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On an extension of the space
of bounded deformations

Martin Kruž́ık and Johannes Zimmer

Abstract. As for functions of bounded variations (BV ), the space of functions of
bounded deformations (BD) can be equipped with different topologies. We propose
an extension of the traditional space of BD functions equipped with the weak-⋆ topol-
ogy. It is shown that in this fine extension, both compactness and weak-⋆ continuity
of the trace hold under weak assumptions. This is relevant for applications, where
the specimen is typically exposed to forces on the boundary. We give an application
to a functional with a linearly growing energy density.
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1. Introduction

Various variational problems are characterised by linear growth of the func-
tional; examples can be found in plasticity and minimal surfaces. Those prob-

lems (e.g., the minimal surface functional
∫
Ω

√
1 + |∇u|2 dx) have a natural

setting in a fine extension of W 1,1(Ω) or, if the functional depends on the lin-
earised gradient 1

2

(
∇u+∇u⊤), the equivalent space for symmetrised gradients.

For example, perfect plasticity naturally leads to functionals involving the ex-
pression 1

2

(
∇u+∇u⊤), so there is a natural interest in a suitable functional

analytic framework. In this article, we develop such a functional setting for
linearised gradients tailored for the calculus of variations. The setting intro-
duced here offers both convenient compactness properties and continuity and
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2 Martin Kruž́ık and Johannes Zimmer

weak-⋆ continuity of the trace. This combination is required in applications in
mechanics where boundary forces are present.

One extension of W 1,1(Ω) is the space of bounded variations, BV (Ω) (see,
e.g., the accounts in [1, 5]). Apart from the norm topology, two topologies are
common for BV (Ω): the weak-⋆ topology [1, Definition 3.11] and the strict
convergence [1, Definition 3.14]. The former is useful for its compactness prop-
erties (see, e.g., [1, Theorem 3.23]), while the latter ensures continuity of the
trace operator [1, Theorem 3.88]. In applications, one commonly would like to
have both to pass to the limit of a minimising sequence, to obtain a limit and
preserve the boundary data. As far as the existence of a limit is concerned, the
weak-⋆ topology is a natural choice. Unfortunately, the trace operator in BV
is not continuous when BV is endowed with the weak-⋆ topology, as can be
seen in the simplest toy model. Namely, consider Ω := (0, 1), and uk : Ω → R
given by uk(x) = kx for x ∈

[
0, 1

k

]
, and uk(x) = 1 for x ∈

[
1
k
, 1
]
. It is then

easy to verify that uk
⋆
⇀ 1 in BV (Ω), so the boundary data at 0 is lost in the

limit procedure. The ultimate reason is that the test functions introduced in
the definition of the weak-⋆ convergence vanish on the boundary. Souček [12]
has introduced a fine extension of BV (Ω) where the test functions do not have
to vanish on the boundary, and both compactness and continuity of the trace
can be obtained. See [8] for a brief summary.

The purpose of this article is to introduce an analogous fine extension of the
space of bounded deformations (BD). The space BD(Ω) is composed of vector-
valued functions u in L1(Ω) for which the symmetrised gradients 1

2

(
Du+Du⊤)

are (component-wise) bounded measures. The one-dimensional example given
above for BV shows that BD suffers from the same inconvenience: while a
weak-⋆ convergence leads naturally to (weak-⋆) compactness, the trace opera-
tor is not continuous in that topology. Stronger topologies, such as the norm
topology in BD, make the trace operator continuous, but compactness becomes
hard or impossible to prove. This is a serious obstacle for applications: indeed,
BD is a natural function space for problems in plasticity, for which the direct
methods from the Calculus of Variations are powerful tools. However, it is nat-
ural for applications in plasticity to prescribe boundary conditions. One would
then like to work in a setting where the boundary data of a minimising sequence
are preserved in the limit, while such a sequence should converge to a limit func-
tion in the same topology. We develop a fine extension where these two aims
can be achieved simultaneously, unlike for existing topologies. Specifically, the
main result of this article is a fine extension of DB where weak-⋆ compactness
holds (Theorem 2.6), and the trace operator is both continuous and weak-⋆ con-
tinuous (Theorem 2.5). While some of the development of the theory presented
here naturally resembles that of Souček’s extension of the space of bounded
variation, various arguments differ from those in [12] since we cannot rely on
Sobolev embeddings available in the situation studied there. The result given
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here refines the main result of Temam’s and Strang’s paper [14] in a specific
way: they show that the boundary values of a function in BD(Ω) are inte-
grable, and the trace operator is continuous in the norm topology [14, Theorem
1.1]. The trace we define in this article is the trace introduced by Temam and
Strang augmented by a term to handle possible concentration on the boundary
(see Equation (6)). An application of the framework developed in this article
is given in Section 4.

Basic notation. In this article, Ω ⊂ Rn is always a bounded domain with
smooth boundary. C0(Ω) stands for the space of continuous functions f : Ω → R
such that

{
x ∈ Ω

∣∣ |f(x)| ≥ ϵ
}
is compact for every ϵ > 0. If ΓD is a part of the

boundary ∂Ω with positive n− 1-dimensional Hausdorff measure, W 1,1
uD

(Ω;Rm)
stands for the set of functions u ∈ W 1,1 (Ω;Rm) with u = uD on ΓD. We denote
the (signed) Radon measures with finite mass on a locally compact Hausdorff
space X by M(X); the cone of non-negative Radon measures with finite mass
is denoted M+(X), and Prob(X) is the set of probability measures. The space
of Radon measures with compact support on Ω̄ is denoted

(
M

(
Ω̄
)
, ∥·∥

)
. The

Jordan decomposition for signed measures µ = µ+ − µ− gives rise to the total
variation |µ|, which is the measure |µ| := µ+ + µ−. Endowed with the total
variation ∥µ∥ := |µ| (X) as a norm, M(X) is a Banach space. By the Riesz
representation theorem, (M(X), ∥·∥) is isometrically isomorphic to the dual of
(C0(X), ∥·∥∞) via the pairing

⟨f, µ⟩ :=
∫
Ω

f(x)µ(dx).

