iterative
applications of Lemmata 8.3 and 8.4.

Remark 9.11. One may object that the previous lemma – Lemma 9.10 – repre-
sents literally ”reinvention of the wheel”. Indeed, note that the condition F(P) =
∅ corresponds to the so-called running intersection property (RIP). Its definition
is the following: Let U1, U2, . . . , Un be a sequence of sets. Then this sequence
meets RIP if

∀i = 2, . . . , n ∃j : (1 ≤ j < i)

(

Ui ∩ (

i−1
⋃

k=0

Uk) ⊆ Uj

)

.

This definition can easily be rewritten when the sequence of sets represents a
structure P: Structure P meets RIP if

∀i = 2, . . . , |P| ∃j : (1 ≤ j < i)
(

SP
i ⊆ KP

j

)

.

For example, in the case of RIP there is a covering column for each column
(including trivial ones). In cases when we do not consider trivial columns, the
condition of F(P) = ∅ coincides with RIP and one can find the following lemma in
[24]: If π1(U1), π2(U2), . . . , πn(Un) is a sequence of pairwise consistent probability
distributions such that U1, U2, . . . , Un meets RIP then this sequence is flexible.

Considering the proof of Lemma 9.7 we can see that Lemma 9.10 may be
slightly modified. Use knowledge of Chapter 8 to check the demands of IE
transpositions pertaining to the respective distributions. Recall that while a box
transposition requires the consistency of respective distributions to guarantee the
equality of the permuted compositional model, a constant transposition has no
additional claims on the corresponding distributions. Then, given the proof of
Lemma 9.7, we do not need to require the pairwise consistency, we only need the
consistency of those pairs of distributions that correspond to the covering/covered
pairs of columns in the respective structure:

Corollary 9.12. If π1(U1), π2(U2), . . . , πn(Un) is a sequence of probability distri-
butions with flexible structure U1, U2, . . . , Un such that the pairs of distributions
which correspond to the covering/covered pairs of columns in the structure are
consistent, then this sequence is flexible.
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Note that this could become handy for automatic checking of flexibility. In the
case of a generating sequence of length n, we restrict the number of consistencies
to verify from

n(n− 1)

2

to

n− 1.

Note that the consistency of the ”covered × covering” distributions ensures
pairwise consistency in the case of structure flexibility,. It is then (in the case of
structure consistency) a sort of minimum spanning for pairwise consistency.

In cases of a structure, flexibility guarantees that for every non-trivial column
there exists an independence equivalent permutation with this column at the
first position. Then, by generalizing it to a generating sequence (with a structure
without non-trivial columns), it holds that for a distribution in the sequence
there exists an equivalent permutation with the distribution at the beginning, i.e.,
every distribution represents a marginal of the respective compositional model by
Assertion 3.7. Hence:

Corollary 9.13. If a generating sequence has flexible structures that do not
contain any trivial column, and the distributions corresponding to the cover-
ing/covered column pairs in the structure are consistent, then this sequence is
perfect.

9.4 Inflexible structure

It has been shown that the question of flexibility of a generating sequence is simple
for sequences having flexible structures. In this section we will focus on generating
sequences whose structures induce at least one F-condition, i.e., sequences with
inflexible structures.

To illustrate the problem, choose a simple generating sequence with an inflex-
ible structure. Put P = u, v, {u, v, w}. Observe that 〈u, v|w〉 ∈ F(P). See its
visualization in Figure 9.1. Assume the flexibility of the corresponding generating
sequence π1(u), π2(v), π3(u, v, w). and put π = π1 � π2 � π3.

