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Abstract This paper deals with the computation of regular coderivatives of
solution maps associated with a frequently arising class of generalized equations
(GEs). The constraint sets are given by (not necessarily convex) inequalities, and
we do not assume linear independence of gradients to active constraints. The achieved
results enable us to state several versions of sharp necessary optimality conditions
in optimization problems with equilibria governed by such GEs. The advantages are
illustrated by means of examples.
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1 Introduction

The main object of this study is local analysis of solutions to the parameter-dependent
generalized equation (GE)

0 ∈ F(x, y) + ̂NΓ (y), (1)

where x ∈ R
n is the parameter, y ∈ R

m is the decision variable, F :Rn × R
m → R

m

is a continuously differentiable mapping and ̂NΓ (y) stands for the regular normal
cone to a closed, not necessarily convex set Γ ⊆ R

m at y, cf. Definition 2.1. If Γ is
convex, then (1) amounts to a standard variational inequality of the first kind. In the
form of GE (1), one can model a large variety of parameter-dependent equilibrium
problems ranging from parametric optimization over Nash equilibria, second-order
cone programs up to discretized contact problems from continuum mechanics.

We denote throughout the text by S the solution map to (1) defined by

S(x) := {y|0 ∈ F(x, y) + ̂NΓ (y)}, (2)

which assigns the corresponding set of equilibria to each value of the parameter x .
Our main aim in this paper is to analyze the local behavior of S around a certain ref-
erence point (x̄, ȳ) from the graph of S. Such analysis is useful both in the so-called
post-optimal analysis, where one examines the dependence of an equilibrium on (a
part of) problem data, as well as in mathematical programs with equilibrium con-
straints (MPECs), where (1) arises as a part of the constraint system. It may be useful
also in numerical analysis, where the parameter could express, e.g., the accuracy with
which the Karush–Kuhn–Tucker (KKT) condition is used as the stopping criterion in
a numerical method.

Local analysis of solution maps belongs to the core of problems of modern var-
iational analysis and has been studied in connection with similar models in a large
amount of papers and many monographs since 1968 [4]. From the recently published
advanced monographs, we highlight the monographs [3,10,19]. Further results can be
found in [9,15] and [1], where the motivation comes from the mentioned MPECs. In
this paper, our main tool is the notion of regular coderivative (Definition 2.3). This
is the main difference with respect to the papers [8,11] in which similar models are
analyzed with the help of limiting coderivatives (Definition 2.4). We place a special
amount of emphasis on the case in which Γ is given via inequalities and the formula
for NΓ (·) involves non-unique multipliers.

The paper is structured as follows. The preliminary Sect. 2 contains definitions
and some basic auxiliary results used throughout the following sections. Section 3
contains our main results. Under the Mangasarian-Fromovitz constraint qualification
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On regular coderivatives in parametric equilibria 113

(MFCQ), constant rank qualification condition (CRCQ) and the Strong Second-Order
Sufficient Condition, we compute the desired regular coderivative of S either exactly
or we provide a tight upper estimate of it in dependence on the properties of F and Γ .
These results enable us, among other things, to obtain new sharp optimality conditions
for a class of MPECs.

In Sect. 4, the Strong Second-Order Sufficient Condition is omitted, but one has to
require the surjectivity of ∇x F(x̄, ȳ). The resulting formula could again be applied to
a class of MPECs where, however, no other conditions on x and y can be imposed.
Both sections depend heavily on a consequence of [16, Theorem 2] which is our main
reference and will be stated in the next section.

Our notation is basically standard. Gr Φ is the graph of a multifunction Φ, f ′ (x; h)

denotes the directional derivative of a single-valued mapping f at x in direction h and
K 0 stands for the negative polar to a cone K . For a finite set I, #I denotes its cardinality.

2 Definitions and preliminaries

In order to proceed with the statement of some necessary preliminary results we will
need to define a few standard notions from variational analysis. Let C ⊆ R

m be a
nonempty closed subset and x ∈ C . Then we define the contingent or Bouligand cone
by

TC (x) := {

d ∈ R
m |∃tk ↓ 0, dk → d : x + tkdk ∈ C,∀k

}

.

Analogously to similar constructions in classical convex analysis, we use the contin-
gent cone TC (x) to define the so-called regular or Fréchet normal cone.

Definition 2.1 For C ⊆ R
m be a nonempty closed subset and x ∈ C , the regular or

Fréchet normal cone is defined by

̂NC (x) := TC (x)0,

i.e., the regular normal cone to C at x is defined as the polar cone of the contingent
cone TC (x).

Note that one can also define the regular normal cone by

̂NC (x) :=

⎧

⎪

⎨

⎪

⎩

v ∈ R
m

∣

∣

∣

∣

∣

∣

∣

lim sup
x ′→x
x ′∈C

〈v, x ′ − x〉
||x ′ − x || ≤ 0

⎫

⎪

⎬

⎪

⎭

.

