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Abstract—Integral functionals based on convex normal inte-
grands are minimized subject to finitely many moment con-
straints. The integrands are assumed to be strictly convex but not
autonomous or differentiable. The effective domain of the value
function is described by a modification of the concept of convex
core. The minimization is viewed as a primal problem and studied
together with a dual one in the framework of convex duality. Main
results assume a dual constraint qualification but dispense with
the primal constraint qualification. Minimizers and generalized
minimizers are explicitly described whenever the primal value
is finite. Existence of a generalized dual solution is established
whenever the dual value is finite. A generalized Pythagorean
identity is presented using Bregman distance and a correction
term. Results are applied to minimization of Bregman distances.

I. INTRODUCTION

This work addresses minimization of integral functionals

(1) Hβ(g) �
∫
Z
β(z, g(z)) μ(dz)

of real functions g on a σ-finite measure space (Z,Z, μ),
subject to the constraint that the moment vector

∫
Z
ϕg dμ of

g is prescribed. Here, ϕ is a given R
d-valued Z-measurable

moment mapping.
In (1), β is any mapping Z×R→(−∞,+∞] such that β(·, t)

is Z-measurable for t ∈ R, and β(z, ·), z ∈ Z , is in the class Γ
of functions γ on R that are finite and strictly convex for t > 0,
equal to +∞ for t < 0, and satisfy γ(0) = limt↓0 γ(t). In
particular, β is a normal integrand whence z �→ β(z, g(z)) is
Z-measurable if g is [18, Chapter 14]. If neither the positive
nor the negative part of β(z, g(z)) is μ-integrable, the integral
in (1) is +∞ by convention. The integrand is autonomous if
β(z, ·) = γ, z ∈ Z , for some γ ∈ Γ .

Given a ∈ R
d, let Ga denote the class of those nonnegative

Z-measurable functions g whose moment vector exists and
equals a. By the assumptions on β, the minimization of Hβ

restricts to Ga. Following the key papers [3], [4], convex
duality has become a standard tool in the mathematically
oriented literature on the subject. The value function

(2) Jβ(a) � infg∈Ga Hβ(g) , a ∈ R
d ,

turns out to be closely related to the convex conjugate

(3) K ∗
β (a) = supϑ∈Rd

[〈ϑ, a〉 − Kβ(ϑ))
]
, a ∈ R

d ,

of the function Kβ given by

(4) Kβ(ϑ) �
∫
Z
β∗(z, 〈ϑ, ϕ(z)〉) μ(dz) , ϑ ∈ R

d .

Here, 〈·, ·〉 denotes the scalar product on R
d and β∗(z, r)

is equal to supt∈R
[tr−β(z, t)] for r ∈ R. In (2)/(3), the

minimization/maximization is called primal/dual problem, the
infimum/supremum primal/dual value, and a minimizer/ma-
ximizer, if exists, is a primal/dual solution. Since β is strictly
convex, the primal solution, denoted by ga, is unique in the
sense that any two minimizers are equal μ-a.e.

Minimization problems as in (2) emerge across various
scientific disciplines, notably in inference. When g is an
unknown probability density, or any nonnegative function,
whose moment vector is determined by measurements and
a specific choice of β is justified, often the primal solution
as above is adopted as the ‘best guess’ of g. Among au-
tonomous integrands, typical choices of β are t ln t or − ln t
or t2 giving Hβ(g) equal to the negative Shannon or Burg
entropy or the squared L2-norm of g � 0. Note also that the
maximum likelihood estimation in exponential families is a
special case of the dual problem (3), with β equal to t ln t.
When a ‘prior guess’ h for g is available, that would be
adopted before the measurement, it is common to use a non-
autonomous integrand β depending on h for which H β(g)
represents a non-metric distance of g from h. Two cases
are prominent: γ-divergence

∫
Z h γ(g/h)dμ with γ ∈ Γ

[6], [1], [20] and Bregman distance [5], [13], [16], see (6).
Then the corresponding primal solution is often referred to
as a projection of h to Ga. In particular, the most familiar
I-projections correspond to the information (I-) divergence
that belongs to both families of distances. Note that while
the minimization of a γ-divergence can be reduced to that
of an integral functional with autonomous integrand, this is
in general not possible for Bregman distances whence the
nonautonomous integrands become unavoidable.