U1 U2 U3

u

v

w

Figure 9.1: P: inflexible structure
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Since π3 is the only distribution having w in its argument, due to the flexibility
there has to exist an equivalent permutation of π1, π2, π3 starting with π3. Let
π3, π1, π2 be such a permutation. (Both π3, π1, π2 and π3, π2, π1 are symmetric
in u and v, and therefore a particular choice makes no difference.) Then by the
flexibility

π1(u)π2(v)π3(u, v, w)

π3(u, v)
=
π3(u, v, w)π1(u)π2(v)

π1(u)π2(v)
. (9.4.1)

Observe that (1 2) is a constant transposition in u, v, {u, v, w}. Therefore
both π1 and π2 represent marginals of π according to Assertion 3.7. Moreover,
the flexibility (π1 � π2 � π3 = π3 � π1 � π2) and Assertion 3.7 guarantee that π3
is a marginal of π too – i.e., π1, π2, π3 is a perfect sequence. Then (9.4.1) may be
rewritten as

π(u)π(v)π(u, v, w)

π(u, v)
=
π(u, v, w)π(u)π(v)

π(u)π(v)
, (9.4.2)

which holds if and only if u⊥⊥v[π]. This is, however, guaranteed by structure
P = u, v, {u, v, w} of π1, π2, π3.

Hence, perfectness is a necessary condition for flexibility in the case
of an arbitrary generating sequence π1(u), π2(v), π3(u, v, w).

One may object that this generating sequence – as an example – is irrelevant
because it can be equivalently replaced by only distribution π3. Let us slightly
extend this model so that this problem is avoided.

U1 U2 U3

x

y

u

v

w

Figure 9.2: P: another inflexible structure

Let P ′ = {u, x}, {v, y}, {u, v, w} be given. See its visualization in Figure 9.2,
and assume flexibility of the corresponding generating sequence π1(u, x), π2(v, y),
π3(u, v, w). Moreover, put π′ = π1 � π2 � π3. Observe that σ = (1 2) is a
constant transposition in P ′ and that therefore both π1 and π2 represent marginals
of π′ by Assertion 3.7. Since π3 is the only distribution having w among its
arguments again, the flexibility induces the existence of an equivalent permutation
of π1, π2, π3 starting with π3. Let π3, π1, π2 be such a permutation. (Note that the
other possible permutation – π3, π2, π1 – is a constant transposition of π3, π1, π2,
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i.e., they are equivalent in this case). Then

π′ =
π1(u, x)π2(v, y)π3(u, v, w)

π3(u, v)
=
π3(u, v, w)π1(u, x)π2(v, y)

π1(u)π2(v)
(9.4.3)

and π3 is a marginal distribution of π′ due to Assertion 3.7. Hence, π1, π2, π3 is a
perfect sequence as well. One can rewrite (9.4.3) as

π′(u, x)π′(v, y)π′(u, v, w)

π′(u, v)
=
π′(u, v, w)π′(u, x)π′(v, y)

π′(u)π′(v)
(9.4.4)

which holds true if and only if π′(u, v) = π′(u)π′(v), i.e. u⊥⊥v[π′]. This is,
however, a guaranteed structure P ′ of this compositional model representing π′.

Hence perfectness is a necessary condition of flexibility for an arbitrary
generating sequence π1(u, x), π2(v, y), π3(u, v, w).

These two foregoing examples would lead us to a hypothesis that perfectness
of a generating sequence is a sufficient condition for its flexibility. Unfortunately,
this hypothesis can easily be refuted by the following counter-example:

Let π1(u, x), π2(v, x), π3(u, v, w) be a perfect generating sequence. (See its
structure on Figure 9.3a.) Put π′′ = π1�π2�π3. Since π1(u, x), π2(v, x), π3(u, v, w)
is perfect, then the definition of perfectness implies that all of π1, π2, π3 represent
marginals of π′′ and

π′′ =
π1(u, x)π2(v, x)π3(u, v, w)

π2(x)π3(u, v)
=
π′′(u, x)π′′(v, x)π′′(u, v, w)

π′′(x)π′′(u, v)
(9.4.5)

U1 U2 U3

x

u

v

w

(a): U1, U2, U3

U3 U1 U2

x

u

v

w

(b): U3, U1, U2

Figure 9.3: A contra-example of an inflexible structure
π3 is the only distribution which has w among its arguments. If π1, π2, π3 were

flexible, then there should exist an equivalent permutation of π1, π2, π3 starting
with π3. Since both possible permutations π3, π1, π2 and π3, π2, π1 are interchange-
able from this point of view, let π3, π1, π2 be the expected permutation. Then,
however, by definition of flexibility

π′′(u, x)π′′(v, x)π′′(u, v, w)