The regular normal cone is then used to introduce another important normal cone.

Definition 2.2 Let C ⊆ R
m be a nonempty closed subset and x̄ ∈ C , then the so-called

limiting or Mordukhovich normal cone is defined by

NC (x̄) := Lim sup
x→x̄
x∈C

̂NC (x).
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114 R. Henrion et al.

where “Lim sup” represents the Painlevé-Kuratowski upper-limit, cf. [10, formula
(1.1)].

We mention that both these cones coincide with the normal cone from convex analysis
when C is convex.

The two notions of normal cones are often used to define two types of generalized
(co)derivatives of special interest in this paper.

Definition 2.3 Let Φ : R
n ⇒ R

m be an arbitrary multifunction and suppose (x, y) ∈
Gr Φ. Then we define the regular coderivative of Φ at (x, y) in direction y∗ by

̂D∗Φ(x, y)(y∗) := {

x∗ ∈ R
n
∣

∣(x∗,−y∗) ∈ ̂NGr Φ(x, y)
}

.

Similar to the above, we have a limiting concept for coderivatives as well.

Definition 2.4 Let Φ : R
n ⇒ R

m be an arbitrary multifunction and suppose (x, y) ∈
Gr Φ. The limiting coderivative of Φ can then be defined by

D∗Φ(x̄, ȳ)(ȳ∗) := Lim sup
(x,y)→(x̄,ȳ)
(x,y)∈Gr Φ

y∗→ȳ∗

̂D∗Φ(x, y)(y∗)

or equivalently by using the limiting normal cone to Gr Φ:

D∗Φ(x̄, ȳ)(ȳ∗) := {

x̄∗ ∈ R
n
∣

∣(x̄∗,−ȳ∗) ∈ NGr Φ(x̄, ȳ)
}

.

If Φ is single-valued, we write simply ̂D∗Φ(x)(y∗), D∗Φ(x)(y∗). We refer the reader
to the monographs [19] and [10] for more on these concepts.

The following theorem recalls a basic transformation formula for coderivatives [10,
Theorem 1.127]:

Theorem 2.1 Let C = g−1(Ξ), where g : R
k → R

l is twice continuously differen-
tiable and Ξ ⊆ R

l is some closed subset. Consider points z̄ ∈ C and v̄ ∈ NC (z̄).
If the Jacobian ∇g(z̄) is surjective, then

D∗NC (z̄, v̄)(v∗) =
(

l
∑

i=1

μ̄i∇2gi (z̄)

)

v∗ + (∇g (z̄))T D∗NΞ (g(z̄), μ̄)
(∇g (z̄) v∗) . (3)

Here, μ̄ is the unique solution of the equation ∇T g(z̄)μ = v̄.

In the special case, when Ξ := {0}t × R
l−t− (t ≤ l) serves to model a finite set of

smooth equality and inequality constraints, (3) reduces to

D∗NC (z̄, v̄)(v∗) =
(

l
∑

i=1

μ̄i∇2gi (z̄)

)

v∗ + (∇g (z̄))T (A1 × · · · × Al), (4)
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On regular coderivatives in parametric equilibria 115

where the sets Ai ⊆ R are given by

Ai = D∗N{0} (0, μ̄i )
(∇gi (z̄) v∗) =

{

R if ∇gi (z̄) v∗ = 0
∅ else

(i = 1, . . . t),

Ai = D∗NR− (gi (z̄), μ̄i )
(∇gi (z̄) v∗)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{0} if gi (z̄) < 0
R if gi (z̄) = 0, μ̄i > 0 and ∇gi (z̄) v∗ = 0
∅ if gi (z̄) = 0, μ̄i > 0 and ∇gi (z̄) v∗ �= 0
{0} if gi (z̄) = μ̄i = 0 and ∇gi (z̄) v∗ < 0
R+ if gi (z̄) = μ̄i = 0 and ∇gi (z̄) v∗ ≥ 0.

(i = t + 1, . . . l)

In this special structure for Ξ , we can replace the surjectivity condition required in
Theorem 2.1 by the weaker Linear Independence Constraint Qualification (LICQ) at
z̄. In this condition, one requires that the gradients ∇gi (z̄) are linearly independent
for all i such that gi (z̄) = 0.

Throughout the whole paper, we will specify the set Γ in (1) as

Γ = {y ∈ R
m |q(y) ∈ R

s−}, (5)

where the mapping q :Rm → R
s is twice continuously differentiable. Let ȳ ∈ Γ . We

say that Γ fulfills the MFCQ at ȳ, provided

(∇q(ȳ))T λ = 0

λ ≥ 0

〈q(ȳ), λ〉 = 0

⎫

⎪

⎬

⎪

⎭

⇒ λ = 0.