The primal problem is well understood when the following
primal constraint qualification (PCQ) holds

(PCQ) a ∈ ri(dom(Jβ)) and Jβ(a) > −∞ .

Here, ri stands for the relative interior and dom for the ef-
fective domain. Theorem 1 below implies by standard convex
duality results [17] that under the PCQ the primal and dual
values coincide, a dual solution exists and explicitly specifies
the primal solution when the latter exists. This covers for
example the classical maximization of Shannon differential
entropy over probability densities on R with given mean and
variance. Even under the PCQ the primal solution need not



exist, as in Example 1. Note that while the PCQ often holds
for each a ∈ dom(Jβ), perhaps with exception of the origin,
in many inference problems of practical interest this is not the
case. Hence, dispensing with the PCQ is desirable.

This work is a follow-up of the authors’ contribution [11]
at ISIT’08 motivated by their previous work [9] about I-
projections. As there, the PCQ is dispensed with, and in the
case when no primal/dual solutions exist, generalized solutions
in the sense of [19], [7] are studied. In [11], as in most
of the previous literature, it is assumed that the integrand
is autonomous, differentiable, and that the moment mapping
has one coordinate function identically equal to 1. In this
contribution, these assumptions are avoided, saving as many
conclusions as possible. For previous works not making these
assumptions see [14], [15], using advanced tools of functional
analysis. No such tools are used here, and neither is differential
geometry, see [2], which is powerful but requires strong
regularity assumptions.

Non-autonomous integrands do not entail conceptual diffi-
culties since problems with measurability can be handled via
the machinery of normal integrands [18]. Non-differentiability
of β causes few results to fail. Absence of the special coordi-
nate of ϕ is cured by adopting a dual constraint qualification.
Some results here are new even in the framework of [11].

Space limitations do not admit a detailed presentation of
results, let alone their proofs. For these, and more references,
see the full paper [12] available on arXiv.

II. MAIN INGREDIENTS

The key for the close relationship of the primal and dual
problems is the following fact which, in this generality, does
not seem to directly follow from known results. It can be
proved via modifications of arguments in [18].

Theorem 1. If Jβ �≡ +∞ then J∗
β = Kβ .

The hypothesis holds if Kβ is finite on an open set. The weaker
assumption that Kβ is proper (not identically +∞ and not
attaining −∞) is not sufficient for Jβ �≡ +∞, see [12].

Theorem 2. If Kβ is finite in a neighborhood of ϑ ∈ R
d then

it is differentiable there, and Jβ(∇Kβ(ϑ)) is finite.

A special role is played by the set Θβ of those ϑ ∈ dom(Kβ)
for which the function r �→ β∗(z, r) is finite in a neighborhood
of r = 〈ϑ, ϕ(z)〉 for μ-a.a. z ∈ Z . Equivalently,

Θβ =
{
ϑ ∈ dom(Kβ) : 〈ϑ, ϕ(z)〉 < β′(z,+∞) μ-a.e.

}

where β′(z,+∞) denotes the limit of right derivatives β ′
+(z, t)

when t ↑ +∞. Since β(z, ·) ∈ Γ implies that β∗(z, ·) is
differentiable on (−∞, β ′(z,+∞)), if ϑ ∈ Θβ then

z �→ (β∗)′(z, 〈ϑ, ϕ(z)〉) , z ∈ Z ,

defines a function fϑ on Z , up to a μ-negligible set. Similarly
to [11], the family Fβ � {fϑ : ϑ ∈ Θβ} plays the role of
generalized exponential families, provided that the following
dual constraint qualification (DCQ) holds

(DCQ) Θβ is nonempty.

The DCQ follows from dom(Kβ) �= ∅ when one component
of ϕ is 1. When Kβ is finite on an open set, the DCQ holds if
and only if

(5) μ
{
z ∈ Z : ϕ(z) = 0 and limt↑+∞ β(z, t) �= ±∞}

= 0 .