π′′(x)π′′(u, v)
=
π′′(u, v, w)π′′(u, x)π′′(v, x)

π′′(u)π′′(v, x)
(9.4.6)
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which holds true if their numerators are equal – i.e.,

π′′(x)π′′(u, v) = π′′(u)π′′(v, x). (9.4.7)

Considering the definition of conditional distribution, one can transform (9.4.7)
into

π′′(x)π′′(v|u)π′′(u) = π′′(u)π′′(v|x)π′′(x). (9.4.8)

which can be reduced for all x ∈ Xu∪v∪x such that π′′(xu) > 0 and π′′(xx) > 0
cancel into the form

π′′(v|u) = π′′(v|x). (9.4.9)

Since structure {u, x}, {v, x}, {u, v, w} guarantees that u⊥⊥v|x[π′′] as well as the
alternative definition (2.6.2) of conditional independence of variables, one can
replace the right hand side of (9.4.9) by

π′′(v|x) = π′′(v|u, x). (9.4.10)

Consequently,
π′′(v|u, x) = π′′(v|u). (9.4.11)

That is nothing else than the definition of conditional independence v⊥⊥x|u[π′′] ≡
v⊥⊥x|u[π1 � π2 � π3], which represents a necessary condition for the flexibility of
perfect sequence structure π1(u, x), π2(v, x), π3(u, v, w).

The relationship v⊥⊥x|u[π1 � π2 � π3] is not guaranteed by its structure and
it has to be primarily encoded in the respective distributions. Observe that this
independence is nothing else than the independence encoded by a structure of
permutation π3(u, v, w), π1(u, x), π2(v, x), cf. Figure 9.3b. Non-equivalent per-
mutations of the structure have different properties and therefore induce other
independence relationships. Logically, it is necessary to have identified all of
these independence relations. It does not matter whether they are induced by
the structure or by properties of low-dimensional distributions of the respective
generating sequence.

Remark 9.14. Regarding the choice of permutation π3, π1, π2, we could use the
other permutation in the beginning of this counter-example – π3, π2, π1. We would
finish with condition u⊥⊥x|v[π′′] in that case. That is why we can conclude with
the following:

Consider a perfect sequence π1(u, x), π2(v, x), π3(u, v, w). This se-
quence is flexible if either v⊥⊥x|u[π1�π2�π3] or u⊥⊥x|v[π1�π2�π3].

From the previous discussion, one can see that the requirement for generating
sequence’s flexibility is very strong for a non-flexible structure. Nevertheless, we
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think that the concept of flexible sequences is worth further study. But it goes
beyond the scope of this work. One of the questions that would be good to
answer is: ”If you have a flexible sequence, is the conditional generating sequence
flexible again?” Consider a flexible generating sequence representing probability
distribution π(U), variable u ∈ U and its specific value xu ∈ Xu. Transform
the generating sequence into a sequence representing the conditional probability
distribution π(U \ u|u = xu) using local changes described at the beginning of
this chapter. Is the new generating sequence flexible again?



Chapter 10

Conclusions

This thesis deals with the properties of compositional models (Chapter 3) as a
subclass of probabilistic models and analyzes them from the perspective of con-
ditional independence assertions induced by their structures. The basic goal of
the thesis is the design and description of properties characteristic of the struc-
tures inducing the same system of independence assertions – such structures are
denoted as independence equivalent.

The introductory Chapter 1 summarizes not only the current state of the art in
probabilistic models but also brings significant historic reference to certain areas
of Artificial intelligence, probabilistic models, and graphical models. Chapter 2
then gathers fundamental notions and assertions from probability theory useful
in the context of this text. In Chapter 3 we start to focus on compositional
models. Except for fundamental definitions (operator of composition, generating
sequence,. . . ) this chapter also introduces compositional model’s structure and
related notions of the induced independence relations. At the end of the chapter
one can also find several original and important observations (like an induced
substructure) necessary for further development.