It is well known (cf., e.g., [19, Exercise 10.26]) that under MFCQ there is a neighbor-
hood N of ȳ such that

NΓ (y) = (∇q(y))T NR
s−(q(y))

for all y ∈ N . Since NΓ (y) ⊃ ̂NΓ (y) by the definition,

̂NΓ (y) ⊃ (∇q(y))T
̂NR

s−(q(y))

by virtue of [19, Theorem 6.14] and ̂NR
s−(q(y)) = NR

s−(q(y)), it follows that

̂NΓ (y) = (∇q(y))T NR
s−(q(y))

=
{

(∇q(y))T λ|q(y) ≤ 0, λ ≥ 0, 〈q(y), λ〉 = 0
}

for all y ∈ N . This enables us to replace the GE (1) for our purposes by the GE

0 ∈ F(x, y) + (∇q(y))T NR
s−(q(y)), (6)
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or by the KKT system

0 = L(x, y, λ), q(y) ≤ 0, λ ≥ 0, 〈q(y), λ〉 = 0, (7)

where

L(x, y, λ) := F(x, y) + (∇q(y))T λ

is the Lagrangian, associated with the GE (1).
The critical cone to Γ at y with respect to a vector v ∈ R

m is given by

C(y, v) := TΓ (y) ∩ (v)⊥. (8)

Assume that the MFCQ is fulfilled at ȳ, y is sufficiently close to ȳ, and let (x, y, λ)

be a feasible triple with respect to (7). In the usual way we associate with (y, λ) the
index sets

I (y) := {i ∈ {1, 2, . . . , s}|qi (y) = 0},
I+(y, λ) := {i ∈ I (y)|λi > 0},
I0(y, λ) := I (y)\I+(y, λ)

of active, strongly active and weakly active inequalities, respectively. Then it can easily
be shown that the critical cone to Γ at y with respect to F(x, y), denoted henceforth
by K (x, y), amounts to

K (x, y) = C(y, F(x, y)) = TΓ (y) ∩ {F(x, y)}⊥
= {v ∈ R

m |∇q(y)v ∈ TR
s−(q(y)) ∩ {λ}⊥} (9)

= {v|〈∇qi (y), v〉 = 0 for i ∈ I+(y, λ), 〈∇qi (y), v〉 ≤ 0 for i ∈ I0(y, λ)}.

By the definition, this cone is independent of a concrete choice of the multiplier λ but
it does depend on x .

In Theorem 2.2 below we will employ also another constraint qualification. We say
that the constant rank qualification condition (CRCQ) holds at ȳ, provided there is
a neighborhood M of ȳ such that for any subsets I of I (ȳ), the family of gradients
{∇qi (y)|i ∈ I } has the same rank for all y ∈ M.

Note that (MFCQ) and (CRCQ) are independent in the sense that they do not imply
each other.

Theorem 2.2 Consider the GE (1) with Γ given by (5) around a reference point
(x̄, ȳ) ∈ Gr S. Assume that

(i) Γ fulfills MFCQ and CRCQ at ȳ;
(ii) For each λ satisfying (7) with (x, y) = (x̄, ȳ), and each v �= 0 such that

〈∇qi (ȳ), v〉 = 0 if i ∈ I+(ȳ, λ),

〈v,∇yL(x̄, ȳ, λ)v〉 > 0.
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On regular coderivatives in parametric equilibria 117

(iii) either all functions qi are convex or F(x, y) amounts to the partial gradient with
respect to the second variable of a function ϕ : R

n × R
m → R.

Then the following statements hold.

(1) S admits a single-valued Lipschitz localization at (x̄, ȳ), i.e., there are neigh-
borhoods U of x̄,V of ȳ and a Lipschitz function σ :U → V such that

σ(x̄) = ȳ and S(x) ∩ V = {σ(x)} for x ∈ U .

(2) For each x ∈ U , d ∈ R
n, σ is directionally differentiable at x in the direction

d, and σ ′(x; d) = v, the unique solution of the GE

0 ∈ ∇x F(x, y)d + ∇yL(x, y, μ)v + NK (x,y)(v), (10)

where y = σ(x) and μ is an associated multiplier in the sense of (7).

Proof Consider first the case when the functions qi are convex. Statement (1) then
follows from [9, Theorem 4.2.16], because (ii) implies the so-called strong coherent
orientation condition (used in that result). Statement (2) follows from [9, Theorem
4.2.25], because q does not depend on x and (ii) implies the uniqueness of solutions
to (10) for all d ∈ R

n . In the nonconvex case the statement goes back to [16, Theorem
2 and Corollary 4]. ��
Remark 2.1 According to the assumption (iii) one can distinguish between two cases.
If the functions qi are convex, then (1) amounts to the standard parameter-depen-
dent VI of the first kind. Otherwise, (1) is a stationarity condition of the parametric
nonlinear program (NLP)

minimize ϕ(x, y)

subject to
y ∈ Γ,

(11)

and for x ∈ U , σ (x) is an isolated minimizer of (11).