If the DCQ holds then the maximization in the dual problem
can be restricted to Θβ without changing the dual value and
loosing a dual solution. Under the DCQ, if dual solutions ϑ
exist then each one induces the same function fϑ, called here
the effective dual solution g∗

a.

Proposition 1. For any a ∈ R
d, if fϑ ∈ Ga for some ϑ ∈ Θβ

with Kβ(ϑ) finite then fϑ equals the effective dual solution g∗
a ,

as well as the primal solution ga. Under the PCQ, the primal
solution ga exists if and only if Ga ∩ Fβ �= ∅.

As a consequence, if Kβ is essentially smooth and (5) holds
then the primal solution ga exists for each a ∈ ri(dom(Jβ)).

The Bregman distance based on β is given by

(6) Bβ(g, h) �
∫
Z
Δβ(z, g(z), h(z)) μ(dz)

where g, h are nonnegative Z-measurable functions and Δβ is
a nonnegative integrand such that Δβ(z, s, t) for z ∈ Z and
s, t � 0 is equal to

γ(s)− γ(t)− γ′
sgn(s−t)(t)[s− t] if γ′

+(t) is finite,

and s · (+∞) otherwise. Here, γ ∈ Γ abbreviates β(z, ·) and
sgn(r) denotes + if r � 0 and − if r < 0.

Bregman distances enter into the primal problem via the
following identity.

Proposition 2. Assuming the PCQ for a ∈ R
d and the DCQ,

(7) Hβ(g) = Jβ(a) + Bβ(g, g
∗
a) + Cβ(g), g ∈ Ga .

In (7), Cβ is a sophisticated nonnegative correction functional
defined explicitly in [12].

These results have been known in special settings with β
autonomous and (7) in a weaker form as the inequality ob-
tained by neglecting the correction. If β is essentially smooth
then the correction vanishes anyhow and (7) is known as a
Pythagorean identity. For autonomous β that is differentiable
but not essentially smooth, the correction is determined in [11].

If the primal value Jβ(a) is finite and all sequences gn in Ga

with Hβ(gn) → Jβ(a) converge to a common limit function
ĝa then ĝa is called the generalized primal solution. Here, the
convergence is locally in measure, thus in measure on each set
A ∈ Z of finite μ-measure. Proposition 2 implies that, subject
to the PCQ and DCQ, the generalized primal solution ĝa exists
and equals the effective dual solution g∗

a. Under the PCQ, the
generalized primal solution exists if and only if the DCQ holds.
This is a new result here, included in Theorem 6(iii).

The following example shows that the generalized primal
solution ĝa may be independent of a, and its moment vector
need not exist. For other examples illustrating possible irreg-
ularities see [12].



Example 1. Let μ be the Cauchy distribution on Z = R with
dμ = [π(1 + z2)]−1dz, let β be the autonomous integrand
given by β(z, t) = t ln t, t > 0, and ϕ(z) = (1, z), z ∈ Z . For
a = (a1, a2) with a1 � 0 and g ∈ Ga, if ν denotes the measure
with dν = g dμ then Hβ(g) equals the I-divergence D(ν||μ).
In the particular case a1 = 1, the primal problem is equivalent
to minimization of I-divergence from μ over the probability
measures ν with mean a2. In dual problems, β∗(z, r) = er−1,
ϑ = (ϑ1, ϑ2) and Kβ(ϑ1, ϑ2) =

∫
R
eϑ1+ϑ2z−1 μ(dz) is equal

to eϑ1−1 if ϑ2 = 0, and +∞, otherwise. Hence, Θβ equals
dom(Kβ) = R× {0}. For a in ri(dom(Jβ)) = (0,+∞)× R

Jβ(a) = K ∗
β(a) = maxϑ1∈R

[
a1ϑ1 − eϑ1−1

]
= a1 ln a1 ,

(1+ln a1, 0) is the dual solution, and the effective dual solution
g∗a identically equals a1. Since ϕg∗a is not μ-integrable the
primal solution does not exist, by Proposition 1. Nevertheless,
g∗a equals the generalized primal solution ĝa, by Proposition 2.