The weak-⋆ topology on M(X) is defined by this duality. Weak convergence

respectively weak-⋆ convergence is expressed as uk ⇀ u respectively uk
⋆
⇀ u,

while un → u denotes strong convergence. We write w-lim for the weak limit,
and analogously w-⋆ lim for the weak-⋆ limit.

We follow the convention of writing C for a generic constant, whose value
may change from line to line.

2. Fine extensions of W 1,1 (Ω;Rm) with symmetrised gra-
dients

In this section we consider extensions of W 1,1 (Ω;Rn) with symmetrised gradi-
ents. If u ∈ W 1,1(Ω;Rn), we set ε(u) := 1

2

(
∇u+∇⊤u

)
. Where the symmetrised

gradients exist only in the sense of measures, we write Eu = 1
2

(
Du+D⊤u

)
.

2.1. Functions of bounded deformation. We now turn our attention to
the space of functions with bounded deformation BD (Ω;Rn) (see, e.g., [1, 5]).
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The space BD (Ω;Rn) stands for the linear subspace of L1 (Ω;Rn) containing
maps with bounded deformation in Ω, i.e., u ∈ BD (Ω;Rn) if its symmetrised
gradient, Eu = 1

2

(
Du+D⊤u

)
is a measure in M (Ω;Rn×n). We define its norm

as

∥u∥BV (Ω;Rm) = ∥u∥L1(Ω;Rm) + ∥Eu∥M(Ω;Rn×n) < +∞ . (1)

Temam and Strang [14, Theorem 1.1] showed that there is a unique con-
tinuous (in the norm topology) linear operator TBD : BD (Ω;Rn) → L1 (∂Ω)
such that TBDu = u|∂Ω if u ∈ BD (Ω;Rn) ∩ C

(
Ω̄;Rn

)
. Moreover, for every

i, j ∈ {1, 2, . . . , n} and for every φ ∈ C1
(
Ω̄
)

1

2

∫
∂Ω

φ(x)[ν ⊗ TBDu]dS =

∫
Ω

φ(x)Eu(dx) +
1

2

∫
Ω

u(x)⊗∇φ(x) dx , (2)

where [ν ⊗ TBDu] ∈ L1 (∂Ω;Rn×n) is defined as∫
∂Ω

[ν ⊗ TBDu]ij(dS) :=

∫
∂Ω

νi(x)TBDuj(dS) +

∫
∂Ω

νj(x)TBDui(dS) ,

with i, j ∈ {1, 2, . . . , n}, and ν : ∂Ω → Rn is again the outer unit normal to ∂Ω.
The main result in Temam’s and Strang’s article [14] is this trace theorem for
BD (Ω); to distinguish their notion of a trace from the notion develop here, we
call the trace defined in [14] occasionally the BD-trace.

2.2. The space BDµ(Ω;Rn). One central aim of this article is to establish a
finer extension of BD (Ω;Rn), in the spirit of Souček’s work [12]. We start with
the definition, where we introduce µ in the notation to stress the analogy to the
Souček space W 1,µ(Ω;Rn) introduced in [12],

W 1,µ(Ω;Rm)=
{
(u, D̄u)∈L1(Ω;Rn)×M(Ω̄); there exists {uk}k∈N⊂W 1,1(Ω;Rn)

s.t. uk → u in L1(Ω;Rn), ∇uk → D̄u weakly⋆ in M(Ω̄;Rn×n)
}

(see also [8] for properties of W 1,µ (Ω;Rm)).

Definition 2.1. We say that
(
u, Ēu

)
∈ BDµ (Ω;Rn) if there exists a sequence

{uk}k∈N ⊂ W 1,1 (Ω;Rm) such that uk → u in L1 (Ω;Rn) and ε (uk)
⋆
⇀ Ēu in

M
(
Ω̄;Rn×n

)
. We norm BDµ(Ω;Rn) by∥∥(u, Ēu)

∥∥
BDµ(Ω;Rn)

:= ∥u∥L1(Ω;Rn) +
∥∥Ēu

∥∥
M(Ω̄;Rn×n) . (3)

Remark 2.2. 1. In particular, in the setting of Definition 2.1, {ε(uk)}k∈N is
bounded in L1(Ω;Rn×n).

2. Obviously W 1,µ(Ω;Rn) ⊂ BDµ(Ω;Rn).



On an extension of the space of bounded deformations 5

Theorem 2.3. Let
(
u, Ēu

)
∈ BDµ (Ω;Rn). Then there is a uniquely defined

measure β ∈ M (∂Ω;Rn) such that the following integration by parts formula
holds for every φ ∈ C1

(
Ω̄
)
:

1

2

∫
∂Ω

φ(x)[ν ⊗ β](dS) =

∫
Ω̄

φ(x)Ēu(dx) +
1

2

∫
Ω

u(x)⊗∇φ(x) dx , (4)

where [ν ⊗ β] ∈ M (∂Ω;Rn×n) is defined as∫
∂Ω

ϕ(x)[ν ⊗ β]ij(dS) :=

∫
∂Ω

ϕ(x)νi(x)βj(dS) +

∫
∂Ω

ϕ(x)νj(x)βi(dS)

for every ϕ ∈ C (∂Ω), again with i, j ∈ {1, 2, . . . , n}, and ν : ∂Ω → Rn is the
outer unit normal to ∂Ω as before.

Proof. Initially, we follow the proof of [12, Theorem 1]. According to the defini-
tion, there is a sequence {uk}k∈N ⊂ W 1,1 (Ω;Rn) such that uk → u in L1 (Ω;Rn)

and ε (uk)
⋆
⇀ Ēu. We have by Green’s theorem∫

∂Ω

[tr ui
k](x)φ(x)νj(x) dS =

∫
Ω

∂ui
k(x)

∂xj

φ(x) dx+

∫
Ω

ui
k(x)

∂φ(x)

∂xj

dx .