Condition (ii) is the already mentioned strong second-order sufficient condition used
extensively in the literature in connection with parametric problems.

3 When S is directionally differentiable

We start with the following simple statement:

Proposition 3.1 Consider a mapping H :Rp → R
q which is Lipschitz and direction-

ally differentiable on a neighborhood U of ū. Then,

D̂∗H(u)(y∗) = D̂∗Hu(0)(y∗) ∀y∗ ∈ R
q ∀u ∈ U ,

where Hu(·) = H ′(u; ·).
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118 R. Henrion et al.

Proof It suffices to observe that, under the imposed assumptions, for ũ ∈ U and
ṽ = H (ũ) one has TGr H (ũ, ṽ) = Gr Hũ . Consequently,

N̂Gr H (ũ, ṽ) = (TGr H (ũ, ṽ))0

= {

(u∗, v∗)| 〈u∗, d
〉 + 〈

v∗, h
〉 ≤ 0 ∀(d, h) ∈ TGrH (ũ, ṽ)

}

= {

(u∗, v∗)| 〈u∗, d
〉 + 〈

v∗,Hũ(d)
〉 ≤ 0 ∀d

}

.

On the other hand,

N̂Gr Hũ (0, 0) = {

(u∗, v∗)| 〈u∗, d
〉 + 〈

v∗, h
〉 ≤ o(‖(d, h)‖) ∀(d, h) ∈ Gr Hũ

}

= {

(u∗, v∗)| 〈u∗, d
〉 + 〈

v∗,Hũ(d)
〉 ≤ õ(‖d‖) ∀d

}

by virtue of the Lipschitz continuity of Hũ . It follows, due to the positive homogeneity
of Hũ , that

̂NGrHũ
(0, 0) =

{

(u∗, v∗)
∣

∣

∣

∣

∣

lim sup
d→0,d �=0

[〈

u∗, d

‖d‖
〉

+
〈

v∗,Hũ

(

d

‖d‖
)〉]

≤ 0

}

=
{

(u∗, v∗)
∣

∣

∣

∣

∣

lim sup
‖z‖=1

[〈

u∗, z
〉 + 〈

v∗,Hũ(z)
〉] ≤ 0

}

= {

(u∗, v∗)| 〈u∗, z
〉 + 〈

v∗,Hũ(z)
〉 ≤ 0 ∀z

}

.

This proves the assertion. ��
Corollary 3.1 For all ȳ∗ ∈ R

q

D∗ H(ū)(ȳ∗) = Limsup
u→ū,y∗→ȳ∗

̂D∗Hu(0)(y∗).

Thus in some situations, the statement above enables us to replace a difficult single-
valued mapping by a simpler one when computing coderivatives. In this section we
exploit this idea for the solution mapping S on the basis of Theorem 2.2.

Theorem 3.1 Under the assumptions of Theorem 2.2 let λ̄ be an arbitrary multiplier
satisfying conditions (7) with (x, y) = (x̄, ȳ). Then for all y∗ ∈ R

m one has that

D̂∗S(x̄, ȳ)(y∗)
⊇

{

(∇x F(x̄, ȳ))T b|0 ∈ y∗ + (∇yL(x̄, ȳ, λ̄)
)T

b + K 0(x̄, ȳ), −b ∈ K (x̄, ȳ)
}

,

(12)

where

K (x̄, ȳ)

= {

v ∈ R
m | 〈∇qi (ȳ), v〉 = 0 for i ∈ I+(ȳ, λ̄), 〈∇qi (ȳ), v〉 ≤ 0 for i ∈ I0(ȳ, λ̄)

}

.
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On regular coderivatives in parametric equilibria 119

If in addition the inclusion

∇yL(x̄, ȳ, λ̄)K (x̄, ȳ) ⊆ Im ∇x F(x̄, ȳ) (13)

is satisfied, then (12) holds as an equality.

Proof Referring back to the single-valued Lipschitz localization σ of S in statement
(1) of Theorem 2.2, we observe that N̂Gr S = N̂Gr σ locally around (x̄, ȳ). By Proposi-
tion 3.1, N̂Gr σ (x̄, ȳ) = N̂Gr σ ′(x̄;·)(0, 0) and so it remains to compute N̂Gr σ ′(x̄;·)(0, 0).
According to (10), we have that

Gr σ ′(x̄; ·) = G−1Gr NK (x̄,ȳ), (14)

where G is the linear mapping defined by

G(d, v) :=
[

0 I
−∇x F(x̄, ȳ) −∇yL(x̄, ȳ, λ̄)

](

d
v

)

. (15)

Moreover, since K (x̄, ȳ) is a polyhedral cone, it holds that (see [2, Proof of Th. 2])

N̂Gr NK (x̄,ȳ)
(0, 0) = K 0(x̄, ȳ) × K (x̄, ȳ).

