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Abstract We generalise belief functions to many-valued

events which are represented by elements of Lindenbaum

algebra of infinite-valued Łukasiewicz propositional logic.

Our approach is based on mass assignments used in the

Dempster–Shafer theory of evidence. A generalised belief

function is totally monotone and it has Choquet integral

representation with respect to a unique belief measure on

Boolean events.
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1 Introduction

The main goal of this paper is to study belief functions on

formulas in Łukasiewicz logic. This is in line with an

increasing interest in the generalisation of classical prob-

ability towards ‘‘infinite-valued’’ events, such as those

resulting from Lindenbaum algebra of formulas in Łukas-

iewicz infinite-valued logic. An algebra of such many-

valued events is called an MV-algebra (Cignoli et al.

2000). The counterpart of a probability on a Boolean

algebra is the so-called state on an MV-algebra—see

(Mundici 1995; Riečan and Mundici 2002; Mundici 2006)

for a detailed discussion of probability on MV-algebras

including its interpretation in terms of bookmaking over

many-valued events. The recent articles (Flaminio et al.

2011b; Fedel et al. 2011; Kroupa 2009) focus on more

general functionals on MV-algebras, such as upper (lower)

probabilities and possibility (necessity) measures. The

connection of belief functions to many-valued logics was

explored already in the paper (Godo et al. 2003), where

a fuzzy modal logic for belief functions on Boolean formulas

was investigated.

The presented paper is a continuation of the previous

works (Kroupa 2009, 2010, 2011) of the author. In the first

paper (Kroupa 2009), we ‘‘guessed’’ the right form of

a generalised belief function to be the Choquet integral with

respect to a classical belief measure. Although no reference

to basic assignments was made therein, it was the basic

assignment approach which enabled construction of belief

functions in the case of finitely-valued Łukasiewicz logic

(Kroupa 2010). All those results paved the way for the

synthesis (Kroupa 2011b), in which we established the

existence of Möbius transform for the class of functions in

the Choquet integral form. This article attempts to com-

plete the circle of ideas leading from Choquet integral to

basic state assignments: all the above-mentioned defini-

tions of belief functions are equivalent. Moreover, we will

make an effort to interpret the presented concept of belief

functions within Łukasiewicz logic: an elementary belief

function or an elementary necessity function is just Pav-

elka-style truth degree with respect to a deductive theory

[see (5.3)].

The paper is structured as follows. The basic definitions

and results regarding Łukasiewicz logic and MV-algebras

are repeated in Sect. 2. In Sect. 3 we will discuss states on

MV-algebras and, in particular, the notion of support of

a state: the state is supported by the quotient MV-algebra

modulo the filter corresponding to the smallest closed set

of measure one (Definition 3.2 and Proposition 3.1).

A summary of well-known properties of belief measures on

the finite algebras of sets (Shafer 1976) is contained in

Sect. 4. This makes it possible to compare those properties
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with the relevant properties of belief functions introduced

in Sect. 5. The main result is a characterisation of belief

functions in Theorem 5.1, which enables further descrip-

tion of important subclasses of belief functions such as

states and necessity functions. Moreover, every belief

function is a lower probability according to Theorem 5.2

[cf. Fedel et al. 2011].

Theory of belief measures and functions is a product

of a rich mixture of ideas ranging from MV-algebras and

logic to hyperspace topologies on spaces of compact sets

and convex analysis. It is barely possible to give even

a brief account of all of them in this article. Since we

prefer clarity and the overall picture to technical details

of the proofs, in many parts of our argumentation we

refer the reader to our previous results presented in

Kroupa (2011a, b).

2 Preliminaries

In this section we give necessary background on MV-

algebras and Łukasiewicz propositional infinite-valued

logic. The reader is referred to the book Cignoli et al.

(2000) or Chapter 3 in Hájek (1998) for further details.

2.1 MV-algebras

Definition 2.1 An MV-algebra is an algebra

hM;�;:; 0i

with a binary operation �; a unary operation : and

a constant 0 such that hM;�; 0i is an abelian monoid and

the following equations hold true for every pair of elements

a; b 2 M:

::a ¼ a;

a� :0 ¼ :0;

:ð:a� bÞ � b ¼ :ð:b� aÞ � a:

On every MV-algebra M we define 1 ¼ :0; a� b ¼
:ð:a� :bÞ: For any two elements a; b 2 M we write a� b

if :a� b ¼ 1: The relation � is in fact a partial order.

Further, the operations _;^ defined by a _ b ¼ :ð:a�
bÞ � b and a ^ b ¼ :ð:a _ :bÞ; respectively, make the

algebraic structure hM;^;_; 0; 1i into a distributive lattice

with bottom element 0 and top element 1. Isomorphism of

MV-algebras M1;M2 is a bijective mapping h : M1 ! M2

preserving the MV-algebraic operations �;: and the

constant 1.

Example 2.1 (Standard MV-algebra) The basic example

of an MV-algebra is the standard MV-algebra, which is the

real unit interval [0,1] equipped with operations

a� b ¼ minð1; aþ bÞ;
:a ¼ 1� a:

This implies

a� b ¼ maxð0; aþ b� 1Þ

by the definition of operation �: The partial order � of the

standard MV-algebra coincides with the usual order of real

numbers in the unit interval [0,1].

