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1 IIIA Artificial Intelligence Research Institute (CSIC)
Campus UAB s/n, Bellaterra 08193, Spain

{tommaso,godo}@iiia.csic.es
2 Institute of Information Theory and Automation of the ASCR

Pod Vodárenskou věž́ı 4, 182 08 Prague, Czech Republic
kroupa@utia.cas.cz

Abstract. Extending the notion of belief functions to fuzzy sets leads
to the generalization of several key concepts of the classical Dempster-
Shafer theory. In this paper we concentrate on characterizing normalized
belief functions and their fusion by means of a generalized Dempster rule
of combination. Further, we introduce soft-normalization that arises by
either rising up the usual level of contradiction above 0, or by decreasing
the classical level of normalization below 1.

1 Introduction

The Dempster-Shafer theory of evidence [4,13] is a generalization of Bayesian
probability theory that allows to combine all the available informations about a
given event E into a unique one. The theory shows how all the available evidences
can be used to evaluate the degree of belief of E via a belief function bel. In fact,
in the classical setting, pieces of evidence are encoded by means of subsets of
a fixed domain X called the frame of discernment. To each piece of evidence
(i.e. to each subset of X) is attached a weight (called mass in Dempster-Shafer
theory) that is given by a probability distribution m defined over the powerset
2X . If a subset is assigned a strictly positive mass, it is called a focal element.

Specifically, our belief is encoded by a mass assignment m : 2X → [0, 1], that
is,

∑
B∈2X m(B) = 1 and m(∅) = 0. Its associated belief function bel : 2X → [0, 1]

attaches to each A ∈ 2X the sum of the masses of those pieces of evidence
supporting A, i.e.

bel(A) =
∑

B⊆A

m(B). (1)

It is worth noticing that, since every mass m is a probability distribution over
2X , the belief of A can be equivalently defined as

bel(A) = Pm(βA) (2)
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where Pm is the probability measure defined over 2(2
X) and βA is the character-

istic function1 of the inclusion set {B ∈ 2X : B ⊆ A}.
Recently, several generalizations of belief function theory to the algebraic

setting of MV-algebras of continuous fuzzy sets have been proposed [9,5]. The
soft-computational setting of fuzzy sets and the related algebraic framework open
the door to the generalization of the key concepts that form the basis of classical
Dempster-Shafer theory. In this paper, after some needed preliminaries on MV-
algebras of fuzzy sets and finitely additive measures on them, called states, we
first recall those generalized notions of belief functions. For the particular class
of belief functions whose focal elements are crisp, we also study their Möbious
transform. Then, always in the generalized setting of MV-algebras of continuous
fuzzy sets, we discuss the notion of normalized belief function and characterize
it in terms of the support of the state underlying it. Finally, after recaling some
generalized forms of the Dempster rule of combination (not only conjunctive), we
consider a notion of soft-normalization that arises by either rising up above 0 the
usual levels of contradiction, or by decreasing the classical level of normalization
below 1.

2 MV-Algebras of Fuzzy Sets and States

MV-algebras were introduced by Chang [1] as the equivalent algebraic seman-
tics for the infinite-valued �Lukasiewicz calculus. They are algebraic structures
M = (M,⊕,¬, 0) of type (2, 1, 0) satisfying the following requirements: the
reduct (M,⊕, 0) is a commutative monoid, and for every a, b ∈ M , the following
equations hold: ¬¬a = a, a⊕ ¬0 = ¬0 and ¬(¬a⊕ b) ⊕ b = ¬(¬b ⊕ a) ⊕ a.

It is well known [2] that the class of MV-algebras forms an algebraic variety.
Moreover, in every MV-algebra the following operations are definable: a � b is
¬(¬a ⊕ ¬b); a ⇒ b is ¬a ⊕ b; a ∨ b is (a ⇒ b) ⇒ b, a ∧ b is ¬(¬a ∧ ¬b), and
the constant 1 stands for ¬0. In every MV-algebra M , a partial order relation
is defined as follows: for every a, b ∈ M , a ≤ b iff a ⇒ b = 1. An MV-algebra is
said to be linearly ordered (or an MV-chain), if the order ≤ is linear.