We now invoke [19, Theorem 6.14], according to which

N̂Gr σ ′(x̄;·)(0, 0) ⊇ [∇G (0, 0)]T N̂Gr NK (x̄,ȳ)
(0, 0)

=
[

0 − (∇x F(x̄, ȳ))T

I − (∇yL(x̄, ȳ, λ̄)
)T

]

(

K 0(x̄, ȳ) × K (x̄, ȳ)
)

= {(− (∇x F(x̄, ȳ))T b, s)|b ∈ K (x̄, ȳ),

s ∈ − (∇yL(x̄, ȳ, λ̄)
)T

b + K 0(x̄, ȳ)}.

This shows inclusion (12).
To verify the reverse inclusion under the additional condition (13), let

x∗ ∈ D̂∗S(x̄, ȳ)(y∗) be arbitrary. By definition,

〈

x∗, d
〉 − 〈

y∗, v
〉 ≤ 0 ∀ (d, v) ∈ TGr S(x̄, ȳ). (16)

Since TGr S = TGr σ locally around (x̄, ȳ) and TGr σ (x̄, ȳ) = Gr σ ′(x̄; ·), as already
stated in the beginning of the proof of Proposition 3.1, (14) provides that TGr S(x̄, ȳ) =
G−1Gr NK (x̄,ȳ). Recalling that

Gr NK (x̄,ȳ) = {(r, s) ∈ K (x̄, ȳ) × K 0(x̄, ȳ)| 〈r, s〉 = 0}
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120 R. Henrion et al.

because K (x̄, ȳ) is a convex cone, we derive that

TGr S(x̄, ȳ) =
⎧

⎨

⎩

(d, v)

∣

∣

∣

∣

∣

∣

v ∈ K (x̄, ȳ)

−∇x F(x̄, ȳ)d − ∇yL(x̄, ȳ, λ̄)v ∈ K 0(x̄, ȳ)
〈

v,∇x F(x̄, ȳ)d + ∇yL(x̄, ȳ, λ̄)v
〉 = 0

⎫

⎬

⎭

. (17)

Clearly, 0 ∈ K (x̄, ȳ), hence (16) and (17) entail that

〈

x∗, d
〉 ≤ 0 ∀d : −∇x F(x̄, ȳ)d ∈ K 0(x̄, ȳ).

As a consequence,

x∗ ∈
[

−(∇x F(x̄, ȳ))−1 K 0(x̄, ȳ)
]0 = − (∇x F(x̄, ȳ))T K (x̄, ȳ).

Therefore,

x∗ = − (∇x F(x̄, ȳ))T ū (18)

for some ū ∈ K (x̄, ȳ). This allows us to write (16) as

〈

− (∇x F(x̄, ȳ))T ū, d
〉

− 〈

y∗, v
〉 ≤ 0 ∀ (d, v) ∈ TGr S(x̄, ȳ). (19)

Now, fixing an arbitrary v ∈ K (x̄, ȳ), condition (13) yields the existence of some
dv such that −∇yL(x̄, ȳ, λ̄)v = ∇x F(x̄, ȳ)dv . It follows from (17) that (dv, v) ∈
TGr S(x̄, ȳ), whence (19) yields that

0 ≥
〈

− (∇x F(x̄, ȳ))T ū, dv

〉

− 〈

y∗, v
〉 = 〈−ū,∇x F(x̄, ȳ)dv〉 − 〈

y∗, v
〉

= 〈

ū,∇yL(x̄, ȳ, λ̄)v
〉 − 〈

y∗, v
〉 =

〈

(∇yL(x̄, ȳ, λ̄)
)T

ū − y∗, v
〉

.

As v ∈ K (x̄, ȳ) was arbitrary, we get that
(∇yL(x̄, ȳ, λ̄)

)T
ū − y∗ ∈ K 0(x̄, ȳ). Along

with (18) this last relation yields that x∗ belongs to the set on the right-hand side of
inclusion (12). ��
Corollary 3.2 Consider the setting of Theorem 2.2 and let λ̄ be an arbitrary multiplier
satisfying conditions (7) with (x, y) = (x̄, ȳ). If ∇x F(x̄, ȳ) is surjective, then one has
for all y∗ ∈ R

m that

D̂∗S(x̄, ȳ)(y∗)
=

{

(∇x F(x̄, ȳ))T b|0 ∈ y∗ + (∇yL(x̄, ȳ, λ̄)
)T

b + K 0(x̄, ȳ), −b ∈ K (x̄, ȳ)
}

.

