
POLYNOMIAL-TIME ALGORITHM FOR BASIC TROUBLESHOOTING WITH

CALL-SERVICE

Václav Lín

Key words:

Decision-theoretic troubleshooting, polynomial-time algorithm, call service.

Abstract

In decision-theoretic troubleshooting, we are given a probabilistic model of a man-made

device. Our task is to identify and eliminate a fault causing the device to malfunction through

a sequence of troubleshooting actions. We study a variant of the problem where we can at any

time “call service” and eliminate the fault at once by paying a fixed penalty. We give an

 -time algorithm for the problem. This result is somewhat surprising, because it

refutes an earlier conjecture that the problem has higher computational complexity.

Introduction

Assume that your computer crashes during boot. There is a number of things that you may do:

 Try to boot again several times.

 Try to boot in a “safe mode” of the operating system.

 Try to boot a different operating system from a back-up CD.

 Call a computer service.

 Etc.

Obviously, the options differ in their cost in terms of time or money, and in the probability of

fixing the problem. It might a good idea to try to boot several times before we attempt to

disassemble the computer or call a service man. In decision-theoretic troubleshooting, we

solve combinatorial problems exactly of this kind. There exist various variants of the problem,

see [2] for an introduction and [4] for thorough treatment. In this paper, we shall work on

a mild generalization of the following simple scenario, called basic troubleshooting:

 There are possible faults that can cause the device to malfunction: .

 At any moment of time, at most one fault can be present in the device (this is the so called

single fault assumption).

 Each fault , has a predetermined probability of happening.

 There are available repair actions , each bearing a cost .

 Each action solves fault with certainty and does not solve any other fault.

Given information that the device modelled by this simple model is malfunctioning, our task

is to devise a sequence of the repair actions with minimal expected cost. Each action in the

sequence can succeed (i.e. fix the fault), or fail. When we perform an action that succeeds, we

can stop the troubleshooting due to the single fault assumption. It is known [1,2] that the

optimal sequence is obtained by selecting an yet-unused action with the highest ratio

at each step of the sequence.

Now, assume that at each step of the troubleshooting sequence, we also have the option to

give up and call a serviceman who is guaranteed to fix the device, albeit at a high cost. The

authors of [2] conjectured that finding an optimal solution for this variant of the

troubleshooting problem has a higher computational complexity than just sorting the actions,

and left the problem open. In the next paragraph, we generalize the problem slightly, express

it in formal terms, and solve it by giving an efficient algorithm. Thus we disprove the

conjecture.

1. Problem statement and result

Assume a troubleshooting model with a set of actions { }, and a variable

with a set of mutually exclusive states { }, . The states of are called faults.

We take the single fault assumption – at most one fault can occur at any moment of time.

Each fault has a nonzero probability ∑ .

Each action can either fix the device when performed (), or fail (). Each action

addresses exactly one fault and is not necessarily perfect (i.e. may fail to fix the fault):

 |

 |

We define and observe

 ∑ (|)

Note that since , there might be faults that are not addressed by any action. Since the

actions are not perfect, ∑ even when . That is, performing all the actions may

not suffice to fix the fault.
1
 Each action has a fixed cost .

Apart from , the model contains a designated action (call service) that always fixes the

problem at cost .

Let be a permutation of actions. We use the following notation to express that

the first actions fail:

 ()

Statement depends on the permutation , but the permutation will be always known from

the context. Since for , we have

 ∑

We also define an “empty statement” , with . For the ease of notation, we write

conditional probabilities as

 |
 |

and |

Note that | and therefore

 |

 |

Let be a permutation of a subset of . When we perform the actions in sequence,

then, at each step, we perform the current action , pay its cost , and if the action fixes the

device, we stop. If the action fails, we have to continue to the next action – that happens

with probability (|), and so on. This leads to the following definition of expected

cost. The expected cost of performing the sequence is defined recursively as

 | , where

 (|) (|) (|)

 |

1
 That is a generalization of the scenario described in the introduction.

If the sequence is followed by the call-service action , we have

 Note that .

REMARK. It is usual to define ∑ , i.e. the cost of each action is

multiplied by the probability of reaching it. It is easy to verify that this definition is equivalent

to the recursive one.

DEFINITION. Optimal troubleshooting sequence is a sequence

where is the set of all permutations of .

REMARK. Note that:

 can be an empty set,

 the probability of performing may be zero.

THEOREM 1. Optimal troubleshooting sequence can be obtained in time by the

following algorithm:

Algorithm 1.

Define function , which takes as input an action sequence

(where possibly), and replaces the tail of the sequence by if it improves the .

for do:

if (|) then:

return ;

 return ;

Operation of the algorithm:

1. Order the actions in so that the sequence of ratios is non-decreasing. Let

 be the resulting sequence.

2. do:

 while ()

3. return

REMARK. Our Algorithm 1 is an improved version of algorithm already proposed in [1].

However, paper [1] contains no proof of optimality of the algorithm.

2. Proof of the Theorem

LEMMA 1. Let , be an optimal troubleshooting sequence. Then any pair

of actions adjacent in the sequence satisfies .
2

Proof: Since is optimal, it must be true that

 (|) (|)

 (|)[(|) (|)]

 (|)[(|) (|)]

2
 This is well known, see e.g. [2,4].

 |
 |

■

LEMMA 2. Let , , be an optimal troubleshooting sequence. Then

 |

Proof: Due to optimality of the sequence, | (|
)

That implies |
 .

■

LEMMA 3. Let , , be an optimal troubleshooting sequence. Then any

action { } has .

Proof: Assume to the contrary that . With Lemma 2, that implies

 |

 (|
)

That is a contradiction, since is optimal.

■

Proof (of THEOREM 1): The algorithm returns a sequence of actions, , followed

possibly by . The returned sequence has two properties:

1. It contains exactly the actions with highest efficiency ratio , and

2. it is sorted by the efficiency ratio.

By Lemma 1 and Lemma 3, each of these two properties is a necessary condition

of optimality. The algorithm ensures that:

 we consider all the candidate sequences satisfying these necessary conditions,

 and the one with minimal is returned.

Sorting the actions by takes time [3], and the while-loop takes linear time.

■

Conlusions

We have solved an open problem proposed in the decision-theoretic troubleshooting

literature. There are many variants of the troubleshooting problem that are known to be NP-

hard (see [5]). In the future, we shall try to devise polynomial-time algorithms for special

cases of these problems.

References:

[1] HECKERMAN, D., BREESE, J., ROMMELSE, K., Decision-theoretic Troubleshooting.

CACM, 38:49-57, 1995.

[2] JENSEN, F. V., NIELSEN, T.D. Bayesian Networks and Decision Graphs (2
nd

 edition).

Springer-Verlag, 2007, 447 pages. ISBN-10: 0-387-68281-3.

[3] KUČERA, L., Combinatorial Algorithms. Bristol, England, Adam Hilger, 1989.

[4] OTTOSEN, T. J, Solutions and Heuristics for Troubleshooting with Dependent Actions

and Conditional Costs, PhD thesis, Aalborg University, 2012. 198 p.

[5] VOMLELOVÁ, M. Complexity of decision-theoretic troubleshooting, International

Journal of Intelligent Systems 18(2), pages 267-277, 2003.