Example 1. (1) Every Boolean algebra is an MV-algebra. Moreover, for every
MV-algebra M , the set of its idempotent elements B(M) = {a ∈ M : a⊕a = a}
is the domain of the largest Boolean subalgebra of M , the so called Boolean
skeleton of M .

(2) Consider the real unit interval [0, 1] equipped with �Lukasiewicz operations:
for every a, b ∈ [0, 1],

a⊕ b = min{1, a + b}, ¬a = 1 − a.

Then the structure [0, 1]MV = ([0, 1],⊕,¬, 0) is an MV-chain. Chang theorem
[1,2] says that an equation holds in [0, 1]MV iff it holds in every MV-algebra.

1 Throughout the paper, we make no formal distinction between a set and its charac-
teristic function.
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It is worth noticing that in [0, 1]MV the above introduced operations have the
following form:

a� b = max{0, a + b− 1}, a ⇒ b = min{1, 1 − a + b},
a ∨ b = max{a, b}, a ∧ b = min{a, b}.

(3) For every n ∈ N, consider the class Fn of n-place McNaughton functions,
i.e. functions from [0, 1]n into [0, 1] which are continuous, piecewise linear, each
piece having integer coefficient. The algebra (Fn,⊕,¬, 0) with operations ⊕ and
¬ defined pointwise, and where 0 here denotes the zero-constant function, is an
MV-algebra that coincides with the free MV-algebra over n generators. We will
henceforth denote this algebra by Free(n).

An MV-clan over a set X is a collection of functions from X into [0, 1] (i.e. a set
of fuzzy subsets of X) that contains the zero-constant function and that is closed
under the finitary pointwise application of ⊕ and ¬ as defined in [0, 1]MV . We will
denote by [0, 1]X the clan of all functions from X into [0, 1]. A clan M ⊆ [0, 1]X

is said to be separating if for every x1, x2 ∈ X with x1 �= x2, there exists a
function f ∈ M such that f(x1) �= f(x2). Clearly, [0, 1]X is separating, and it is
well known that for every n ∈ N, Free(n) is a separating MV-clan as well (cf. [2,
§3.6]).

Whenever X is finite, we will call [0, 1]X a finite domain MV-clan. Finite
domain MV-clans will play a central role in this paper. The following notion
of state is the MV-counterpart of the notion of a finitely-additive probability
measure on a Boolean algebra.

Definition 1 ([11]). Let M be an MV-algebra. A state on M is a map s : M →
[0, 1] satisfying s(1) = 1, and s(a⊕ b) = s(a) + s(b) whenever a� b = 0. A state
s is said to be faithful if s(x) = 0 implies x = 0.

The following theorem, independently proved in [8] and [12], shows an integral
representation of states by Borel probability measures defined on the σ-algebra
B(X) of Borel subsets of X , where X is any compact Hausdorff topological
space.

Theorem 1. Let M ⊆ [0, 1]X be a separating clan of continuous functions over
a compact Hausdorff space X. Then there is a one-to-one correspondence be-
tween the states on M and the regular Borel probability measures on B(X). In
particular, for every state s on M , there exists a unique regular Borel probability
measure μ on B(X) such that for every f ∈ M ,

s(f) =

∫

X

f dμ. (3)

3 Belief Functions on MV-Algebras of Fuzzy Sets

In what follows we will assume X to be a finite set.
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3.1 Crisp-Focal Belief Functions

In [9], the author proposes the following generalization of belief functions. Let
M = [0, 1]X be a finite domain MV-clan and consider, for every f : X → [0, 1],
the map ρ̂f : 2X → [0, 1] defined as follows: for every B ⊆ X ,

ρ̂f (B) = min{f(x) : x ∈ B}. (4)

Remark 1. Notice that ρ̂f generalizes βA in the following sense: whenever A ∈
B(M) = 2X , then ρ̂A = βA. Namely, for every A ∈ B(M), ρ̂A(B) = 1 if B ⊆ A,
and ρ̂A(B) = 0, otherwise.

Definition 2. A map b̂ : M → [0, 1] is called a crisp-focal belief function when-

ever there is a state ŝ : [0, 1](2
X) → [0, 1] such that ŝ({∅}) = 0 and, for every

f ∈ M ,
b̂(f) = ŝ(ρ̂f ). (5)

With X being finite, Theorem 1 yields a unique probability measure μ : 2(2
X ) →

[0, 1] such that ŝ(ρ̂f ) =
∑

C∈2X ρ̂f (C) · μ({C}). Moreover, it is easy to see that,
for every C ⊆ 2X , μ({C}) = ŝ({C}). Since μ({∅}) = 0, probability measure μ
induces a mass assignment m such that m(C) = μ({C}).