(20)

We emphasize that condition (13) allows us via Theorem 3.1 to relax the surjectivity
of ∇x F(x̄, ȳ) as required in Corollary 3.2. This is illustrated in the following example:

123



On regular coderivatives in parametric equilibria 121

Example 3.1 Consider the solution mapping S of the following parametric convex
optimization problem

min
{

y2
1 + y2

2 + xy1|y2 ≥ 1
}

.

Clearly, S can be equivalently described by the GE (1), where

F (x, y1, y2) =
(

2y1 + x
2y2

)

and Γ is of the form (5) with q(y1, y2) = 1 − y2. Let us consider the reference point

(x̄, ȳ1, ȳ2) = (0, 0, 1) ∈ Gr S.

Note that all assumptions of Theorem 2.2 are fulfilled. One easily checks that
K (x̄, ȳ1, ȳ2) = R × {0}. Moreover,

∇y F (x̄, ȳ1, ȳ2) = 2I, ∇x F (x̄, ȳ1, ȳ2) =
(

1

0

)

.

It follows that condition (13) is satisfied no matter what the choice of λ̄ is:

∇yL(x̄, ȳ, λ̄)K (x̄, ȳ) = ∇y F (x̄, ȳ1, ȳ2) K (x̄, ȳ) = R × {0} = Im ∇x F(x̄, ȳ).

On the other hand, ∇x F (x̄, ȳ1, ȳ2) fails to be surjective.
Now, from the last statement of Theorem 3.1, it follows that

D̂∗S(x̄, ȳ)(y∗) =
{

− y∗
1

2

}

.

If condition (13) is violated, we have to confine ourselves to the following upper
estimate of D̂∗S(x̄, ȳ):

Theorem 3.2 Consider the setting of Theorem 2.2 with λ̄ being an arbitrary multiplier
satisfying (7) for (x, y) = (x̄, ȳ). Then, for all y∗ ∈ R

m,

D̂∗S(x̄, ȳ)(y∗)
⊆

{

(∇x F(x̄, ȳ))T b|0 ∈ y∗ + (∇yL(x̄, ȳ, λ̄)
)T

b + D∗NK (x̄,ȳ)(0, 0)(b)
}

.

(21)

Proof Using the same arguments as in the beginning of the proof of Theorem 3.1 we
have that

N̂Gr S(x̄, ȳ) = N̂Gr σ ′(x̄;·)(0, 0).
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In order to estimate the right-hand side of the last equation, we apply a calculus rule
from [6, Th. 4.1] yielding

N̂Gr σ ′(x̄;·)(0, 0) ⊆
[

0 − (∇x F(x̄, ȳ))T

I − (∇yL(x̄, ȳ, λ̄)
)T

]

NGr NK (x̄,ȳ)
(0, 0)

and we are done. Note that the mentioned calculus rule requires the so-called calmness
property (see, e.g., [19] p.399) of the multifunction

M(p)

:=
{

(d, v) ∈ R
n × R

m
∣

∣

∣

∣

(

v

−∇x F(x̄, ȳ)d − ∇yL(x̄, ȳ, λ̄)v

)

− p ∈ Gr NK (x̄,ȳ)

}

.

This property is satisfied because NK (x̄,ȳ) is a polyhedral mapping (cf. [17]). ��
Due to the polyhedrality of K (x̄, ȳ) an exact computation of D∗NK (x̄,ȳ)(0, 0) is pos-
sible even if the inequalities defining K (x̄, ȳ) are linearly dependent. We return to this
question at the end of this section.

For some applications it is convenient to extend the preceding result to the mapping
S̃ : R

n ⇒ R
m defined by

S̃ (x) :=
{

S(x) if x ∈ ω

∅ otherwise,
(22)

where ω ⊆ R
n is a nonempty closed set. Clearly, Gr S̃ =Gr S ∩ (ω × R

m).

Theorem 3.3 Consider the setting of Theorem 3.2 and the mapping S̃ given by (22).
Then, for all y∗ ∈ R

m,

D̂∗ S̃(x̄, ȳ)(y∗)
⊆

{

(∇x F(x̄, ȳ))T b+Nω(x̄)|0∈ y∗+(∇yL(x̄, ȳ, λ̄)
)T

b+D∗NK (x̄,ȳ)(0, 0)(b)
}

.

(23)

Proof Let y∗ be arbitrary and x∗ ∈ D̂∗ S̃(x̄, ȳ)(−y∗). By virtue of [19, Th. 6.11],
there is a smooth function ϕ : R

n × R
m → R such that ϕ attains its global minimum

over Gr S̃ at (x̄, ȳ) and ∇ϕ(x̄, ȳ) = − (x∗, y∗). By virtue of the standard optimality
condition one has thus

(

x∗
y∗

)

∈ ̂NGr S̃(x̄, ȳ).