The set ½0; 1�X of all functions X ! ½0; 1� becomes an

MV-algebra if the operations �;: and the element 0 are

defined pointwise. The corresponding lattice operations

_;^ are then the pointwise maximum and the pointwise

minimum of two functions X ! ½0; 1�; respectively. Par-

ticular MV-algebras of functions (the so-called clans) are

the most frequently encountered instances of MV-algebras.

Definition 2.2 Let X be a nonempty set. A clan over X is

a collection MX of functions X ! ½0; 1� such that the zero

function 0 is in MX and the following conditions are

satisfied:

(i) if a 2 MX; then :a 2 MX;

(ii) if a; b 2 MX ; then a� b 2 MX:

In particular, a clan MX contains the constant function 1

and it is closed with respect to the operation �: Thus every

clan is an MV-algebra. A clan MX of functions X ! ½0; 1�
is separating whenever, for every pair x; y 2 X with x 6¼ y;

there exists a function a 2 MX such that aðxÞ 6¼ aðyÞ:
Let M be an MV-algebra. A filter in M is a subset F of M

such that

(i) 1 2 F;

(ii) if a; b 2 F; then a� b 2 F;

(iii) if a 2 F and a� b 2 M; then b 2 F:

A filter F in M is proper if F 6¼ M: We say that a proper

filter is maximal whenever it is not strictly included in any

proper filter. Let XM be the set of all maximal filters in M. It

can be shown that XM 6¼ ; for any MV-algebra M. The set

XM can be endowed with a topology whose family of

closed sets is given by all sets

CF ¼ fF0 2 XM j F0 6� Fg;

where F is a filter in M. Then the topological space XM

becomes compact and Hausdorff.

An MV-algebra is semisimple MV-algebra (Cignoli et al

2000, Chapter 3.6) if it is isomorphic to a separating clan

of continuous functions over the compact Hausdorff space

XM : In our investigation of belief functions, we confine our

discussion to a particular case of a semisimple MV-algebra.

Namely, we study belief functions on the Lindenbaum

algebra of Łukasiewicz logic. We do so for the follow-

ing reasons. First, this specialisation exhibits a clear
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connection between belief functions and logic. Second, the

topological space of maximal filters of this Lindenbaum

algebra is second-countable, which enables us to find

a faithful generalisation of belief measures by employing

some results from (Kroupa 2011b).

We will make ample use of the duality between closed

sets and filters. Let MX be a separating clan of continuous

functions over a compact Hausdorff space X. There exists

a one-to-one correspondence between certain filters in MX

and closed subsets of X. For every set A 	 X; the subset of

MX defined by

FA ¼ fa 2 MX jaðxÞ ¼ 1; for every x 2 Ag ð2:1Þ

is a filter in MX: In particular, F; ¼ MX;FX ¼ f1g:
Moreover, the filter Ffxg is maximal for each x 2 X:

Conversely, a closed subset VF of X can be assigned to

every filter F in MX by putting

VF ¼
\
fa�1ð1Þja 2 Fg; ð2:2Þ

since every function a 2 F is continuous. The following

theorem summarises the relevant results in (Cignoli et al.

2000, Chapter 3.4).

Theorem 2.1 Let MX be a separating clan of continuous

functions over a compact Hausdorff space X.

(i) The mapping x 2 X 7!Ffxg is a one-to-one correspon-

dence between X and the set of all maximal filters in

the clan MX:

(ii) If A 	 X is closed, then A ¼ VFA
:

(iii) If F is a proper filter that is an intersection of all

maximal filters containing F, then F ¼ FVF
:

Thus there is an order-reversing bijection between the

set of all nonempty closed subsets of X and the set of all

proper filters in MX that are intersections of maximal

filters.

2.2 Łukasiewicz logic

In this section we provide a survey of Łukasiewicz infinite-

valued propositional logic (Cignoli et al. 2000, Chapter 4)

and its associated Lindenbaum algebra. Formulas u;w; . . . are

constructed from propositional variables A1; . . .;Ak by

applying the standard rules known in Boolean logic. Note that

we confine our focus to the language of Łukasiewicz logic

with finitely-many variables only. The connectives are nega-

tion, disjunction and conjunction, which are denoted by :;�
and �; respectively. This is already a complete set of con-

nectives: for example, the implication u! w can be defined

as :u� w: The set of all formulas containing propositional

variables A1; . . .;Ak is denoted by Form ðA1; . . .;AkÞ:

The standard semantics for connectives of Łukasiewicz

logic is defined by the corresponding operations of the

standard MV-algebra [0,1]. A valuation is a mapping

V : Form ðA1; . . .;AkÞ ! ½0; 1�

such that for each u;w 2 Form ðA1; . . .;AkÞ :

Vð:uÞ ¼ 1� VðuÞ;
Vðu� wÞ ¼ VðuÞ � VðwÞ;
Vðu� wÞ ¼ VðuÞ � VðwÞ:

Formulas u;w 2 Form ðA1; . . .;AkÞ are called equivalent

when VðuÞ ¼ VðwÞ; for every valuation V. The

equivalence class of u is denoted ½u�: The set of all such

equivalence classes endowed with the operations

:½u� ¼ ½:u�;
½u� � ½w� ¼ ½u� w�;
½u� � ½w� ¼ ½u� w�;

forms an MV-algebra denoted by Lk: This algebra is the

Lindenbaum algebra of Łukasiewicz logic over k propo-

sitional variables.