Similarly, interchanging i and j, we obtain∫
∂Ω

[tr uj
k](x)φ(x)νi(x) dS =

∫
Ω

∂uj
k(x)

∂xi

φ(x) dx+

∫
Ω

uj
k(x)

∂φ(x)

∂xi

dx .

Summing up these two equalities, we get∫
∂Ω

([tr uk]⊗ν)(x)φ(x) dS = 2

∫
Ω

ε(uk(x))φ(x) dx+

∫
Ω

uk(x)⊗∇φ(x) dx . (5)

Passing to the limit for k → ∞ and using (2) in the fourth equality, we get

lim
k→∞

∫
∂Ω

([tr uk]⊗ ν)(x)φ(x) dS

= 2

∫
Ω̄

φ(x)Ēu(dx) +

∫
Ω

u(x)⊗∇φ(x) dx

= 2

∫
Ω

φ(x)Ēu(dx) + 2

∫
∂Ω

φ(x)Ēu(dx) +

∫
Ω

u(x)⊗∇φ(x) dx

= 2

∫
Ω

φ(x)Eu(dx) + 2

∫
∂Ω

φ(x)Ēu(dx) +

∫
Ω

u(x)⊗∇φ(x) dx

=

∫
∂Ω

φ(x)[ν ⊗ TBDu]dS + 2

∫
∂Ω

φ(x)Ēu(dx).

(6)
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To show that β is a measure, we argue differently from the case of the
full gradient [12]. Namely, we define a continuous linear functional on the set
S := {νφ|∂Ω

∣∣ φ ∈ C1
(
Ω̄
)
} by setting

⟨β, νφ⟩ := lim
k→∞

∫
∂Ω

([tr uk]⊗ ν)(x)φ(x) dS

=

∫
∂Ω

φ(x)[ν ⊗ TBDu]dS + 2

∫
∂Ω

φ(x)Ēu(dx) .

(7)

However, the linear hull of S is dense in C(∂Ω) [12, page 19], so β can be
uniquely extended to a functional (denoted again by β) on the whole C(∂Ω).

As for the full gradient, where the BV -trace coincides with the W 1,µ-trace
if D̄u does not concentrate on ∂Ω, Equation (7) shows that the BD-trace in-
troduced in [14] agrees with the BDµ-trace defined here if Ē does does not
concentrate on ∂Ω.

Definition 2.4. We call the measure β constructed in Theorem 2.3 the trace or
occasionally BDµ-trace of

(
u, Ēu

)
∈ BDµ (Ω;Rn) and we write T̄

(
u, Ēu

)
:= β.

Theorem 2.5. The mapping

BDµ (Ω;Rn) → M (∂Ω;Rn) :
(
u, Ēu

)
7→ T̄

(
u, Ēu

)
is continuous and sequentially weakly⋆ continuous.

Proof. The mapping in question is linear and bounded. Indeed, it follows from
the proof of Theorem 2.3 that there is C > 0 such that for all

(
u, Ēu

)
∈

BDµ (Ω;Rn) we have ∥β∥M(∂Ω;Rn) ≤ C
∥∥(u, Ēu

)∥∥
BDµ(Ω;Rn)

, where β is the trace

of
(
u, Ēu

)
. This can be deduced from (7) and the continuity of the trace

operator TBD in BD (Ω;Rn) [14, Theorem 1.1] as follows. Consider in (7) a

sequence
(
uk, Ēuk

) ⋆
⇀

(
u, Ēu

)
as k → ∞. The statement of the theorem

follows easily from the limit passage for k → ∞ in (4) and from the fact that
the linear hull of S := {νφ|∂Ω

∣∣ φ ∈ C1
(
Ω̄
)
} is dense in C(∂Ω).

Theorem 2.6 (weak-⋆ compactness). Let {
(
uk, Ēuk

)
}k∈N ⊂ BDµ (Ω;Rn)

be uniformly bounded. Then there exists a subsequence (not relabeled) and(
u, Ēu

)
∈ BDµ (Ω;Rn) such that w-⋆ limk→∞

(
uk, Ēuk

)
=

(
u, Ēu

)
.

Proof. Notice that the sequence {uk}k∈N is bounded in BD (Ω;Rn) because
there is an obvious continuous projection of BDµ (Ω;Rn) on BD (Ω;Rn) de-
fined as

(
v, Ēv

)
7→ (v, Ev), where Ev is the restriction of the measure Ēv ∈

M
(
Ω̄;Rn×n

)
on Ω. Due to a result of Suquet [13], there is a compact em-

bedding of BD (Ω;Rn) in Lp (Ω;Rn) for all 1 ≤ p < n
n−1

. Hence, there is a
subsequence of

{(
uk, Ēuk

)}
k∈N ⊂ BDµ (Ω;Rn) converging strongly to some
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u ∈ Lp (Ω;Rn). By the definition of BDµ (Ω;Rn), for every
(
uk, Ēuk

)
there

is a sequence
{
uj
k

}
j∈N ⊂ W 1,1 (Ω;Rn) such that uj

k → uk in L1 (Ω;Rn). Thus,

we have limk→∞ limj→∞ uj
k = u in L1 (Ω;Rn). We apply the standard diag-

onalisation argument to extract a sequence {ûm}m∈N ⊂
{
uj
k

}
j,k∈N such that

limm→∞ ûm = u in L1 (Ω;Rn).

Moreover,
{
Ēûm

}
m∈N is uniformly bounded inM

(
Ω̄;Rn×n

)
, so for a further

subsequence we have a measure µ ∈ M
(
Ω̄;Rn×n

)
such that Ēûm

⋆
⇀ µ. By the

definition of BD (Ω;Rn), µ = Ēu.