This is equivalent to stating that

〈−x∗, d〉 + 〈−y∗, v 〉≥ 0 for all (d, v) ∈ TGr S̃(x̄, ȳ),
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i.e., (0, 0) is a solution to the optimization problem

min
{〈−x∗, d

〉 + 〈−y∗, v
〉 | (d, v) ∈ TGr S̃(x̄, ȳ)

}

. (24)

From the properties of S stated in Theorem 2.2 one can easily infer that

TGr S̃(x̄, ȳ) = {(d, v) ∈ TGr S(x̄, ȳ) | d ∈ Tω(x̄)},
cf., e.g., [13]. Further recall that TGrS(x̄, ȳ) = TGrσ (x̄, ȳ) = Grσ ′(x̄; ·) so that, on the
basis of Theorem 2.2, problem (24) amounts to the (linearized) MPEC

minimize 〈−x∗, d〉 + 〈−y∗, v〉
subject to

0 ∈ ∇x F(x̄, ȳ)d + ∇yL(x̄, ȳ, λ̄)v + NK (x̄,ȳ)(v), d ∈ Tω(x̄).

(25)

It remains to write down the standard M-stationarity conditions for (25) at (0, 0). To
this end, observe that K (x̄, ȳ) is a polyhedral cone with vertex at 0 and the critical
cone to K (x̄, ȳ) at 0 with respect to 0 is again K (x̄, ȳ). Since ∇yL(x̄, ȳ, λ̄) is strictly
copositive with respect to K (x̄, ȳ) − K (x̄, ȳ) by virtue of assumption (ii) in Theorem
2.2, it follows e.g. from [15, Theorem 5.4] that the GE in (25) is strongly regular
at (0, 0) [18]. One can thus invoke [12, Proposition 3.2] ensuring that the standard
qualification condition

(∇x F(x̄, ȳ))T c ∈ −NTω(x)(0)

0 ∈ (∇yL(x̄, ȳ, λ̄))T c + D∗NK (x̄,ȳ)(0, 0)(c)

}

⇒ c = 0

is fulfilled. Thus, by [12, Theorem 3.1], there is an MPEC multiplier b ∈ R
m such that

x∗ ∈ (∇x F(x̄, ȳ))T b + NTω(x̄) (0)

y∗ ∈ (∇yL(x̄, ȳ, λ̄)
)T

b + D∗NK (x̄,ȳ)(0, 0)(b).

Since NTω(x̄) (0) ⊆ Nω(x̄) (see [19, Prop. 6.27]), the statement has been proved. ��
Based on the previous result, we are now able to state the following new necessary
optimality conditions for the MPEC

min
{

f (x, y)|0 ∈ F(x, y) + N̂Γ (y), x ∈ ω
}

, (26)

where f : R
n × R

m → R is continuously differentiable, ω ⊆ R
n is closed and the

GE in (26) satisfies all assumptions of Theorem 2.2.

Theorem 3.4 Consider the MPEC (26) under the assumptions listed above and
assume that (x̄, ȳ) is its (local) solution. Then there exists an MPEC multiplier b̄ ∈ R

m,
such that

0 ∈ ∇x f (x̄, ȳ) + (∇x F(x̄, ȳ))T b̄ + Nω (x̄) (27)

0 ∈ ∇y f (x̄, ȳ) + (∇yL(x̄, ȳ, λ̄)
)T

b̄ + D∗NK (x̄,ȳ)(0, 0)(b̄), (28)
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where λ̄ is an arbitrary multiplier satisfying the KKT conditions (7) with (x, y) =
(x̄, ȳ).

Proof The assertion follows immediately from the standard optimality condition

0 ∈ ∇ f (x̄, ȳ) + N̂Gr S̃(x̄, ȳ)

by invoking the inclusion (23). ��
In the MPEC theory there are several stationarity concepts among which the M- and
S-stationarity play a prominent role. When equilibria governed by (1) are considered,
M-stationarity conditions involve the limiting coderivative of the multi-valued part
(D∗NΓ (ȳ,−F(x̄, ȳ))) whereas in the S-stationary conditions the respective regular
coderivative arises. Both conditions differ substantially also in the imposed qualifica-
tion conditions which are typically stronger in the case of S-stationarity. We refer the
reader to [10,20] and [5] for a deeper discussion on this subject.

In the M-stationarity conditions for MPEC (26) (which hold under weaker assump-
tions compared with Theorem 3.4), the inclusion (28) in the statement of Theorem 3.4
is replaced by

0 ∈ ∇y f (x̄, ȳ) + (∇y F(x̄, ȳ)
)T

d̄ + D∗NΓ (ȳ,−F(x̄, ȳ))(d̄), (29)

where d̄ ∈ R
m is a counterpart of the MPEC multiplier b̄. The following proposition

shows that (29) and (28) are equivalent in case that Γ satisfies LICQ. In the absence of
LICQ, which is not required in Theorem 3.4, the coderivative D∗NK (x̄,ȳ)(0, 0) can be
still evaluated exactly in (28), whereas the coderivative D∗NΓ (ȳ,−F(x̄, ȳ)) in (29)
may be hard to evaluate at least exactly. An instance of this situation will be illustrated
in Example 3.2 following this proposition.