Since every valuation V is uniquely determined by its

restriction to the propositional variables

V 7!VðA1; . . .;AkÞ 2 ½0; 1�k;

every ‘‘possible world’’ V is matched with a unique point

xV from the k-dimensional unit cube ½0; 1�k and vice versa.

Let Vx be the valuation corresponding to x 2 ½0; 1�k: Put

½u�ðxÞ ¼ VxðuÞ; for every x 2 ½0; 1�k: Hence the equiva-

lence class ½u� of every u 2 Form ðA1; . . .;AkÞ can be

viewed as a function ½0; 1�k ! ½0; 1�: Since the Lindenbaum

algebra Lk coincides with the free MV-algebra over k

generators (Cignoli et al. 2000, Proposition 4.5.5),

McNaughton theorem (McNaughton 1951) yields that Lk is

precisely the MV-algebra of all functions ½0; 1�k ! ½0; 1�
that are continuous and piecewise linear, where each linear

piece has integer coefficients.

A deductive theory of Łukasiewicz logic is a set H of

formulas such that

(i) all axioms of Łukasiewicz logic belong to H;
(ii) if u;u! w 2 H; then w 2 H:

If H is a deductive theory, then put

FH ¼ f½u� 2 Lkju 2 Hg:

By H
 we denote the set of all formulas

u 2 Form ðA1; . . .;AkÞ

such that VðuÞ ¼ 1; whenever V is a truth valuation with

VðwÞ ¼ 1; for every w 2 H: The following theorem is
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a consequence of (Cignoli et al. 2000, Theorem 4.6.3)

together with (Cignoli et al. 2000, Theorem 4.6.6).

Theorem 2.2 The mapping H 7!FH is a bijection

between the deductive theories H satisfying H ¼ H
 on

the one hand and the proper filters in Lk that are inter-

sections of maximal filters on the other hand.

Putting together (2.1)–(2.2) with Theorems 2.2–2.1, we

get the following corollary.

Corollary 2.1 Let K 	 ½0; 1�k be nonempty and closed.

The mapping

K 7!HK ¼ fu 2 Form ðA1; . . .;AkÞj½u�ðxÞ ¼ 1; x 2 Kg
ð2:3Þ

is a one-to-one correspondence between the nonempty

closed subsets of ½0; 1�k and the deductive theories H such

that H ¼ H
:

3 State and its support

Definition 3.1 Let M be an MV-algebra. A state s on M is

a function M ! ½0; 1� with s(1) = 1 and satisfying

sðf � gÞ ¼ sðf Þ þ sðgÞ;

for every f ; g 2 M with f � g ¼ 0:

In particular, every state s is a modular function with

respect to � and �; that is, the identity

sðf � gÞ þ sðf � gÞ ¼ sðf Þ þ sðgÞ ð3:1Þ

is true for every f ; g 2 M: The following theorem, which

was proved independently in (Kroupa 2006) and (Panti

2008), is the integral representation of states. Let BðXÞ be

the r-algebra of Borel subsets of X.

Theorem 3.1 Let MX be a separating clan of continuous

functions over a compact Hausdorff space X. There is

a one-to-one correspondence between the states on MX and

regular Borel probability measures on BðXÞ: if s is a state

on MX; then there exists a unique regular Borel probability

measure l on BðXÞ such that

sðf Þ ¼
Z

f dl; f 2 MX : ð3:2Þ

The well-known identity (based on the inclusion-

exclusion principle) can be applied to any finite subset

ff1; . . .; fng of MX :

_n

i¼1

fi ¼
X

I	f1;...ng
I 6¼;

ð�1ÞjIjþ1
^

i2I

fi: ð3:3Þ

Due to (3.2) and (3.3), we can, for every state s on MX;

write

s
_n

i¼1

fi

 !
¼

X

I	f1;...ng
I 6¼;

ð�1ÞjIjþ1s
^

i2I

fi

 !
: ð3:4Þ

Let l be a Borel probability measure on a compact

Hausdorff space X. By K we denote the set of all compact

subsets of X. The support of l is a set
\
fKjK 2 K; lðKÞ ¼ 1g:

This corresponds to the usual meaning of ‘‘support’’ as the

smallest closed set on which the measure is concentrated.

The measure-theoretic notion of support can be expressed

algebraically and extended to states, which will prove

useful later for describing various types of belief functions.

Throughout this section, let MX be a separating clan of

continuous functions over a given compact Hausdorff space

X. If s is a state on MX ; then it follows from (3.1) that the set

ff 2 MXjsðf Þ ¼ 1g

is a proper filter in MX: Hence the next definition makes

sense, as it is based on the standard notion of a quotient

MV-algebra modulo filter (see Cignoli et al. 2000, p. 89).

Definition 3.2 Let s be a state on MX and

Fs ¼ ff 2 MXjsðf Þ ¼ 1g:

The support of s is the quotient MV-algebra MX=Fs:

The support of a state s is related to the support of the

representing Borel measure l (Theorem 3.1) as follows.