Lemma 2.7. Let Ω ⊂ Rn a be bounded domain, with ∂Ω belonging to class C1.
Let ΓD ⊂ ∂Ω be open and of positive (n − 1)-dimensional Lebesgue measure;
suppose further that z ∈ M (ΓD;Rm). Then there is C > 0 such that the
estimate

∥u∥L1(Ω;Rm) ≤ C
(∥∥Ēu

∥∥
M(Ω̄;Rm×n) + ∥z∥M(ΓD;Rm)

)
(8)

holds for all
(
u, Ēu

)
∈ BDµ (Ω;Rn) with T̄

(
u, Ēu

)
= z on ΓD.

Proof. Suppose that (8) does not hold. This means that for all k ∈ N there is(
uk, Ēuk

)
∈ BDµ (Ω;Rm) with T̄

(
uk, Ēuk

)
= z on ΓD such that

∥uk∥L1(Ω;Rm) > k
(∥∥Ēuk

∥∥
M(Ω̄;Rm×n) + ∥z∥M(ΓD;Rm)

)
.

Let us put vk := uk

∥uk∥L1(Ω;Rm)
and Ēvk := Ēuk

∥uk∥L1(Ω;Rm)
. Then the last inequality

implies

1 > k
(∥∥Ēvk

∥∥
M(Ω̄;Rm×n) + ∥uk∥−1

L1(Ω;Rm) ∥z∥M(ΓD;Rm)

)
.

In particular, we have ∥vk∥L1(Ω;Rm) = 1 and
∥∥Ēvk

∥∥
M(Ω̄) ≤

1
k
. Consequently,

for all k ∈ N,
∥∥(vk, Ēvk

)∥∥
BDµ(Ω;Rm)

≤ 2. The weak-⋆ compactness of balls

in BDµ (Ω;Rm) implies that there is
(
v, Ēv

)
∈ BDµ (Ω;Rm) such that for

a subsequence (not relabelled) w-⋆ limk→∞
(
vk, Ēvk

)
=

(
v, Ēv

)
. Moreover,

∥v∥L1(Ω;Rm) = 1 and Ēv = 0. Finally, the sequential weak-⋆ continuity of
the trace operator (Theorem 2.5) and the fact that ∥uk∥L1(Ω;Rm) → ∞ imply

that T̄
(
v, D̄v

)
= 0 on ΓD. As Ēv = 0, we have that v ∈ BDµ (Ω;Rm) and that

v(x) = a + Rx, where a ∈ Rn and R ∈ Rn×n is skew-symmetric; see, e.g., [14].
In other words, v is a rigid motion, that is, a translation and/or an infinites-
imal rotation. On the other hand, T̄

(
v, Ēv

)
= 0, i.e., v = 0. This, however,

contradicts the fact that ∥v∥L1(Ω;Rm) = 1.

Remark 2.8. For the validity of Lemma 2.7, it is important that ΓD is open
in ∂Ω. Namely, the sequential weak-⋆ continuity of T̄ implies that T̄

(
vk, Ēvk

)
→

T̄
(
v, D̄v

)
weakly⋆ in M (∂Ω;Rm). Clearly, this does not necessarily imply that

T̄
(
vk, Ēvk

)
→ T̄

(
v, Ēv

)
weakly⋆ in M (ΓD;Rm) for ΓD not open in ∂Ω.
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3. Example: crystal plasticity with infinite late hardening

As an example, we will investigate the model for single-crystal plasticity with
infinite latent hardening proposed by Conti and Ortiz [3]. As shown there, the
plastic stored energy has to have linear growth at infinity except on the trace.

We sketch the problem that motivates our investigation. Crystalline materi-
als can often be characterised via energy minimisation; for plastically deformed
crystals, Ortiz and Repetto [9] provide a setting in which dislocation struc-
tures can be described by a nonconvex minimisation problem. The nature of
this variational model is incremental, to reflect the irreversible nature of plastic
deformations [9]. Against this background, Conti and Ortiz [3] investigated a
static problem recalled below; here, we prove here existence of a minimiser with
prescribed boundary data. As discussed in the introduction, prescribed Dirich-
let conditions are natural for these mechanical problems (for example, they
correspond to a mechanically clamped specimen). The setting is that of infinite
latent hardening without self-hardening. This leads to a microscopic energy
W that is linear along single-slip orbits. Conti and Ortiz [3] have shown that
the macroscopic energy in this setting has linear growth on traceless symmetric
matrices, and quadratic on trace part. They consider linearised kinematics, so if
u : Ω → R3 is the displacement, then βsym := ε(u) := 1

2

(
∇u+∇⊤u

)
. The plas-

tic strain in single crystals for monotonic deformations is εp(u) := 1
2

(
βp + βpT

)
,

where

βp(γ) =
J∑

j=1

γjsj ⊗mj,

with γj being the slip strain, sj the slip direction and mj plane normal. For
the microscopic energy, the assumptions of infinite latent hardening and the
absence of self-hardening lead to a microscopic energy W ∗∗ that is linear along
single-slip orbits. Conti and Ortiz show that convex envelope in this situation
has linear growth on traceless symmetric matrices, and quadratic on trace part,

c
(
|βsym|+ |Tr(β)|2 − 1

)
≤ W ∗∗(β) ≤ C

(
|βsym|+ |Tr(β)|2 + 1

)
. (9)

Thus, the macroscopic energy is linear except for the trace.
The variational problem is then

minimise I(u) :=

∫
Ω

W ∗∗(x, β(u(x)) dx among u ∈ W 1,1
uD

(Ω;Rm) . (10)

It is natural to use direct methods to prove existence of a solution to (11);
the central task is to find a setting in which a minimising sequence converges and
retains the boundary in the limit. As discussed earlier, the space BDµ(Ω;Rn)
is a natural choice; we restrict it here to obtain a norm in correspondance to
the growth condition (9),

BDµtr(Ω) =
{
u ∈ BDµ

(
Ω,R3

) ∣∣ tr(Eu) ∈ L2(Ω)
}

. (11)
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Proposition 3.1. For prescribed Dirichlet data, the variational problem (10)
has a unique minimiser in BDµtr(Ω).

