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Abstract 

In decision-theoretic troubleshooting, we are given a probabilistic model of a man-made 

device. Our task is to identify and eliminate a fault causing the device to malfunction through 

a sequence of troubleshooting actions. We study a variant of the problem where we can at any 

time “call service” and eliminate the fault at once by paying a fixed penalty. We give an 

         -time algorithm for the problem. This result is somewhat surprising, because it 

refutes an earlier conjecture that the problem has higher computational complexity.   

  

 

Introduction 

Assume that your computer crashes during boot. There is a number of things that you may do: 

 Try to boot again several times. 

 Try to boot in a “safe mode” of the operating system. 

 Try to boot a different operating system from a back-up CD. 

 Call a computer service. 

 Etc.  

Obviously, the options differ in their cost in terms of time or money, and in the probability of 

fixing the problem. It might a good idea to try to boot several times before we attempt to 

disassemble the computer or call a service man. In decision-theoretic troubleshooting, we 

solve combinatorial problems exactly of this kind. There exist various variants of the problem, 

see [2] for an introduction and [4] for thorough treatment. In this paper, we shall work on 

a mild generalization of the following simple scenario, called basic troubleshooting: 

 There are   possible faults that can cause the device to malfunction:        . 

 At any moment of time, at most one fault can be present in the device (this is the so called 

single fault assumption). 

 Each fault   , has a predetermined probability    of happening. 

 There are   available repair actions        , each bearing a cost   . 

 Each action     solves fault     with certainty and does not solve any other fault. 

Given information that the device modelled by this simple model is malfunctioning, our task 

is to devise a sequence of the repair actions with minimal expected cost. Each action in the 

sequence can succeed (i.e. fix the fault), or fail. When we perform an action that succeeds, we 

can stop the troubleshooting due to the single fault assumption. It is known [1,2] that the 

optimal sequence is obtained by selecting an yet-unused action    with the highest ratio       

at each step of the sequence.  

Now, assume that at each step of the troubleshooting sequence, we also have the option to 

give up and call a serviceman who is guaranteed to fix the device, albeit at a high cost. The 

authors of [2] conjectured that finding an optimal solution for this variant of the 

troubleshooting problem has a higher computational complexity than just sorting the actions, 

and left the problem open. In the next paragraph, we generalize the problem slightly, express 

it in formal terms, and solve it by giving an efficient algorithm. Thus we disprove the 

conjecture. 

 



 

1. Problem statement and result 

Assume a troubleshooting model with a set of actions   {       }, and a variable   

with a set of mutually exclusive states {       },    . The states of   are called faults.  

We take the single fault assumption – at most one fault can occur at any moment of time. 

Each fault has a nonzero probability              ∑      .  

Each action can either fix the device when performed (    ), or fail (    ). Each action 

addresses exactly one fault and is not necessarily perfect (i.e. may fail to fix the fault): 

      |                

      |                                 

We define             and observe 

    ∑  (    |    )
  

                 

Note that since    , there might be faults that are not addressed by any action. Since the 

actions are not perfect, ∑     even when    . That is, performing all the actions may 

not suffice to fix the fault.
1
 Each action    has a fixed cost   .   

Apart from  , the model contains a designated action    (call service) that always fixes the 

problem at cost    .    

Let               be a permutation of actions. We use the following notation to express that 

the first   actions fail:  

   (                           )  

Statement    depends on the permutation  , but the permutation will be always known from 

the context. Since                  for    , we have 

        ∑      
   

  

We also define an “empty statement”   , with        . For the ease of notation, we write 

conditional probabilities as 

  |    
       |       

and    |  
     

Note that       |        and therefore 

  |    
 

      |             

       
 

  

       
  

Let         be a permutation of a subset of  . When we perform the actions in sequence, 

then, at each step, we perform the current action   , pay its cost   , and if the action fixes the 

device, we stop. If the action fails, we have to continue to the next action      – that happens 

with probability  (    |    ), and so on.   This leads to the following definition of expected 

cost. The expected cost of performing the sequence           is defined recursively as 

                        |   , where 

   (            |    )      (    |    )   (         |  )     

     |       
                                                           
1
 That is a generalization of the scenario described in the introduction. 



If the sequence           is followed by the call-service action   , we have 

                                       Note that            . 

REMARK. It is usual to define              ∑            , i.e. the cost of each action is 

multiplied by the probability of reaching it. It is easy to verify that this definition is equivalent 

to the recursive one. 

DEFINITION. Optimal troubleshooting sequence is a sequence  

               
             

          

where      is the set of all permutations of  .  

REMARK. Note that: 

   can be an empty set, 

 the probability of performing    may be zero. 

THEOREM 1. Optimal troubleshooting sequence can be obtained in          time by the 

following algorithm:  

Algorithm 1. 

Define function                , which takes as input an action sequence         

(where possibly      ), and replaces the tail of the sequence by    if it improves the    .  

                                    

for             do: 

if        (    |    ) then:  

return               ; 

                 return        ;  

Operation of the algorithm: 

1. Order the actions in   so that the sequence of ratios             is non-decreasing. Let 

             be the resulting sequence. 

2. do: 

      

                       

            while (    ) 

3. return   

 

REMARK. Our Algorithm 1 is an improved version of algorithm already proposed in [1]. 

However, paper [1] contains no proof of optimality of the algorithm. 

 

2. Proof of the Theorem 

LEMMA 1. Let              ,      be an optimal troubleshooting sequence. Then any pair 

of actions           adjacent in the sequence satisfies                .
2
 

Proof:  Since              is optimal, it must be true that 

   (         |    )     (         |    )  

    (    |    )[      (      |            )   (      |    )]

       (      |    )[    (    |              )   (      |    )]  

                                                           
2
 This is well known, see e.g. [2,4]. 
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■ 

LEMMA 2. Let              ,    , be an optimal troubleshooting sequence. Then 
  

  |    

       

Proof: Due to optimality of the sequence,          |         (    |    
)         

That implies      |    
    . 

■ 

LEMMA 3. Let             ,    , be an optimal troubleshooting sequence. Then any 

action    {       } has            .  

Proof: Assume to the contrary that            . With Lemma 2, that implies 
  

  
 

   

       
 

   

     
   

  

  
 

   

     
  

     |  
     

   (    |  
)         

                                    
That is a contradiction, since              is optimal. 

■ 

Proof (of THEOREM 1): The algorithm returns a sequence of   actions,       , followed 

possibly by   . The returned sequence has two properties: 

1. It contains exactly the   actions with highest efficiency ratio      , and  

2. it is sorted by the efficiency ratio.  

By Lemma 1 and Lemma 3, each of these two properties is a necessary condition 

of optimality. The algorithm ensures that: 

 we consider all the     candidate sequences satisfying these necessary conditions, 

 and the one with minimal     is returned.     

Sorting the actions by       takes          time [3], and the while-loop takes linear time. 

■ 

 

Conlusions 

We have solved an open problem proposed in the decision-theoretic troubleshooting 

literature. There are many variants of the troubleshooting problem that are known to be NP-

hard (see [5]). In the future, we shall try to devise polynomial-time algorithms for special 

cases of these problems.  
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