We claim that the closed set VFs
is the support of l. Indeed,

given any f 2 Fs; take K :¼ f�1ð1Þ and observe that K 2 K
and l(K) = 1. Conversely, if K 2 K is such that l(K) = 1,

then any f 2 FK necessarily satisfies s(f) = 1. Hence

VFs
¼
\
ff�1ð1Þjsðf Þ ¼ 1g

¼
\
ff�1ð1Þjlðf�1ð1ÞÞ ¼ 1g

¼
\
fKjK 2 K; lðKÞ ¼ 1g:

This implies that the integral (3.2) can be restricted to VFs

so that

sðf Þ ¼
Z

VFs

f dl; f 2 MX : ð3:5Þ

For every nonempty set Y 	 X; let MX=Y be the

MV-algebra of the restrictions to Y of all the functions in

the clan MX:

Proposition 3.1 The support of every state s on MX is

isomorphic to the MV-algebra MX=VFs
:

Proof Due to (Cignoli et al. 2000, Proposition 3.4.5) we

only need to show that Fs is an intersection of maximal

filters. We will in fact show that
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Fs ¼
\

x2VFs

Ffxg:

Let f 2 Ffxg; for each x 2 VFs
: Since VFs

is the support of

the probability measure l associated with s, we get

sðf Þ ¼
Z

f dl�
Z

VFs

1 dl ¼ lðVFs
Þ ¼ 1:

On the other hand, let

sðf Þ ¼
Z

VFs

f dl ¼ 1; f 2 MX:

This implies that measure l of the set

Y ¼ fx 2 VFs
jf ðxÞ\1g

is 0. Since Y is open, the compact set VFs
nY has a measure

of 1. But Y must be empty: otherwise there exists a proper

closed subset of the support VFs
whose measure is 1. Thus

f(x) = 1, for each x 2 VFs
. h

The equality (3.5) says that s(f) = s(g), for each pair of

functions f ; g 2 MX with f(x) = g(x), for every x 2 VFs
: The

state s0 on the support MX=Fs of s is thus well-defined by letting

s0ðf=FsÞ ¼ sðf Þ; f 2 MX: ð3:6Þ

Example 3.1 Let x 2 X: Then the function

sxðf Þ ¼ f ðxÞ; f 2 MX ð3:7Þ

is a state on the clan MX: Since the set

Fsx
¼ ff 2 MXjf ðxÞ ¼ 1g

is a maximal filter in MX ; the quotient MX=Fsx
is isomor-

phic to a subalgebra of the standard MV-algebra [0,1].

Example 3.2 Consider the Lebesgue state sk on the

MV-algebra Lk of k-variable McNaughton functions:

skðf Þ ¼
Z

f dx; f 2 MX

where the integral on the right-hand side is Riemann. Then

Fsk ¼ f1g; so that Lk=Fsk is isomorphic to Lk:

In conclusion: the support of every state s is the smallest

quotient of MX whose elements fully determine the values

of s. Due to (3.6) every state s on MX can be viewed as the

state s0 on the quotient algebra MX=Fs:

4 Belief measures on finite Boolean algebras

The main goal of this section is to repeat the basic defi-

nitions and results concerning belief measures on finite

algebras of sets (Shafer 1976). This will enable us to

compare their properties directly with those of belief

functions on formulas introduced in the next section. Let X

be a finite nonempty set.

Definition 4.1 Let m be a function 2X ! ½0; 1� such that

mð;Þ ¼ 0 and
X

A22X

mðAÞ ¼ 1:

A belief measure b is a function 2X? [0,1] defined by

bðAÞ ¼
X

B	A

mðBÞ; A 2 2X:

The function m is called a basic assignment. The finitely

additive probability measure P on 22X

given by

PðAÞ ¼
X

A2A
mðAÞ; A 2 22X

is said to be a probability assignment.

The value m(A) is the belief that one commits exactly

to A, while b(A) is the total belief committed to A.

A plausibility measure c : 2X ! ½0; 1� is defined by cðAÞ ¼
1� bð �AÞ; A 2 2X : The properties of a plausibility measure

are completely determined by those of the corresponding

belief measure. So we consider only belief measures in the

sequel. The terminological remark is in order at this

point. Since the definition of ‘‘belief measure’’ or ‘‘belief

function’’ appears in various contexts in the literature

(cf. Halpern 2003), we make the following stipulation: the

former is used for the belief degrees of events in a Boolean

algebra, while the latter is preferred in the general many-

valued setting introduced in Sect. 5. The same remark

applies to plausibility measures (functions).

Every belief measure is normalised, that is,

bð;Þ ¼ 0; bðXÞ ¼ 1;

and monotone:

bðAÞ� bðBÞ; whenever A 	 B for A;B 2 2X:

Observe that the basic assignment m is exactly the Möbius

transform of b (Rota 1964). This implies that we can

recover m from b as

mðAÞ ¼
X

B	A

ð�1ÞjAnBjbðBÞ; A 2 2X:

The following two examples appear in many different

variations throughout the literature about belief measures.

Example 4.1 (Negligent coin tossing) A coin is tossed so

that the result can be unknown: the coin is out of sight.