Proof. The argument is elementary as a minimising sequence {uk}k∈N in the
space BDµ(Ω) is weak-⋆ compact by the growth condition (9) and Theorem 2.6;
the subspace BDµtr(Ω) is closed in BDµ(Ω) with respect to the weak-⋆ topol-
ogy; since the trace operator is weak-⋆ continuous (Theorem 2.5), the boundary
data is preserved in the limit.

4. Example: simultaneous relaxation in u and Du

As an application, we consider the relaxation of the functional

Minimise I(u) :=

∫
Ω

W (x, u(x), ε(u(x))) dx−
∫
Ω

f(x) · u(x) dx (12)

among u ∈ W 1,1
uD

(Ω;Rn). We recall that W 1,1
uD

(Ω;Rn) is the set of functions
u ∈ W 1,1 (Ω;Rn) with u = uD on ΓD in the sense of traces. In (12), W :
Ω̄×Rn×Rn×n → R is assumed to be continuous. To demonstrate the functional
analytic framework laid out in this article, we assume that W has linear growth
in the third component, as it is the case for applications in plasticity (or minimal
surfaces). That is, we assume that there exist constants β ≥ α > 0 with

α (|u|+ |s|)− β ≤ W (x, u, s) ≤ β (1 + |u|+ |s|) for every x ∈ Ω̄ . (13)

Further, to demonstrate the treatment of boundary conditions, we include a
forcing term in the analysis,

f ∈ Lp (Ω;Rn) (14)

with p > n; precise assumptions on the smallness of this forcing are stated later
in this section.

We do not assume that W is quasiconvex in s and thus have to resort
to a relaxed formulation of (12) in the space of DiPerna-Majda measures; see
Appendix B for a brief survey.

Before stating the relaxed version of the static problem (12), we have to
collect an auxiliary statement that permits us to recover information regarding
a function u whose measure derivative, Du, is the first moment of a gradient
DiPerna-Majda measure.

Definition 4.1. We say that (σ, ν̂) ∈ JDMuD
F (Ω;Rn×(n×n)) (a joint DiPerna-

Majda measure) if there is {uk}k∈N ⊂ W 1,1
uD

(Ω;Rn) such that {uk, ε(uk)}k∈N
generates (σ, ν̂).
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In what follows, we are going to norm Rn×(n×n) by ∥·∥Rn×(n×n) := ∥·∥Rn +
∥·∥Rn×n , where the norms on the right-hand side are Euclidean ones.

Example 4.2. We note that the mere knowledge of a DiPerna Majda measure
generated by {ε (uk)}k∈N does not provide us with sufficient information on
(σ, ν̂) ∈ JDMuD

F (Ω;Rn×(n×n)) even if {uk}k∈N converges strongly in L1 (Ω;Rn).
Indeed, consider the following toy problems for n = 1 and Ω = (−1, 1), i.e.,
ε(u) = u′, and the one-point compactification of R:

uk(x) =


0 if − 1 ≤ x ≤ 0

kx if 0 ≤ x ≤ 1
k

1 otherwise.

(15)

Thus uk → u in L1(−1, 1) where

u(x) =

{
0 if − 1 ≤ x ≤ 0

1 otherwise.
(16)

In this case, σ(dx) = (1 + |u(x)|)dx+ δ0 and

ν̂x =


δ(0,0) if − 1 ≤ x < 0

δ(0,∞) if x = 0

δ(1,0) otherwise.

(17)

On the other hand, if we slightly modify {uk}k∈N to get

uk(x) =


0 if − 1 ≤ x ≤ − 1

k

kx+ 1 if − 1
k
≤ x ≤ 0

1 otherwise.

(18)

we have again uk → u in L1(−1, 1) as k → ∞, but the DiPerna-Majda mea-
sure generated by {(uk, u

′
k)}k∈N is now (σ̃, ν̃) ∈ JDMuD

F (Ω;Rn×(n×n)), where
σ̃(dx) = (1 + |u(x)|)dx+ δ0 and

ν̃x =


δ(0,0) if − 1 ≤ x < 0

δ(1,∞) if x = 0

δ(1,0) otherwise.

(19)

Nevertheless, in both examples the DiPerna-Majda measure (γ̂, π) generated by
{u′

k}k∈N is the same, namely π(dx) = dx+ δ0 and

γ̂x =

{
δ0 if x ̸= 0

δ∞ if x = 0.
(20)
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Lemma 4.3. Let {uk}k∈N ⊂ W 1,1
uD

(Ω;Rm) be such that {uk, ε (uk)}k∈N generates

(σ, ν̂) ∈ JDMuD
F (Ω;Rn×(n×n)). Then there is

(
u, Ēu

)
∈ BDµ (Ω;Rn) and

a subsequence (not relabelled) such that uk → u in L1 (Ω;Rn). Furthermore,(
u, Ēu

)
satisfies T̄

(
u, Ēu

)
= uD on ΓD, and u is a unique solution to∫

Ω̄

ϕ(x)
(
u, Ēu

)
( dx) =

∫
Ω̄

ϕ(x)

∫
βFRn×(n×n)

s

1 + |s|
ν̂x(ds)σ(dx) (21)

for every ϕ ∈ C(Ω̄), i.e.,

u =

∫
βFRn×(n×n)

s1
1 + |s|

ν̂x(ds)σ and Ēu =

∫
βFRn×n

s2
1 + |s|

ν̂x(ds)σ

in the sense of measures on Ω̄, where we wrote s = (s1, s2) ∈ Rn×(n×n).