In Dempster-Shafer theory, given a belief function bel : 2X → [0, 1], the mass
m that defines bel can be recovered from bel by Möbius transform:

m(A) =
∑

B⊆A(−1)|A\B|bel(B).

In case of crisp-focal belief functions, the situation is analogous.

Proposition 1. Let b̂ : [0, 1]X → [0, 1] be a crisp-focal belief function, defined

as b̂(f) = ŝ(ρf ) for some state ŝ on [0, 1]2
X

such that ŝ({∅}) = 0 and ŝ({C}) > 0
iff C(x) ∈ {0, 1}, where C �= ∅. Then

ŝ({A}) = m(A) =
∑

B⊆A(−1)|A\B|b̂(B)

for each A ⊆ X.

Proof. Definition (5) directly gives that ρ̂A(C),∈ {0, 1} for each pair of crisp
sets A,C ⊆ X and thus

b̂(A) =
∑

C∈2X ρ̂A(C) · ŝ({C}) =
∑

B⊆A ŝ({B}) =
∑

B⊆A m(B).

This implies that the restriction of b̂ to 2X is a classical belief function. See [10]
for further details. �

As a corollary, observe that, in the hypothesis of the above proposition, the
values b̂(f) for non-crisp f ∈ [0, 1]X are necessarily determined by the values of

b̂ over the crisp sets of 2X . Indeed, in [9] it shown that, for any f ∈ [0, 1]X , b̂(f)

is in fact the Choquet integral of f with respect to the restriction of b̂ over 2X .
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Moreover, this shows another characterization of crisp-focal belief functions.
Indeed, a function bel : [0, 1]X → [0, 1] is a crisp-focal belief function iff its
restriction on crisp sets 2X is a total monotone function, i.e., for every natural
n and every A1, . . . , An ∈ 2X , the following inequality holds:

bel

(
n∨

i=1

Ai

)

≥
∑

∅�=I⊆{1,...,n}
(−1)|I|+1 · bel

(
∧

k∈I

Ak

)

.

3.2 General Belief Functions

The definition introduced in [5] generalizes crisp-focal belief function by intro-
ducing, for every f ∈ M , a map ρf associating with each fuzzy set g ∈ M the
degree of inclusion of g into f . Specifically, let M = [0, 1]X be a finite domain
MV-clan, and consider, for every f ∈ M , the map ρf : M → [0, 1] defined as
follows: for every g ∈ M ,

ρf (g) = min{g(x) ⇒ f(x) : x ∈ X}. (6)

The choice of ⇒ in the above definition is due to the MV-algebraic setting, but
other choices could be made in other fuzzy logics.

Those mappings ρf can be regarded as generalized inclusion operators between
fuzzy sets (cf. [5] for further details). For every f ∈ {0, 1}X (i.e. whenever f
is identified with a vector in [0, 1]X with integer components), the map ρf :
[0, 1]X → [0, 1] is a pointwise minimum of finitely many linear functions with
integer coefficients, and hence ρf is a non-increasing McNaughton function [2].

Lemma 1. The MV-algebra R2 generated by the set �2 = {ρa : a ∈ {0, 1}X}
coincides with Free(n), where n is the cardinality of X.

Proof. By [3, Theorem 3.13], if a variety V of algebras is generated by an alge-
bra A, then the free algebra over a cardinal n > 0 is, up to isomorphisms, the

subalgebra of AAX

generated by the projection functions θi : AX → A. There-
fore, in order to prove our claim it suffices to show that the projection functions
θ1, . . . , θn belong to �2.

Consider, for every i = 1, . . . , n the point i ∈ {0, 1}X such that

i(j) =

{
0, if j = i
1, otherwise.