There is either heads or tails on the coin yet we do not

know which one is the actual outcome. The frame of dis-

cernment is X = {h, t}, since there are precisely two

admissible physical states of the coin. However, our
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personal belief must admit the situation in which the result

is not perceptible: let the real numbers ph; pt� 0 satisfy

ph þ pt\1: Put

mðAÞ ¼
ph; A ¼ fhg;
pt; A ¼ ftg;
1� ph � pt; A ¼ X:

8
<

:

The corresponding belief measure b is thus

bðAÞ ¼
ph; A ¼ fhg;
pt; A ¼ ftg;
1; A ¼ X:

8
<

:

Example 4.2 (Laplace principle) You are in a position

to assess which of three presented paintings is genuine

or counterfeit. All you know is that exactly one of the

three is genuine and you are no expert on paintings. Let

X = {a, b, c}. The Laplace principle of insufficient

reason gives the basic assignment and the belief

function

mðAÞ ¼ 1; A ¼ X;
0; otherwise,

�
bðAÞ ¼ 1; A ¼ X;

0; otherwise,

�

respectively.

In general, if A is a nonempty subset of any finite set

X, then the function

bAðBÞ ¼
1; A 	 B
0; otherwise,

�
ð4:1Þ

is a belief function. The corresponding basic assignment

mAðBÞ vanishes iff B = A.

Various equivalent properties of belief measures are

summarised below—see Shafer (1979) for proofs and

details.

Theorem 4.1 Let X be a finite nonempty set and let b:

2X? [0,1]. Then the following assertions are equivalent:

(i) b is a belief measure,

(ii) there is a finitely additive probability measure P on

22X
with Pð;Þ ¼ 0 such that

bðAÞ ¼ PðfBjB 	 AgÞ; for every A 2 2X;

(iii) b is a totally monotone function on 2X, i.e., b is

monotone and the following inequality holds true for

each n C 2 and every A1; . . .;An 2 2X :

b
[n

i¼1

Ai

 !
�
X

I	f1;...ng
I 6¼0

ð�1ÞjIjþ1b
\

i2I

Ai

 !
;

b lies in the convex hull of fbAjA 2 2X n f;gg:

In particular, total monotonicity yields that b is

supermodular,

bðA [ BÞ þ bðA \ BÞ� bðAÞ þ bðBÞ; A;B 2 2X ;

and thus also superadditive:

bðA [ BÞ� bðAÞ þ bðBÞ; whenever A \ B ¼ ;:

This means that the belief of A and the belief of its

complement �A do not sum to one in general:

bðAÞ þ bð �AÞ� 1:

Belief measures can also be viewed as ‘‘lower probabili-

ties’’, that is, lower envelopes of certain sets of probability

measures.

Theorem 4.2 If b is a belief measure on 2X, then the set

CðbÞ ¼ fpjpðAÞ� bðAÞ; A 2 2Xg

of probability measures p on 2X is nonempty, compact and

convex. For every A 2 2X ;

bðAÞ ¼ minfpðAÞjp 2 CðbÞg:

Probabilities can easily be characterised within the class of

belief measures.

Proposition 4.1 If b is a belief measure, then the fol-

lowing are equiveridical:

(i) b is a finitely additive probability,

(ii) the basic assignment m satisfies
P

x2X mðfxgÞ ¼ 1;

(iii) the support of the probability assignment P is included

in ffxgjx 2 Xg;
(iv) b coincides with the plausibility measure c,

(v) bðAÞ þ bð �AÞ ¼ 1:

A necessity measure is a function m: 2X? [0,1] such that

mð;Þ ¼ 0, m(X) = 1 and, for every A;B 2 2X;

mðA \ BÞ ¼ minfmðAÞ; mðBÞg: ð4:2Þ

The belief measure bA defined in (4.1) is a necessity

measure. It can be shown that every necessity measure is

a belief measure (Shafer 1976). The class of necessity

measures can be characterised within all belief measures as

follows.

Proposition 4.2 If b is a belief measure, then the fol-

lowing are equiveridical:

(i) b is a necessity measure,

(ii) the set fA 2 2XjmðAÞ[ 0g is a chain in 2X,

(iii) b is a convex combination of the belief measures

bA1
; . . .; bAn

; where ; 6¼ A1 	 � � � 	 An;

(iv) the support of the probability assignment P forms a

chain in 2X :

Proposition 4.2 says that the evidence underlying

necessity measures is homogeneous: an event A implies

another event B whenever both m(A) and m(B) are positive.
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This explains why necessity measures are also termed

consonant belief functions. Observe that (4.2) restricts the

values m(A) since each consonant belief measure m reveals

the least possible conflict in evidence: either m(A) = 0 or

mð �AÞ ¼ 0; for every A 2 2X :

5 Belief functions over infinite-valued events

A starting point for our introduction of belief functions in

the many-valued setting is the characterisation of belief

measures in Theorem 4.1 (ii). In the discussion that fol-

lows, we will substitute the finitely-additive probability P

by a state s: The crucial question is, however, which MV-

algebra is the right domain of such a state s: We propose

one possible solution to this issue by exploring an algebraic

feature of the mapping

A 2 2X 7! fB 2 2XjB 	 Ag ð5:1Þ

that is employed in Theorem 4.1 (ii). Namely, the set on

the right-hand side of (5.1) can be given the following

interpretation: since each B 2 2X determines a filter in the

Boolean algebra 2X and vice versa, the set

fB 2 2X jB 	 Ag 2 22X

is viewed as the set of all filters in 2X to which the element

A 2 2X belongs. This means that (5.1) becomes

A 2 2X 7! fF filter jA 2 Fg:

How do we modify (5.1) in a many-valued case?