Proof. As
{

1
2

(
∇uk +∇u⊤

k

)}
k∈N generates (σ, ν̂) ∈ GDMuD

F (Ω;Rn×n), it is

bounded in L1(Ω,Rn×n). The Dirichlet boundary condition on ΓD permits
an application of the Poincaré inequality (8),

∥u∥L1(Ω;Rm) ≤ C
(∥∥Ēu

∥∥
M(Ω̄;Rn×n) + ∥uD∥M(ΓD;Rn)

)
(22)

and thus yields that {uk}k∈N is bounded in L1 (Ω;Rn) and therefore in
BDµ (Ω;Rn). Hence, there is a subsequence (not relabelled) converging weakly
⋆ in BDµ (Ω;Rn) to some u ∈ BDµ (Ω;Rn) by Theorem 2.6. By definition
of weak-⋆ convergence in BDµ (Ω;Rn), this means that uk → u strongly in
L1 (Ω;Rn) and 1

2

(
∇uk +∇u⊤

k

)
→ Ēu weakly⋆ in M

(
Ω̄;Rn×n

)
. Formula (21)

then follows by comparing (31) and the definition of weak-⋆ convergence,

lim
k→∞

∫
Ω

ϕ(x)Ēuk(dx) =

∫
Ω

ϕ(x)Ēu(dx) (23)

for test functions ϕ ∈ C
(
Ω̄
)
) component-wise for s = {sjk}, with j, k = 1, . . . , n.

The fact that u = uD on ΓD follows from the weak-⋆ continuity of the trace
operator T̄ (Theorem 2.5).

Now let us discuss a suitable relaxation of the problem (12). One would ex-
pect that a compactification involves only the gradient part, and strong conver-
gence is inferred for the second argument, u, of W . However, as demonstrated
in Example 4.2, we need to consider a compactification both in the second and
the third argument. Accepting this for the moment, we take a subalgebra F of
bounded continuous functions on Rn × Rn×n such that for every s1 ∈ Rn and
every s2 ∈ Rn×n

W̃ (x, s1, s2) ∈ F ; (24)
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we recall that F contains all functions where all radial limits exist, as a com-
pactification by a sphere or finer is considered. We extend the previous nota-
tion slightly to accommodate for spatially inhomogeneous functions by writing
W̃ (x, s1, s2) :=

W (x,s1,s2)
1+|s1|+|s2| . We write s := (s1, s2).

The relaxed problem then reads as follows:

minimise Ī(u, Ēu, σ, ν̂) :=

∫
Ω̄

∫
βFRn×n

W̃ (x, s)ν̂x(ds)σ(dx)−
∫
Ω

f(x)·u(x) dx

among (u, Ēu) ∈ BDµ(Ω;Rn), T̄ (u, Ēu) = uD on ΓD,

and (σ, ν̂) ∈ JDMuD
F (Ω;Rn×(n×n)), (u, Ēu) satisfies (21).

(25)

Proposition 4.4. If ∥f∥L∞(Ω;Rn) < α, then a minimiser of (25) exists. Fur-
thermore, the minimum of (25) equals the infimum of (12). If {uk}k∈N ⊂
W 1,1

uD
(Ω;Rn) is an infimising sequence of (12), then a subsequence generates

(in the sense (32)) a minimiser of (25). Moreover, any minimiser of (25) is
generated by an infimising sequence of (12).

Proof. We first show that inf I ≥ inf Ī. Let {uk}k∈N ⊂ W 1,1
uD

(Ω;Rm) be an
infimising sequence of (12). Obviously inf I < ∞. Thus, there exists K > 0
so that the following estimate holds (we employ the coercivity assumption (13)
on W ).

K >

∫
Ω

W (x, uk(x), ε (uk(x))) dx−
∫
Ω

f(x) · uk(x) dx

≥ α

∫
Ω

[|ε (uk(x))|+ |uk(x)|] dx− β |Ω| − ∥uk∥L1(Ω;Rn) ∥f∥L∞(Ω;Rn)

≥ α

∫
Ω

[|ε (uk(x))|+ |uk(x)|] dx− β |Ω| − ∥uk∥L1(Ω;Rn) ∥f∥L∞(Ω;Rn) .

Hence, since α > ∥f∥L∞(Ω;Rn) we have that {uk}k∈N ⊂ W 1,1 (Ω;Rn) is bounded
in BD (Ω;Rn). By the DiPerna-Majda result (31), {uk, ε (uk)}k∈N then gener-
ates (up to a subsequence) (σ, ν̂) ∈ JDMuD

F (Ω;Rn×(n×n)). At the same time we
may suppose that uk → u strongly in L1 (Ω;Rn) by compact embedding. Since
{uk}k∈N is an infimising sequence, and the map u 7→

∫
Ω
f(x) · u(x) dx is se-

quentially continuous, (31) shows that inf I = limk→∞ I(uk) = Ī(u, Ēu, σ, ν̂).
Suppose that inf Ī < inf I. Then there is Ī

(
u, Ēu, σ, ν̂

)
< inf I for some(

u, Ēu, σ, ν̂
)
. As (σ, ν̂) ∈ JDMuD

F (Ω;Rn×(n×n)), I converges along a gener-
ating sequence of (σ, ν̂) to Ī

(
u, Ēu, σ, ν̂

)
. Thus, inf I = inf Ī. The fact that

inf Ī is attained follows immediately.