Then ρi = 1 − θi. In fact, for every b ∈ [0, 1]X , and for every i, j ∈ X such
that j �= i, we have b(j) → i(j) = 1, and b(i) → i(i) = 1 − b(i), so that
1 − ρi(b) = θi(b) = b(i). This actually shows that the MV-algebra R¬

2 generated

by the set ¬�2 = {1 − ρa : a ∈ {0, 1}X} is isomorphic to Free(n). Clearly R2

and R¬
2 are isomorphic through the map g : a ∈ R2 �→ 1 − a ∈ R¬

2 . �
Therefore, if we consider the MV-algebra R generated by � = {ρf : f ∈ [0, 1]X}
we obtain a semisimple MV-algebra that properly extends Free(n), and whose
elements are continuous functions from [0, 1]X into [0, 1]. This implies, in par-
ticular, that R is separating.
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Definition 3. Let X be a finite set and let M = [0, 1]X . A map b : M → [0, 1]
will be called a belief function on the finite domain MV-clan M provided there
exists a state s : R → [0, 1] such that for every a ∈ M ,

b(a) = s(ρa). (7)

We will denote by Bel(M) the class of all the belief functions over a finite domain
MV-clan M .

Note that if s is such that the set {f ∈ M | s({f}) > 0} is countable, then the
above expression yields

b(a) =
∑

f∈M

ρa(f) · s({f}).

As in the previous section, we will identify the mass of a belief function b with
the unique Borel regular probability measure μ over B([0, 1]X) that represents
the state s via Theorem 1.

Since belief functions on [0, 1]X are defined as states on R and different states
s1 and s2 determine different belief functions b1 and b2, the set Bel([0, 1]X) of
belief functions on [0, 1]X is in 1-1 correspondence with the set S(R) of all states

on R. Hence Bel([0, 1]X) is a compact convex subset of [0, 1][0,1]
X

. Therefore
Krein-Mil’man theorem shows that Bel([0, 1]X) is in the closed convex hull of
its extremal points. The following result characterizes the extremal points of
Bel([0, 1]X).

Proposition 2. For every x ∈ [0, 1]X, the belief function bx defined by

bx(f) = sx(ρf ) = ρf ({x}), f ∈ [0, 1]X , (8)

is an extremal point of Bel([0, 1]X).

Proof. A belief function b ∈ Bel([0, 1]X) is extremal iff its state assignment is
extremal in S(R). In fact s is not extremal iff there exist s1, s2 ∈ S(R) and a
real number λ ∈ (0, 1) such that s = λs1 + (1 − λ)s2. In particular, for every
a ∈ [0, 1]X ,

b(a) = s(ρa) = λs1(ρa) + (1 − λ)s2(ρa) = λb1(a) + (1 − λ)b2(a),

whence b would not be extremal as well.
�

As we recalled above, R is separating. Therefore from Proposition 2 the extreme
points of its state space are MV-homomorphisms sx, for each x ∈ [0, 1]X . Hence
the following holds due to (8).

Theorem 2. Every belief function is a pointwise limit of a convex combination
of some elements ρ.(x

1),. . . , ρ.(x
k), where x1,. . . , xk ∈ [0, 1]X.
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3.3 On Normalized Belief Functions

In classical Dempster-Shafer theory, the notion of focal element is crucial for
classifying belief functions. Whenever X = {1, . . . , n} is a finite set, the Boolean
algebra 2X is finite, and hence the mass assignment m : 2X → [0, 1] defines
obviously only finitely many focal elements. On the other hand, the MV-algebra
[0, 1]X has uncountably many elements, and hence we cannot find in general
a mass assignment μ defined over B([0, 1]X) that defines a belief function b
through (10) which is supported by a finite set. This observation leads to the
following definition.

Definition 4. Let K be the set of all compact subsets of a finite domain MV-
clan [0, 1]X. For every regular Borel probability measure μ defined on B([0, 1]X),
we call the set

sptμ =
⋂

{K|K ∈ K, μ(K) = 1}
the support of μ.

By Theorem 1 we can regard sptμ as the support of the state s defined from μ
via (3). In particular, the following holds:

b(a) =

∫

[0,1]X
ρa dμ =

∫

sptμ

ρa dμ. (9)

Therefore, for a belief function b on [0, 1]X whose state assignment s is charac-
terized through (3) by a regular Borel probability measure μ, we will henceforth
refer to sptμ as the set of focal elements of b. We restrict our attention to those
belief functions on [0, 1]X such that their state assignment s on Free(n) satisfies
the condition

b(0) = s(ρ0) = 0. (10)

Proposition 3. The set S0 of all states on R satisfying (10) is a nonempty
compact convex subset of [0, 1]R considered with its product topology.