First, we replace the set A 2 2X by a McNaughton

function f 2 Lk: Second, instead of the set

fB 2 2X jB 	 Ag 2 22X

;

we take the set of all filters in Lk and consider a degree to

which the McNaughton function f belongs to each of them.

Specifically, we consider only each filter F that is an

intersection of maximal filters; the degree of membership

of f to F is then

minff ðxÞjx 2 VFg; ð5:2Þ

where VF is the same as in (2.2). Conversely, the duality

expressed by Theorem 2.1 says that (5.2) determines

a degree of membership of f to a unique filter given by

a nonempty closed set K 	 ½0; 1�k in place of VF. Since f is

fixed and the closed set VF varies in (5.2), we will consider

the mapping

q : Lk �K0 ! ½0; 1�; qf ðAÞ :¼ minff ðxÞjx 2 Ag;

for every f 2 Lk;A 2 K0; where K0 denotes the set of all

nonempty closed subsets of ½0; 1�k: Hence it is the function

qf : K0 ! ½0; 1� that plays the role of the set

fB 2 2X jB 	 Ag 2 22X

in the many-valued setting: indeed, it follows from the

definition that

qA ¼ fB 2 2XjB 	 Ag; A 2 2X;

provided the set A is identified with its characteristic function.

Consequently, the Boolean algebra 22X

is replaced with any

MV-algebra including the image of Lk via q, the set fqf jf 2
Lkg: A state s on such an MV-algebra is then a many-valued

analogue of the probability assignment

P : 22X ! ½0; 1�:

In order to fully exploit the integral representation of

states (Theorem 3.1) in the developed theory, we need to

endow the space of nonempty closed sets K0 with

a compact Hausdorff topology, the considered MV-algebra

of functions K0 ! ½0; 1� becoming a separating clan of

continuous functions. Both tasks were solved in Kroupa

(2011). Namely, the hyperspace K0 is endowed with the so-

called Hausdorff metric topology. It is the topology induced

by the Hausdorff metric H on K0 :

HðA;BÞ ¼ max sup
x2A

inf
y2B
kx� yk; sup

y2B
inf
x2A
kx� yk

( )
;

where A;B 2 K0: It can be shown that the Hausdorff metric

topology on K0 is indeed compact Hausdorff and, more-

over, that function qf : K0 ! ½0; 1� is continuous for each

f 2 Lk [see Kroupa (2011b) and the references therein]. In

conclusion, in a many-valued case we can consider the

MV-algebra CK0 of all continuous functions K0 ! ½0; 1� as

a substitute for 22X

. The preceding explanation paved the

way for the following definition.

Definition 5.1 A state assignment s is a state on CK0 : Let

s be a state assignment. A belief function is a function b:

Lk? [0,1] such that

bðf Þ ¼ sðqf Þ; for every f 2 Lk:

On the one hand, a state on the algebra of McNaughton

functions Lk can be seen as an averaging process for truth

degrees in Łukasiewicz logic [cf. Mundici (1995) and

Theorem 3.1]. On the other hand, state assignment s defines

averaging over ‘‘relative’’ truth degrees: this point of view

is made possible by adopting the terminology used in

Rational Pavelka logic (Hájek 1998, Chapter 3.3). Indeed,

due to Corollary 2.1, we can write

qf ðAÞ ¼ inffVðuÞjV is a model of HAg; ð5:3Þ

for every f 2 Lk;A 2 K0; where u is a formula corre-

sponding to McNaughton function f and HA is as in (2.3).
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The expression on the right-hand side of (5.3) is called the

truth degree of u over HA: In conclusion: belief b(f) is a

result of averaging the relative truth degrees of u over the

theories corresponding to all nonempty closed sets of valua-

tions. Whereas the basic example of a state on Lk is a state sx

determined by point x 2 ½0; 1�k (Example 3.1), the basic

example of a belief function is the belief function determined

by a nonempty closed set of points in [0,1]k.

Example 5.1 Let A 2 K0: Put

bAðf Þ ¼ qf ðAÞ; f 2 Lk: ð5:4Þ

Then the function bA is a belief function with state

assignment sA such that

sAðnÞ ¼ nðAÞ; n 2 CK0 : ð5:5Þ

Belief function bA is a many-valued analogue of belief

measure bA from (4.1). The support of state assignment sA

is a subalgebra of [0,1] due to Example 3.1.

In the classical case of a finite Boolean algebra, every

finitely additive probability is a belief measure. Similarly,

every state on Lk is a belief function.

Proposition 5.1 Every state s on Lk is a belief function

whose state assignment is supported by the MV-algebra Lk/

Fs.

Proof Observe that s can be extended to the MV-algebra

of all continuous functions [0, 1]k? [0, 1] by Theo-

rem 3.1. We will denote this extension by s as well. The

Hausdorff metric topology of K0 is compatible with the

Euclidean topology of the k-cube [0,1]k in this sense:

the set X̂ ¼ ffxgjx 2 ½0; 1�kg 
 K0 is homeomorphic to

[0,1]k. Therefore, if n 2 CK0 ; then n=FX̂ can be identified

with the restriction of n on [0,1]k. Put

sðnÞ ¼ sðn=FX̂Þ; n 2 CK0 :

This gives

sðqf Þ ¼ sðqf =FX̂Þ ¼ sðf Þ; f 2 Lk;

since qf ðfxgÞ ¼ f ðxÞ: The second assertion follows from

the definition of s: h

In the next section we will investigate the properties of

belief functions and compare them with the corresponding

properties of belief measures in Sect. 4.