Additionally to (7), Bregman distances emerge also in the
dual problem (3), via the following existence result.

Theorem 3. Assuming the DCQ, for every a ∈ R
d with K ∗

β (a)
finite there exists a unique Z-measurable function ha such that

(8) K ∗
β (a)−

[〈ϑ, a〉 − Kβ(ϑ)
]
� Bβ(ha, fϑ) , ϑ ∈ Θβ .

As a consequence, if the dual problem has a solution ϑ ∈ Θβ

then ha equals g∗a = fϑ. In general, (8) implies that whenever
ϑn is a maximizing sequence for 〈ϑ, a〉−Kβ(ϑ), the Bregman
distances Bβ(ha, fϑn) tend to zero, and thus fϑn converges
to ha locally in measure. The function ha in (8) is regarded
as generalized dual solution for a, extending the concept of
generalized maximum likelihood estimate introduced in [9] and
explicitly constructed in [10]. Our current proof of Theorem 3
is non-constructive, except for the case of equal primal and
dual values, when ha is equal to the generalized primal
solution ĝa.

III. THE EFFECTIVE DOMAIN OF THE VALUE FUNCTION

The set of the moment vectors
∫
Z
ϕg dμ of all nonnegative

functions g with ϕg integrable is a convex cone, referred to as
the ϕ-cone cnϕ(μ) of μ. It contains the effective domain of Jβ .
In this section, the domain is described via faces of cnϕ(μ).

Recall that a subset C of Rd is a cone if 0 ∈ C, and tx ∈ C
whenever t > 0 and x ∈ C. A face of a convex set C is a
nonempty convex subset F of C such that every closed line
segment in C with a relative interior point in F is contained
in F . The face is proper if F �= C. A face of a convex cone
is a convex cone.

The ϕ-cones will be studied via a new notion defined next,
for Borel measures Q on R

d that are σ-finite on R
d \ {0}.

Definition 1. The conic core cnc(Q) of Q is the intersection
of all convex Borel cones with Q-negligible complements.

A predecessor of this construction appeared first in [8]: the
convex core cc(Q) of Q is the intersection of all convex Borel
sets with Q-negligible complements. By [10, Theorem 3],

cc(Q) consists of the integrals
∫
Rd xP (dx) where P is a

probability measure dominated by Q.

Lemma 1. The closure of cnc(Q) coincides with the smallest
closed convex cone with Q-negligible complement.

Let μϕ denote the ϕ-image of μ. In general, it is not σ-finite.

Lemma 2. If ν is a measure equivalent to μ and the image
νϕ is σ-finite on R

d \ {0} then cnϕ(μ) = cnc(νϕ).

It follows that ϕ(z) ∈ cl(cnϕ(μ)) for μ-a.a. z ∈ Z .

Lemma 3. If F is a face of cnc(Q) then cnc(Qcl(F )) = F .

Here, Qcl(F ) denotes the restriction of Q to cl(F ). Hence, the
ϕ-cone of the restriction of μ to ϕ−1(cl(F )) equals F , and
μ(ϕ−1(cl(F ))) > 0 except perhaps for F = {0}.

Theorem 4. The conic core cnc(Q) consists of the integrals∫
Rd xP (dx) for all finite (or σ-finite) measures P dominated

by Q such that x is P -integrable.

It follows that cnc(Q) equals the conic hull of cc(Q). The
faces of the two sets are not related to each other in general.
However, if Q is concentrated on a hyperplane that does not
contain the origin then there is a bijection between the families
of faces of cc(Q) and cnc(Q), up to the face {0} of the
latter: the faces of cnc(Q) are the conic hulls of the faces of
cc(Q). In particular, this takes place for Q = μϕ whenever
one coordinate of ϕ is 1, a fact that has been used in [11].

Lemma 4. The moment vector
∫
Z ϕg dμ of a function g � 0

with the ϕg integrable belongs to a face F of cnϕ(μ) if and
only if g(z) = 0 for μ-a.a. z ∈ Z with ϕ(z) /∈ cl(F ).