Proof. S0 is nonempty: let s1 be defined by

s1(f) = f(1, . . . , 1),

for every f ∈ R. This gives s1(ρ0) = ρ0(1, . . . , 1) = 0 and thus s1 ∈ S0. Let
s, s′ ∈ S0 and α ∈ (0, 1). Then the function R → [0, 1] given by

αs + (1 − α)s′

is a state on R which clearly satisfies (10). Hence S0 is a convex subset of
the product space [0, 1]R. Since the space [0, 1]R is compact, we only need to
show that S0 is closed (in its subspace product topology). To this end, consider a
convergent sequence (sm)m∈N in S0 whose limit is s. As the set of all states on R
is closed, s is a state. That s satisfies (10) follows from s(ρ0) = limm→∞ sm(ρ0) =
0. �
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The family of states S0 can be characterized by employing integral representation
of states. Namely, we will show that a state assignment s ∈ S0 iff s is “supported”
by normal fuzzy sets in [0, 1]X , i.e. fuzzy sets f ∈ [0, 1]X such that f(x) = 1 for
some x ∈ X . We will denote by NF(X) the set of normalized fuzzy sets from
[0, 1]X , i.e.

NF(X) = {f ∈ [0, 1]X | f(x) = 1 for some x ∈ X}.
Proposition 4. Let s be a state assignment on R and μ be the regular Borel
probability measure associated with s. Then sptμ ⊆ NF(X) if and only if s ∈ S0.

Proof. Let μ be a probability measure on Borel subsets of [0, 1]X such that
sptμ ⊆ NF(X). Put

s(f) =

∫

[0,1]X
f dμ, f ∈ R. (11)

Since ρ0(x) = 0 for each x ∈ sptμ, it follows that

s(ρ0) =

∫

sptμ

ρ0 dμ = 0,

hence s ∈ S0. Conversely, assume that

s(ρ0) =

∫

[0,1]X
ρ0 dμ = 0,

which implies ρ0 = 0 μ-almost everywhere over [0, 1]X . Since ρ0(x) = 0 iff
x ∈ [0, 1]X is such that xi = 1, for some i ∈ X , we obtain μ(NF(X)) = 1. �

In particular, every state assignment of a generalized belief function in the sense
of [9] belongs to S0.

4 Generalized Dempster Rule of Combination

In [5] the authors present a way to generalize the well-known Dempster rule to
combine the information carried by two belief functions b1,b2 ∈ Bel(M), into
a belief function b1,2 ∈ Bel(M). In this section we will recall the basic steps of
that construction, and we also add some remarks. We start with an easy result
about the definition of states in a product space.

Proposition 5. For every MV-algebra N , and for every pair of states s1, s2 :
N → [0, 1], there exists a state s1,2 defined on the direct product N × N such
that for every (b, c) ∈ N ×N , s1,2(b, c) = s1(b) · s2(c).

Let now M = [0, 1]X , and let R be as defined in Section 3. Also let s1, s2 be
two states on R such that b1(f) = s1(ρf ) and b2(f) = s2(ρf ) for all f ∈ M .
Furthermore, let μ1, μ2 : B(M) → [0, 1] be the two regular probability measures
of support sptμi (for i = 1, 2), such that for i = 1, 2,

si(f) =

∫

sptμi

f dμi.
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Take the mapping μ1,2 : B(M × M) → [0, 1] to be the product measure on
Borel subsets generated by M × M . Let s1,2 be a state on [0, 1]M×M defined
by integrating measurable functions M ×M → [0, 1] with respect to μ. If there
exist g, h : M → [0, 1] and f such that f(x, y) = g(x) · h(y), then Proposition 5
yields s1,2(f) = s1(g) · s2(h).

Finally, for every f ∈ M , consider the map ρ∧f : M ×M → [0, 1] defined by
ρ∧a (b, c) = ρa(b ∧ c). Then we are ready to define the following combination of
belief functions.