5.1 Properties of belief functions

It follows from Definition 5.1 that b(0) = 0, b(1) = 1, and

b is monotone: b(f) B b(g) for each f ; g 2 Lk with f B g.

Moreover, since f � g ¼ 0 implies

qf�g ¼ qfþg� qf þ qg;

every belief function is superadditive with respect to the

operations �;�:

bðf � gÞ� bðf Þ þ bðgÞ; whenever f � g ¼ 0:

This also shows that bðf Þ þ bð:f Þ� 1:

Proposition 5.2 Every belief function b is a totally

monotone function on the lattice reduct of Lk, that is, b is

monotone and satisfies

b
_n

i¼1

fi

 !
�
X

I	f1;...ng
I 6¼;

ð�1ÞjIjþ1b
^

i2I

fi

 !
;

for each n C 2 and every f1; . . .; fn 2 Lk:

Proof The definition of belief function b makes it possi-

ble to write b ¼ s � q; where q : f 2 Lk 7!qf 2 CK0 :

According to Lemma 6 from de Cooman et al. (2008), it

suffices to show that s is totally monotone on the lattice

reduct of CK0 and that

qf^g ¼ qf ^ qg; for every f ; g 2 Lk:

The former assertion is a consequence of (3.4) and the

latter follows directly from the definition of q. h

In particular, setting n = 2 in Proposition 5.2 shows that

b is supermodular with respect to the lattice operations of

the clan Lk:

bðf _ gÞ þ bðf ^ gÞ� bðf Þ þ bðgÞ; f ; g 2 Lk:

Belief functions on Lk can be described in a number of

equivalent ways: this will be conveyed by Theorem 5.1 below.

In order to state the theorem, we will need to repeat a few

definitions regarding belief measures on compact subsets of

[0,1]k and their associated Choquet integrals [see Shafer (1979)

and Denneberg (1994), respectively]. A belief measure onK ¼
K0 [ f;g is function b : K ! ½0; 1� such that:

(i) bð;Þ ¼ 0, bð½0; 1�kÞ ¼ 1;

(ii) b is totally monotone on K;
(iii) if ðAnÞn2N 2 KN is non-increasing, then

b
\1

n¼1

An

 !
¼ lim

n!1
bðAnÞ:

When b is a belief measure on K; the Choquet integral of

f 2 Lk with respect to b is given by

Z
Cf db ¼

Z1

0

bðf�1ð½t; 1�ÞÞ dt:

This is well-defined since the Riemann integral on the

right-hand side exists due to continuity of f and
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monotonicity of b. By BðK0Þ we denote Borel r-algebra

generated by Hausdorff metric topology of K0: Although

BðK0Þ is a r-algebra of sets of subsets, it can be described

explicitly [see Molchanov (2005, Chapter 1)].

Theorem 5.1 Let b be a function Lk? [0,1]. Then the

following assertions are equivalent:

(i) b is a belief function,

(ii) there is a belief measure b on K such that

bðf Þ ¼
Z
C f db; f 2 Lk;

(iii) there is a Borel probability measure l on BðK0Þ such

that

bðf Þ ¼
Z

K0

qf ðAÞ dlðAÞ; f 2 Lk;

(iv) b lies in the closed convex hull of fbAjA 2 K0g; where

the closure is considered in the product topology of

½0; 1�Lk :

Proof The equivalence of the first and the second asser-

tion is formulated as the main result (Theorem 3.5) in

Kroupa (2011). Theorem 3.1 yields that (i) holds true if

and only if (iii) is satisfied. We will show that (i) implies

(iv). If s is an arbitrary state assignment, put UðsÞ ¼ b;

where b is the belief function corresponding to s: The

mapping U is affine: for every a 2 ½0; 1� and every pair of

state assignments s1; s2; we have

Uðas1 þ ð1� aÞs2Þ ¼ aUðs1Þ þ ð1� aÞUðs2Þ:

Moreover, the mapping U is continuous from the set of all

state assignments (considered with the product topology of

½0; 1�CK0 ) to the set of all belief functions on Lk (considered

with the product topology of ½0; 1�Lk ). It follows from

(Mundici 1995) that s is in the closed convex hull of the set

fsAjA 2 K0g; where sA is the same as in (5.5). Since

UðsAÞ ¼ bA for each A 2 K0; the function b lies in the

closed convex hull of fbAjA 2 K0g: The implication from

(iv) to (i) is proven analogously. h

Theorem 5.2 (Belief function as a lower probability) If b

is a belief function on Lk, then the set

CðbÞ ¼ fsjsðf Þ� bðf Þ; f 2 Lkg

of states on Lk is nonempty, compact and convex. For every

f 2 Lk;

bðf Þ ¼ minfsðf Þjs 2 CðbÞg:

Proof Let l be the Borel probability measure on BðK0Þ
representing the state assignment s: By C[0,1]k we denote

the Banach space of all real continuous functions on [0,1]k

with the supremum norm. For each nonnegative function

f 2 C½0; 1�k; put

�bðf Þ ¼
Z

K0

�qf ðAÞ dlðAÞ;

where �qf ðAÞ :¼ minff ðxÞjx 2 Ag: Then �bðf Þ ¼ bðf Þ for

each f 2 Lk: It can be routinely shown that the function �b is

continuous, concave and positively homogeneous on the

subspace ff 2 C½0; 1�kjf � 0g: The assertion then follows

from Proposition 3 (i) in (Kroupa 2011). h

Plausibility functions are dual to belief functions. Spe-

cifically, for every belief function b, let

pðf Þ ¼ 1� bð:f Þ; for every f 2 Lk:

Since the negation : is involutive, the properties of plau-

sibility function p are dual to those of the associated belief

function b. We will use plausibility functions to achieve

a characterisation of states within belief functions, which

is analogous to Proposition 4.1.

Proposition 5.3 (Characterisation of states) If b is

a belief function with the state assignment s; then the fol-

lowing are equiveridical:

(i) b is a state,

(ii) if f ; g 2 Lk are such that f � g ¼ 0; then

sðqf�gÞ ¼ sðqf Þ þ sðqgÞ;

(iii) the support of the state assignment s is (up to

isomorphism) the MV-algebra Lk/FA, for some A 2
K;

(iv) b coincides with the associated plausibility funct-

ionp,

(v) bðf Þ þ bð:f Þ ¼ 1; for every f 2 Lk:

Proof The equivalence of the first three assertions

directly follows from the assertion and the proof of Prop-

osition 5.1. Clearly, (iv) and (v) are equivalent, and (i)

implies (v). We will show that the implication (iii) follows

from (v). Let bðf Þ þ bð:f Þ ¼ 1; for each f 2 Lk: This

provides

Z

K0

ðqf þ q:f Þ dl ¼ 1;

where l is the unique Borel probability measure on BðK0Þ
from Theorem 5.1 (iii). Let

X̂ ¼ ffxgjx 2 ½0; 1�kg:

The integral above is split into the following terms:
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Z

K0

ðqf þ q:f Þ dl

¼
Z

X̂

ðqf þ q:f Þ dlþ
Z

K0nX̂

ðqf þ q:f Þ dl

¼ lðX̂Þ þ
Z

K0nX̂

ðqf þ q:f Þ dl:

The last sum is equal to 1 for each f 2 Lk: This necessarily

implies lðK0 n X̂Þ ¼ 0: So lðX̂Þ ¼ 1 and the support of l is

thus included in X̂; which yields (iii). h

The characterisation of necessity measures in Proposi-

tion 4.2 is a plausible starting point for the introduction of

necessity functions as special belief functions. The prop-

erty (iv) in Proposition 4.2 can be directly rephrased in the

many-valued setting as follows.

Definition 5.2 A necessity function is a belief function

Nec whose state assignment is supported by the MV-

algebra CK0=FA; for a compact set A whose elements form

a chain in K0:

It is worth mentioning that our necessity function Nec is

not min-preserving in general. This is a point of dissimi-

larity with the defining property (4.2) of classical necessity

measures. On the one hand, there are other concepts of

necessity functions in a many-valued framework (Flaminio

et al. 2011b), which consider the identity

Nec ðf ^ gÞ ¼ Nec ðf Þ ^ Nec ðgÞ; f ; g 2 Lk ð5:6Þ

as the constituting property of necessity functions. On the

other hand, a definition of necessity function violating (5.6)

already appeared in the paper (Dubois and Prade 1985) by

Dubois and Prade. So it seems that there are more possible

generalisations of necessity functions outside Boolean

setting depending on the particular property of classical

necessity functions chosen. These issues are discussed in

detail in (Flaminio and Kroupa 2011).

Example 5.2 Assume that A ¼ ðA1; . . .;AnÞ and A1 	
� � � 	 An; where Ai 2 K0: For any a1; . . .; an� 0 withPn

i¼1 ai ¼ 1; put

Nec ðf Þ ¼
Xn

i¼1

aiqf ðAiÞ:

This is a necessity function with a state assignment

sðnÞ ¼
Xn

i¼1

ainðAiÞ; n 2 CK0 :

Observe that if ai ¼ 1 for some i ¼ 1; . . .; n; then (5.6) is

satisfied. This means that at least the basic necessity

functions bA from (5.4) are min-preserving.

6 Open problems

We will state two problems open for further investigation.

First, it is not known whether total monotonicity implies

the existence of a state assignment. Specifically, can we

achieve equivalence in Proposition 5.2 so that a totally

monotone normalised function is a belief function? This is

true in the Boolean case (cf. Theorem 4.1).

Second, we made no attempts to study Dempster’s rule

of combination. Let m1;m2 be two basic assignments on 2X.

We say that basic assignment m on 2X results from

Dempster’s rule of combination on m1 and m2 whenever

mðAÞ ¼
k�1

P
B;C22X

A¼B\C

m1ðBÞm2ðCÞ; A 6¼ ;;

0; A ¼ ;;

8
<

:

where

k ¼ 1�
X

B;C22X

;¼B\C

m1ðBÞm2ðCÞ:

The main difficulty in our setting is how to construct

a combined state assignment over the infinite MV-algebra

CK0 : Initial efforts in this direction were recently made in

Flaminio et al. (2011a) in a framework very similar to ours.
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