Let Fβ denote the family of faces F of cnϕ(μ) such that
the positive part of the integral

∫
{ϕ/∈cl(F )} β(·, 0) dμ is finite.

The improper face cnϕ(μ) belongs to Fβ , and if F ⊆ G are
faces of cnϕ(μ) and F belongs to Fβ then so does also G.

Theorem 5. dom(Jβ) =
⋃

F∈Fβ
ri(F ) whenever Jβ �≡ +∞.

This shows that dom(Jβ) is closed to positive multiples.
Another consequence is that

∫
Z
β(·, 0) dμ < +∞ is a

sufficient condition for dom(Jβ) = cnϕ(μ). This condition is
also necessary when {0} is a face of cnϕ(μ) and ϕ �= 0, μ-a.e.,
in particular, when one coordinate of ϕ identically equals 1.

Example 2. Let Z = R×{0, 1} and μ = μ1×μ2 where μ1 is
a finite measure on R equivalent to the Lebesgue measure and
μ2 is the counting measure. Let the moment mapping be given
by ϕ(z) = (1, z1, z2), z = (z1, z2) ∈ Z . Then the ϕ-cone of μ
equals the sum of the sets

F = {(r, s, 0): r > 0 , s ∈ R} ∪ {0}
G = {(r, s, r) : r > 0 , s ∈ R} ∪ {0} .

Its proper faces are F , G and {0}. Let the integrand β be given
by β(z, t) = (t + z2)

−1, z ∈ Z , t > 0. Then β(·, 0) equals
+∞ on ϕ−1(F ) = R × {0}, and 1 on ϕ−1(G) = R × {1}.
Theorem 5 implies that dom(Jβ) equals

ri(F ) ∪ ri(cnϕ(μ)) = {(r, s, q) : r > q � 0 , s ∈ R} .



IV. DISPENSING WITH THE PCQ IN THE PRIMAL PROBLEM

In this section, the primal problem is studied when the value
Jβ(a) is finite but the PCQ is not assumed, a �∈ ri(dom(Jβ)).
The main idea is to replace the measure μ by its restriction
to the set {ϕ ∈ cl(F )} � ϕ−1(cl(F )) where F is an appro-
priate face of the ϕ-cone cnϕ(μ). To indicate this, the letter
F is added to indices, e.g. GF,a denotes the class of Z-
measurable functions g : Z → [0,+∞) such that the integral∫
{ϕ∈cl(F )} ϕg dμ exists and equals a.

For a face F of cnϕ(μ) and a ∈ R
d, the minimization in

JF,β(a) � infg∈GF,a HF,β(g) ,

where HF,β(g) �
∫
{ϕ∈cl(F )} β(z, g(z)) μ(dz), is the F -primal

problem and the maximization in

K ∗
F,β(a) � supϑ∈Rd [〈ϑ, a〉 − KF,β(ϑ)] ,

where KF,β(ϑ) �
∫
{ϕ∈cl(F )} β

∗(z, 〈ϑ, ϕ(z)〉)μ(dz), is the F -

dual problem for a. If the F -primal value JF,β(a) is finite and
attained then the minimizers vanishing outside {ϕ ∈ cl(F )}
define the μ-unique F -primal solution gF,a for a. The gener-
alized F -primal solution ĝF,a is defined likewise.

Let the set ΘF,β consist of those ϑ ∈ dom(KF,β) for which
the function r �→ β∗(z, r) is finite around r = 〈ϑ, ϕ(z)〉 for
μ-a.a. z ∈ Z with ϕ(z) ∈ cl(F ). For ϑ ∈ ΘF,β let fF,ϑ(z)
equal (β∗)′(z, 〈ϑ, ϕ(z)〉) if ϕ(z) ∈ cl(F ) and the derivative
exists, and zero otherwise.

The assumption ΘF,β �= ∅ plays the role of DCQ in the
F -dual problem and is weaker than the DCQ for the original
problem (3). The role of PCQ in the F -primal problem for a
with Jβ(a) finite is played by the assumption that a ∈ ri(F ).
Under these assumptions, the standard results under PCQ and
DCQ imply attainment in the F -dual problem for a ∈ R

d,
where each F -dual solution ϑ belongs to ΘF,β and gives rise
to the same function fF,ϑ. This function is referred to as the
effective F -dual solution g∗F,a for a.