Chapter 4 provides an introduction to the so-called equivalence problem whose
solution occupies a large part of this text. Note that among other related sub-
problems, this problem generally covers another question: when do two different
structures of two compositional models induce the same set of conditional inde-
pendence assertions?. Chapters 5 and 6 contain partial solutions of the equiva-
lence problem from the perspective of properties invariant within a class of in-
dependence equivalent structures as well as elementary operations on structures
preserving an induced independence model, and Chapter 7 puts all those partial
solutions together by stating necessary and sufficient conditions for independence
equivalence of two arbitrary structures – Theorem 7.2.

We have presented three properties characterizing independence equivalence
of the respective compositional model structures in Chapter 5: connection set

117
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combined with F-condition set, non-trivial sets, and formal ratio. The first prop-
erty was inspired by Verma and Pearl’s characterization of equivalent acyclic
directed graphs [56], but this property does not appear to be very suitable for
compositional model structures. Therefore, the other two characterizations were
derived. We consider the derivation of the weak core of a structure as an im-
portant achievement. Let us realize that the structure of a compositional model
is basically a sequence of sets of variables (we refer to such sets as columns to
distinguish them from common sets of variables). From this point of view, a
weak core – consisting of several columns within the structure – denotes those
columns common to all structures equivalent with the given one (Corollary 5.45).
Hence, the weak core comparison represents a simple rule to recognize possi-
ble non-equivalence and, moreover, it represents a natural and logical transition
to the indirect characterization of structure equivalence using some elementary
operations on structures. In our case, these operations are permutations in par-
ticular. In connection with permutations, let us also mention the so called reduced
structure as a non-unique representative of a class of equivalent structures. How-
ever, all reduced structures in one class of equivalence are permutations of each
other. We may view a structure’s formal ratio as a unique representative of an
independence equivalence class even though a formal ratio is not a structure.

The second basic part was devoted to the study of applying an equivalence
problem solution to other open problems. In Chapter 8 we investigate the impact
of generalized elementary operations, originally introduced only for structures in
Chapter 6, to the generating sequences and corresponding represented probability
distributions. We identified other necessary conditions guaranteeing that proba-
bility distributions represented by respective compositional models are identical.
Finally, Chapter 9 closes the thesis with a partial solution for determining flexi-
bility and connected the conditioning problem of a generating sequence, using a
solution of the equivalence problem from Chapter 7.
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[3] V. B́ına, R. Jiroušek: Marginalization in Multidimensional Compositional
Models, Kybernetika 42, (2006), pp. 405-422.

[4] M. Bona: Combinatorics of Permutations, Chapman Hall-CRC, (2004).
ISBN 1-58488-434-7.

[5] C. Boutilier: The Influence of Influence Diagrams on Artificial Intelligence,
Decision Analysis, Vol.2 No. 4, (2005), pp. 229-231.

[6] B. G. Buchanan: A (Very) Brief History of Artificial Intelligence. [online]
AI Magazine 26(4). 2005, [cited 2011-07-04]. Available from:
〈http://www.aaai.org/AITopics/assets/PDF/AIMag26-04-016.pdf〉.

[7] B.G. Buchanan: Timeline: A Brief History of Artificial Intelligence [online].
AITopics:The Association for the Advancement of Artificial Intelligence;
2011 [cited 2011-07-07]. Available from:
〈http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/BriefHistory〉.

[8] M.D. Chickering: A transformational characterization of equivalent Bayesian
networks, Uncertainty in Artificial Intelligence 11, Morgan Kaufmann (1995),
pp. 87-98.

[9] D.M. Cifarelli, E. Regazzini: De Finetti’s Contribution to Probability and
Statistics, Statistical Science, Vol. 11, Issue 4, (1996), pp. 253-282.

[10] J.N. Darroch, S.L. Lauritzen and T.P. Speed, Markov field theory and loglin-
ear interaction models for contingency tables, Annals of Statistic, 8, (1980),
pp. 522-539.

119



120 BIBLIOGRAPHY

[11] A. Darwiche: Modeling and reasoning with Bayesian networks, Cambridge
University Press, (2009)

[12] A.P. Dawid: Conditional independence in statistical theory, Journal of the
Royal Statistical Society, Series B,41 (1979) pp. 1-31.
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[22] R. Jiroušek: Solution of the Marginal Problem and Decomposable Distribu-
tions, Kybernetika vol.27, 5 (1991), pp. 403-412
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