Definition 5 (Generalized Dempster rule). Given b1,b2 ∈ Bel(M) as
above, define its min-conjunctive combination b1,2 : M → [0, 1] as follows: for
all a ∈ M ,

b1,2(a) = s1,2(ρ∧a ). (12)

Regarding the support of the combined measure, it is worth noticing that by [6,
Theorem 417C (v)], sptμ1,2 = sptμ1× sptμ2, and hence, whenever μ1 and μ2 are
normalized in the sense that their support is included into NF(X), sptμ1,2 ⊆
NF(X) as well. Therefore, by Proposition 4 one might deduce that, if b1 and
b2 are normalized belief functions, then b1,2 is normalized as well. The following
example shows that it is not the case, since in the definition of b1,2, together
with the product measure μ1,2 we also use the map ρ∧ which, in fact, is not a
genuine fuzzy-inclusion operator.

Example 2. Consider two belief functions b1 and b2 on [0, 1]2 with masses con-
centrated as follows:

μ1(1, 0) = 1/4; μ1(1, 1) = 3/4; μ2(0, 1) = 1/2; μ2(1, 1) = 1/2.

Then, the product measure μ1,2 has support in the cartesian product of the
supports of the two masses, {((1, 0), (0, 1)), ((1, 0), (1, 1)), ((1, 1), (0, 1)), ((1, 1),
(1, 1))}, and it takes values

μ1,2((1, 0), (0, 1)) = 1/8, μ1,2((1, 0), (1, 1)) = 1/8, μ1,2((1, 1), (0, 1)) = 3/8,
μ1,2((1, 1), (1, 1)) = 3/8.

So, μ1,2 is normalized in the sense that each of its focal elements can be regarded
as a normalized vector of [0, 1]4. On the other hand, b1,2 is not normalized
because (0, 0) = (1, 0) ∧ (0, 1), ρ(0,0)(0, 0) = 1, and hence

b(0, 0) =
∑

b∧c=(0,0)

ρ(0,0)((0, 0)) · μ1(b) · μ2(c) = ρ(0,0)(0, 0) ·μ1(1, 0) · μ2(0, 1) = 1/8 > 0.

The above min-conjunctive combination can easily be extended to well-known
MV-operations on fuzzy sets, such as max-disjunction ∨, strong conjunction �
and strong disjunction ⊕, by defining (b1 � b2)(a) = s1,2(ρ

�
a ), for � being one

of these operations, and defining ρ�a (b, c) = ρa(b � c). In this generalized case,
the map b�

1,2 resulting from the respective combination rule will be called the
�-combination of b1 and b2.
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Whenever the supports of μ1 and μ2 are countable, it is easy to prove that b�
1,2

is a belief function in the sense of Definition 3. In fact, in this case Definition
5 yields b�

1,2(a) =
∑

b,c∈M ρa(b � c) · μ1({b}) · μ2({c}). Notice that the above
expression reduces to

b1,2(a) =
∑

d∈M

∑

b,c∈M,b�c=d

ρa(d) · (μ1({b}) · μ2({c})) =
∑

d∈M

ρa(d) · μ∗({d}),

where
μ∗({d}) =

∑

b,c∈M,b�c=d

μ1({b}) · μ2({c})

is indeed a mass assignment and hence b�
1,2 ∈ Bel(M).

Therefore, turning back to the above Example 2 and Proposition 4, there
exists a mass μ �= μ1,2 for b�

1,2 such that sptμ �⊆ NF(X).

5 Soft Normalization for Mass Assignments

The height of a fuzzy set f ∈ [0, 1]X is defined in the literature as

h(f) = max{f(x) : x ∈ X}. (13)

The value h(f) can be interpreted as the degree of normalization of f . As a
matter of fact, a fuzzy set f is called normalized whenever h(f) = 1, otherwise
it is called non-normalized. A non-normalized fuzzy set represents a partially
inconsistent information.

Consider now a belief function b defined by a state with support sptμ. Assume
there exists a focal element f ∈ sptμ with μ({f}) > 0 that is a non-normalized
fuzzy set.2 This means that b is associating a positive degree of evidence to
a (partially) inconsistent information, which is reflected on the value that b
assigns to the 0. Indeed, in such a case we have ρ0(f) > 0, and hence b(0) ≥
ρ0(f) ·μ({f}) > 0. And in fact it is easy to see that the more inconsistent are the
focal elements of b, the greater is the value b(0). When events and focal elements
are crisp sets (and hence the unique possible not-normalized focal element is 0),
normalization consists in redistributing the mass that μ assigns to 0 to the other
focal elements of μ (if any).