For a ∈ cnϕ(μ) let F (a) denote the unique face of cnϕ(μ)
whose relative interior contains a.

Theorem 6. For a ∈ R
d such that Jβ(a) is finite

(i) the F (a)-dual value K ∗
F (a),β(a) is attained and the pri-

mal value Jβ(a) equals
∫
{ϕ/∈cl(F (a))} β(·, 0) dμ+K ∗

F (a),β(a),

(ii) the primal solution ga exists if and only if ΘF (a),β is not
empty and the moment vector of g∗

F (a),a exists and equals a,
in which case ga = g∗F (a),a ,

(iii) the generalized primal solution ĝa exists if and only if
ΘF (a),β is not empty, in which case ĝa = g∗F (a),a .

If Jβ equals −∞ at some point then J ∗
β is identically +∞

and the dual problems (3) bear no information on the primal
ones. However, Theorem 6 makes sense since Jβ can still be
finite at some point a and the F (a)-dual problem provides
complete understanding of the primal problem for this a. This
situation is illustrated in [12, Example 10.7].

Definition 2. The extension exn(Fβ) of the family Fβ is
defined as union of the families FF,β = {fF,ϑ : ϑ ∈ ΘF,β}
over the faces F of cnϕ(μ).

Corollary 1. For a ∈ R
d with Jβ(a) finite the primal solution

ga exists if and only if the families exn(Fβ) and Ga intersect,
in which case the intersection equals {ga}.

This corollary practically amounts to solving the equation
∫
Z
ϕfF,ϑ dμ = a

over the faces F of cnϕ(μ) and ϑ ∈ ΘF,β .
The following result seems to be the most general version

of Pythagorean identity.

Theorem 7. If a ∈ R
d, Jβ(a) is finite and ΘF (a),β �= ∅ then

(9) Hβ(g) = Jβ(a) + Bβ(g, ĝa) + Cβ(g) , g ∈ Ga .

The generalized primal solution ĝa in (9) is described explic-
itly by Theorem 6(iii).

V. BREGMAN PROJECTIONS

This section is devoted to the minimization in

(10) infg∈Ga Bβ(g, h) , a ∈ R
d ,

an often emerging special case of (2).
The function h is assumed to be nonnegative, Z-measurable

and h(z) > 0 if β′
+(z, 0) = −∞. Then, for t � 0

(z, t) �→ β(z, t)− β(z, h(z))− β′
sgn(t−h(z))(h(z))[t− h(z)]

is an integrand denoted by [βh], and g �→ Bβ(g, h) = H[βh](g)
is a functional of the form (1). It follows that the infimum in
(10) equals J[βh](a) and the minimization is in the framework
of the primal problem (2). A (generalized) primal solution is
renamed to a (generalized) Bregman projection of h to Ga.

The dual problem to (10) features the function K [βh], see (4)
with β replaced by [βh]. The crucial set Θ[βh] consists of those
ϑ in dom(K[βh]) that satisfy

〈ϑ, ϕ(z)〉 < β′(z,+∞)− β′
+(z, h(z)) for μ-a.a. z ∈ Z .

The DCQ holds because ϑ = 0 always belongs to Θ[βh]. The
family F[βh] is parameterized by ϑ ∈ Θ[βh] and consists of
the functions given μ-a.e. by

f[βh],ϑ(z) � (β∗)′
(
z, 〈ϑ, ϕ(z)〉+ β′

sgn(〈ϑ,ϕ(z)〉)(z, h(z))
)
.

In particular, f[βh],ϑ = h when ϑ = 0.

Since [βh] � 0, the PCQ reduces to a ∈ ri(dom(J[βh])).
Assuming J[βh] �≡ +∞, thus existence of a and g ∈ Ga with
Bβ(g, h) finite, the relative interiors of dom(J[βh]) and cnϕ(μ)
coincide, by Theorem 5. Thus, the PCQ is equivalent to the
condition a ∈ ri(cnϕ(μ)), not depending on h.