Remark 4.5. Notice that we did not need the Poincaré-type inequality (8)
because we control u by means of the growth conditions of W . We would need
inequality (8) if W is independent of u.
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A. Young measures

We briefly recall the concept of Young measures [15] and follow the presentation
in [8]. Young measures describe the limit of a sequence {uk}k∈N of functions
uk : Ω → Rm which converges weakly in Lq (Ω;Rm) for 1 ≤ q < ∞ or weakly⋆
if q = ∞. The precise concept is as follows. A Young measure on a bounded
domain Ω ⊂ Rn is a weakly⋆ measurable mapping

Ω → Prob (Rm) , x 7→ ν̂x,

with values in the probability measures. We recall that a mapping with values in
the Radon measures is weakly⋆ measurable if for any f ∈ C0 (Rm), the mapping

Ω → R, x 7→ ⟨f, ν̂x⟩ :=
∫
Rm

f(s)ν̂x(ds)

is measurable in the usual sense. We write ν̂ for the Young measure to distin-
guish it from the normal ν introduced in the previous sections. We denote the
set of all Young measures by Y (Ω;Rm).

It is known that Y (Ω;Rm) is a convex subset of L∞
w (Ω;M (Rm)) ∼=

L1 (Ω;C0 (Rm))∗, where L∞
w (Ω;M (Rm)) is the space of weakly⋆ measurable

bounded functions. The parametrised Young measure theorem [11] states that
for every sequence {uk}k∈N which is bounded in L∞ (Ω;Rm), there exists a sub-
sequence (denoted by the same indices for notational simplicity) and a Young
measure ν̂ = {ν̂x}x∈Ω ∈ Y (Ω;Rm) such that for every continuous function
f : Rm → R,

f (uk)
⋆
⇀ x 7→ ⟨f, ν̂x⟩ weakly⋆ in L∞(Ω), (26)

where

⟨f, ν̂x⟩ :=
∫
Rm

f(s)ν̂x(ds) (27)

is the expectation of f . Let Y∞ (Ω;Rm) denote set of all Young measures which
are generated by taking all bounded sequences {uk}k∈N in L∞ (Ω;Rm).

The above concept is applicable if {uk}k∈N is uniformly bounded in
L∞ (Ω;Rm). If in addition to the uniform bound in L∞ (Ω;Rm), uk ⇀ y in
Lq (Ω;Rm) with 1 ≤ q < ∞, then uk → u if and only if the corresponding
Young measure is a Dirac mass, ν̂x = δu(x). Non-Dirac Young measures thus
record possible oscillations in the limit process.

The assumption that {uk}k∈N is bounded in L∞ (Ω;Rm) can be relaxed
to the assumption of such a bound in Lq (Ω;Rm) with 1 < q < ∞. The
parametrised Young measure theorem is then valid under stronger growth con-
ditions on the nonlinearity f . The precise formulation has been given by Schon-
bek [11, Theorem 2.2] (see also [2] for a general formulation of the parametrised
Young measure theorem). Namely, for every sequence {uk}k∈N which is uni-
formly bounded in Lq (Ω;Rm) for some q > 1, there exists a subsequence, still
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indexed by k for notational convenience, and a Young measure ν̂ = {ν̂x}x∈Ω ∈
Y (Ω;Rm) such that for every f ∈ C (Rm) with

f(x) = o (|x|q) for |x| → ∞, (28)

the following holds in L1 (Ω;Rm):

f (uk) ⇀ ⟨f, ν̂x⟩. (29)

We say that {uk}k∈N generates ν̂ if (29) holds; we denote the set of all Young
measures obtained as limits of bounded sequences in Lq (Ω;Rm) by Yq (Ω;Rm).
If {uk}k∈N is bounded in W 1,q (Ω;Rm), then the set of Young measures gen-
erated by subsequences of {∇uk}k∈N will be denoted Gq (Ω;Rm×m). In the
spirit of (26), we extend the energy V to V̄ (ν̂) :=

∫
Ω

∫
Rm×m φ(s)ν̂x(ds) dx for

ν̂ ∈ Gq (Ω;Rm×m).

B. DiPerna-Majda measures

In the situation under consideration, unlike that of Appendix A, no bound in
L∞ (Ω;Rm) is available, and even the extension to bounds in Lp (Ω;Rm) for
1 < p < ∞ is not sufficient. Namely, the energy density W will be a test
function f in the sense of (26). Obviously, a linearly growing energy density
does not satisfy (28) even for p = 1, and it is not hard to see that the bound (28)
on the growth of the nonlinearity f is sharp [11, Example 2.1]. DiPerna-Majda
measures are an extension of Young measures to describe concentration effects,
which may occur due to the non-reflexivity of L1 (Ω;Rm). That is, let f be
a function Rm → R with p-growth at infinity. DiPerna-Majda measures then
describe the limit of a sequence {f (uk)}k∈N, where the functions uk : Ω → Rm

converge weakly in Lp (Ω;Rm) for 1 ≤ p < ∞, but are not uniformly bounded
in L∞ (Ω;Rm).

The definition of DiPerna-Majda measures involves a compactification; we
refer to Appendix of [8] for details and some intuition. There, a motivation is
given as to why one considers a completely regular subalgebra F of the space
of bounded continuous functions BC (Rm).

We consider compactifications βFRm by a sphere or finer. That is, F con-
tains all functions f̃ for which the radial limit limr→∞ f̃(rs) exists for arbitrary
s ∈ Rm . We note that F also may contain functions f̃ which have no well-
defined radial limits. To deal with functions f with linear growth at infinity in
a convenient manner, we set f̃(s) := f(s)

1+|s| , with f̃ ∈ F .
The motivation for the construction of DiPerna-Majda measures can be

described as follows. We are given a sequence {uk}k∈N, uniformly bounded in
Lp (Ω,Rm). For the application discussed below, it suffices to consider the case
p = 1. The goal is to describe the weak limit limk→∞

∫
Ω
ϕ(x)f (uk(x)) dx, with
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ϕ ∈ C0(Ω) and f(s) := f̃(s) (1 + |s|), where f̃ ∈ BC (Rm). A canonical norm

for f of this form is |f |∞ := maxs∈Rm f̃(s) =
∣∣∣f̃ ∣∣∣

∞
.