Dealing with fuzzy focal elements, allows us to introduce a notion of soft
normalization for belief functions. In particular, it allows a softer redistribution
of the masses, depending on two thresholds.

Definition 6. A mass assignment μ : [0, 1]X → [0, 1] is said to be α-normalized
provided that inf{h(f) : f ∈ sptμ} = α.

In other words, a mass is α-normalized provided that each focal element of μ
has at least height α. In particular, for a belief function b we define the degree
of normalization of b as the value

2 Notice that if sptμ is not countable, the condition f ∈ sptμ does not guarantee
μ({f}) > 0.
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inf{h(f) : f ∈ sptμ},
where μ is the mass associated to b.

In what follows we assume masses μ such that their supports sptμ are count-
able. Let now μ : [0, 1]X → [0, 1] be an α-normalized mass assignment, and
assume that there exists a focal element g for m such that h(g) = β > α.

The mass μ can be renormalized to the higher degree β by defining a new
mass μβ as follows: for every f ∈ F(X),

μβ({f}) =

{
0, if h(f) < β
μ({g})
1−K , otherwise.

(14)

where K =
∑

h(l)<β μ({l}).
The idea of this β-normalization, similarly to the classical normalization, con-

sists in fixing the value β as a new level of consistency for the mass we are con-
sidering. Since α < β ≤ 1, the class of focal elements of height lower then β is
not empty. Then the process of β-normalization consists in redistributing all the
mass K =

∑
h(l)<β μ({l}), which μ assigns to the fuzzy sets of height lower than

β, to those focal elements of height greater of (or equal to) β.
Clearly a mass μ can be renormalized, up to the maximum value

βmax = sup{h(f) : f ∈ spt(μ)}.

Consider two belief functions b1 and b2 with associated masses μ1 and μ2 respec-
tively, also we assume for simplicity sptμ1 and sptμ2 to be countable. Let b�

1,2

the belief function defined by the �-combination of b1 and b2 as we introduced
in Section 4. Then the focal elements of b�

1,2 forms the following set:

{f � g : f ∈ sptμ1 and g ∈ sptμ2}.
Therefore for each focal element f � g of b�

1,2, its height is easily calculated as
h(f�g) = max{f(x)�g(x) : x ∈ X}. Therefore the level to which a � combined
belief function b�

1,2 allows to be normalized can be similarly calculated by the
height of the focal elements of the combining functions b1 and b2. It is worth
to point out that, whenever � is a conjunctive operation (like a t-norm for
instance), h(f � g) ≤ min{h(f), h(g)}.
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14704-C03-03). The work of Tomáš Kroupa was supported by the grant P402/12/
1309 of Czech Science Foundation.

References

1. Chang, C.C.: Algebraic Analysis of Many-valued Logics. Trans. Am. Math. Soc. 88,
467–490 (1958)

2. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-
valued Reasoning. Kluwer, Dordrecht (2000)



34 T. Flaminio, L. Godo, and T. Kroupa

3. Cohn, P.M.: Universal Algebra. Revisited Edition. D. Reidel Pub. Co., Dordrecht
(1981)

4. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.
The Annals of Mathematical Statistics 38(2), 325–339 (1967)

5. Flaminio, T., Godo, L., Marchioni, E.: Belief Functions on MV-Algebras of Fuzzy
Events Based on Fuzzy Evidence. In: Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI),
vol. 6717, pp. 628–639. Springer, Heidelberg (2011)

6. Fremlin, D.H.: Measure theory, vol. 4. Torres Fremlin, Colchester (2006), Topolog-
ical measure spaces. Part I, II, Corrected second printing of the 2003 original

7. Goodearl, K.R.: Partially Ordered Abelian Group with Interpolation. AMS Math.
Survey and Monographs 20 (1986)

8. Kroupa, T.: Every state on semisimple MV-algebra is integral. Fuzzy Sets and
Systems 157, 2771–2782 (2006)

9. Kroupa, T.: From Probabilities to Belief Functions on MV-Algebras. In: Borgelt, C.,
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