Theorems 6 and 7 can be reformulated as follows. In these
reformulations, in addition to restricting μ, the integrand β
is replaced by [βh], as indicated in indices. Accordingly,
(F, [βh])-problems, (F, [βh])-solutions, etc., come into play.



Theorem 8. For every a ∈ dom(J[βh])

(i) the (F (a), [βh])-dual value is attained and

J[βh](a) =
∫
{ϕ/∈cl(F (a))} [βh](·, 0) dμ+ K ∗

F (a),[βh](a) ,

(ii) the Bregman projection g[βh],a of h to Ga exists if
and only if the moment vector of the effective (F (a), [βh])-
dual solution g∗F (a),[βh],a exists and equals a, in which case
g[βh],a = g∗F (a),[βh],a ,

(iii) the generalized Bregman projection ĝ [βh],a of h to Ga

exists and equals g∗F (a),[βh],a .

Theorem 9. For every a ∈ dom(J[βh])

Bβ(g, h) = J[βh](a) +B[βh](g, ĝ[βh],a) + C[βh](g) , g ∈ Ga .

A new feature here is the presence of two kinds of Bregman
distances, based on β and [βh].

Lemma 5. For any nonnegative Z-measurable functions g, g̃
on Z , Bβ(g, g̃) � B[βh](g, g̃), with equality if β(z, ·) is diffe-
rentiable at t = h(z) for μ-a.a. z ∈ Z with h(z) > 0.

In particular, for β(z, ·) differentiable at each t > 0, z ∈ Z ,
the two Bregman distances coincide. In that case, Theorem 9
implies that if the Bregman projection g [βh],a exists, then

(11) Bβ(g, h) � Bβ(g, g[βh],a) + Bβ(g[βh],a, h) , g ∈ Ga .

If β is even essentially smooth then h > 0, the correction term
in Theorem 9 vanishes, and (11) becomes an equality, which
is the usual Pythagorean identity for Bregman distances.

If β is not differentiable, the Pythagorean inequality (11)
may fail.

Example 3. Let β be autonomous, given by γ differentiable
except at t = 1, let μ be a probability measure on (Z,Z) and
ϕ ≡ 1. Then, Ga consists of the nonnegative Z-measurable
functions whose μ-integral equals a. For the function h ≡ 1
and a > 0, the Bregman distance Bβ(g, h) equals

∫
Z

[
γ(g(z))− γ(1)− γ′

sgn(g(z)−1)(1)[g(z)− 1]
]
dμ(z) .

This is minimized subject to g ∈ Ga when g ≡ a, by Jensen
inequality. In other words, the Bregman projection g [βh],a of h
to Ga exists and equals identically a. By a simple calculation,

Bβ(g, h) < Bβ(g, g[βh],a) + Bβ(g[βh],a, h) , g ∈ Ga ,

when 0 < a < 1,
∫
Z
γ(g) dμ is finite and the set {g > 1} is

not μ-negligible.

The choice h = fϑ, for some ϑ ∈ Θβ , meets the running
assumption and is of special interest.

Theorem 10. If β is differentiable, Jβ �≡ +∞ and ϑ ∈ Θβ

satisfies 〈ϑ, ϕ〉�β′
+(·, 0), μ-a.e., then dom(Jβ)=dom(J[βfϑ])

and for a ∈ dom(Jβ)

Bβ(g, fϑ) = J[βfϑ](a) + Bβ(g, ĝa) + Cβ(g) , g ∈ Ga .

This identity implies that the generalized primal solution ĝa

from Theorem 6(iii) coincides with the generalized Bregman

projection of fϑ to Ga, and that the existence of a sequence gn
in Ga with Bβ(gn, fϑ) → 0 is sufficient for ĝa = fϑ, extending
the first assertion of Proposition 1. If β is essentially smooth
then each ϑ ∈ Θβ meets the hypothesis of Theorem 10, but this
need not be so if β is merely differentiable. For ϑ ∈ Θβ not
meeting that hypothesis, the above assertions may fail already
for the autonomous integrand β given by γ(t) = t2, t � 0, see
[12, Example 10.11].
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