DiPerna and Majda have shown the following results for open domains Ω
and test functions ϕ ∈ C0(Ω). We state the results for Ω̄ and test functions
ϕ ∈ C

(
Ω̄
)
. The proofs remain the same, except that the isomorphism between

the dual space of (C0 (Ω) , ∥·∥) and the space (M(Ω), ∥·∥) of Radon measures
with finite mass has to be replaced by the isomorphism of

(
C
(
Ω̄
)
, ∥·∥

)
and the

space of Radon measures with compact support
(
M

(
Ω̄
)
, ∥·∥

)
.

For a bounded sequence {uk}k∈N in L1
(
Ω̄;Rm

)
, there exists a non-negative

Radon measure σ ∈ M+(Ω̄) such that

(1 + |uk(x)|) dx
⋆
⇀ σ in M

(
Ω̄
)
; (30)

see [4, Theorem 4.1]. Furthermore, for a separable completely regular subal-
gebra F of BC (Rm), there exist a σ-measurable map ν̂ : Ω → Prob (βFRm),
x 7→ ν̂x, and a subsequence of {uk}k∈N (not relabelled) such that for every f̃ ∈ F

lim
k→∞

∫
Ω̄

ϕ(x)f (uk(x)) dx =

∫
Ω̄

ϕ(x)

∫
βFRm

f̃(s)ν̂x(ds)σ(dx) (31)

holds for every ϕ ∈ C
(
Ω̄
)

[4, Theorem 4.3]. We say that {uk}k∈N gen-
erates the pair (σ, ν̂) if Equation (31) holds. A pair (σ, ν̂) ∈ M+

(
Ω̄
)
×

L∞
w

(
Ω̄, σ; Prob (βFRm)

)
attainable by sequences in L1 (Ω;Rm) is called a

DiPerna-Majda measure. The set of all DiPerna-Majda measures is denoted
DMF (Ω;Rm).

The explicit description of the elements of DMF (Ω;Rm) for unconstrained
sequences is given in [7, Theorem 2]. The characterisation of DiPerna-Majda
measures generated by gradients of Sobolev maps in W 1,p (Ω;Rm) for p > 1 can
be found in [6].

It is sometimes convenient to consider an alternative representation of Di-
Perna-Majda measures. Specifically, in analogy to the proof of Theorem 4.1 in
[4], we consider measures inM

(
Ω̄× βFRm

)
. We say that {uk}k∈N ⊂ L1

(
Ω̄;Rm

)
generates the measure η ∈ M

(
Ω̄× βFRm

)
if, for every h̃ ∈ C

(
Ω̄× βFRm

)
,

lim
k→∞

∫
Ω̄

h̃ (x, uk(x)) (1 + |uk(x)|) dx =

∫
Ω̄×βFRm

h̃(x, s)η(dsdx)

holds. The set of all measures generated in this way will be denoted
DM F (Ω;Rm). Since ϕ(x)f̃(u) with ϕ ∈ C

(
Ω̄
)
and f̃ ∈ BC (βFRm) is dense

in C
(
Ω̄× βFRm

)
, one can say that η ∼= (σ, ν̂) for η ∈ DM F (Ω;Rm) and

(σ, ν̂) ∈ DMF (Ω;Rm) if

⟨h̃, η⟩ :=
∫
Ω̄×βFRm

h̃(x, s)η(dxds) =

∫
Ω̄

∫
βFRm

h̃(x, s)ν̂x(ds)σ(dx)
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for any h̃ ∈ C
(
Ω̄× βFRm

)
. Consequently, the elements of DM F (Ω;Rm) will

be addressed as DiPerna-Majda measures as well.
It is known [10, Chapter 3] that DM F (Ω;Rm) is a closed, convex, non-

compact but locally compact and locally sequentially compact subset of the
locally convex space M

(
Ω̄× βFRm

)
considered in its weak-⋆ topology.

We denote by GDMF (Ω;Rm×n) the subset of DMF (Ω;Rm×n) of those
measures which are generated by gradients of mappings in W 1,1 (Ω;Rm).
Expressed differently, (σ, ν̂) ∈ GDMF (Ω;Rm×n) if there is {uk}k∈N ⊂
W 1,1 (Ω;Rm) such that for all ϕ ∈ C

(
Ω̄
)
and all f̃ ∈ F

lim
k→∞

∫
Ω̄

ϕ(x)f(∇uk(x)) dx =

∫
Ω̄

∫
βFRm×n

ϕ(x)f̃(s)ν̂x(ds)σ(dx). (32)

Similarly we write η ∈ GDM F (Ω;Rm×n) if η ∈ DM F (Ω;Rm×n) is gen-
erated by gradients. Finally, GDMuD

F (Ω;Rm×n) denotes elements (σ, ν̂) ∈
GDMF (Ω;Rm×n) with the property that (σ, ν̂) is generated by {uk}k∈N ⊂
W 1,1

uD
(Ω;Rm), with uD ∈ W 1,1 (Ω;Rm).
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[8] Kruž́ık, M. and Zimmer, J., Evolutionary problems in nonreflexive spaces.
ESAIM Control Optim. Calc. Var. (2010), 1 – 22.

[9] Ortiz, M. and Repetto, E. A., Nonconvex energy minimization and dislocation
structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999), 397 – 462.
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Editorial Remarks

We recommend to consider the following hints and remarks:

1. Page 12, (25) and page 13, (26): Are the formulas correct?

2. At several places, brackets ” (( ” occur in mathematical expressions but
only ” ) ”. We omit one ” ( ”.

3. Please, try to avoid numbers of formulas on which you don’t refer to. For
better reading we already omit numbers at pages 12 and 15. Do you accept
our proposal?

4. Please check the references. We have adjusted the indications to the ZAA
style and MathSciNet.

5. We have made some minor stylistic modifications. Please check them. Do
you agree?
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