Proposition 3.2 Consider the setting of Theorem 3.4 and assume that the constraint
system defining Γ fulfills LICQ at ȳ. Then, for any b ∈ R

m one has

D∗NΓ (ȳ,−F(x̄, ȳ))(b) =
s

∑

i=1

λ̄i∇2qi (ȳ)b + D∗NK (x̄,ȳ)(0, 0)(b),

where λ̄ is the unique solution of the equation (∇q(ȳ))T λ = −F(x̄, ȳ).

Proof Note first that the local structure of Γ and, hence, D∗NΓ (ȳ,−F(x̄, ȳ)) do
not depend on components qi which are inactive at ȳ. Similarly, K (x̄, ȳ) and, hence,
D∗NK (x̄,ȳ)(0, 0) are only defined via the components qi which are active at ȳ [see (9)].
Therefore, we may assume without loss of generality that q(ȳ) = 0. Due to LICQ,
one has by (4) (with l = s, t = 0 and g = q),

D∗NΓ (ȳ,−F(x̄, ȳ))(b) =
s

∑

i=1

λ̄i∇2qi (ȳ)b + (∇q(ȳ))T (A1 × · · · × As), (30)
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where, for i = 1, . . . , s,

Ai = D∗NR−
(

0, λ̄i
)

(∇qi (ȳ)b) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R if λ̄i > 0 and ∇qi (ȳ) b = 0
∅ if λ̄i > 0 and ∇qi (ȳ) b �= 0
{0} if λ̄i = 0 and ∇qi (ȳ) b < 0
R+ if λ̄i = 0 and ∇qi (ȳ) b ≥ 0.

On the other hand, since Γ fulfills LICQ at ȳ, the same holds true for K (x̄, ȳ) in its
description (9). Hence, we may apply the same formula (4) with l = s, t = #I+(ȳ, λ̄)

and g (·) = ∇q (ȳ) (·). Observing, that ∇g ≡ ∇q (ȳ), it follows that ∇2g ≡ 0.
Moreover, g (0) = 0, and the uniquely defined (by LICQ) multiplier μ̄ satisfying

∇T g(0)μ = ∇T q(ȳ)μ = 0

is μ̄ = 0 due to LICQ. Therefore,

D∗NK (x̄,ȳ)(0, 0)(b) = (∇q(ȳ))T (B1 × · · · × Bs), (31)

where, for i = 1, . . . , #I+(ȳ, λ̄) (so that λ̄i > 0),

Bi = D∗N{0} (0, 0) (∇qi (ȳ)b) =
{

R if ∇qi (ȳ) b = 0
∅ else

,

and, for i = #I+(ȳ, λ̄) + 1, . . . , s (so that λ̄i = 0),

Bi = D∗NR− (0, 0) (∇qi (ȳ)b) =
{ {0} if ∇qi (ȳ) b < 0

R+ if ∇qi (ȳ) b ≥ 0
.

By comparison, it follows that Ai = Bi for all i . Now, combining (30) and (31) yields
the assertion. ��
The following example illustrates some advantages of the conditions in Theorem 3.4.

Example 3.2 Consider the MPEC

minimize −x + 4y3
subject to

0 ∈ y −
⎛

⎝

1
0
x

⎞

⎠ + NΓ (y), x ∈ R, y ∈ R
3,

(32)

where

Γ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

y ∈ R
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

⎛

⎜

⎜

⎜

⎝

y2
1 + y1 − y3

y2
1 − y1 − y3

y2
2 + y2 − y3

y2
2 − y2 − y3

⎞

⎟

⎟

⎟

⎠

∈ R
4−

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (33)

123



126 R. Henrion et al.

Fig. 1 Illustration of the feasible set Γ defined by (33) and of the critical cone K (x̄, ȳ)

(see Fig. 1). It can easily be seen that (x̄, ȳ) = (−1, 0, 0, 0) is a solution of (32).
This problem satisfies all assumptions imposed in Theorem 3.4. In particular, MFCQ
and CRCQ are fulfilled for Γ . Since, however, LICQ is violated, a straightforward
application of the standard M-stationarity condition (29) is not possible because the
coderivative D∗NΓ (ȳ,−F(x̄, ȳ)) in (29) is hard to evaluate exactly. Note that also
condition (13) is violated so that Theorem 3.1 cannot be applied. Clearly, the KKT
conditions (7) are fulfilled with λ̄ = (1, 0, 0, 0),

∇x F(x̄, ȳ) =
⎛

⎝

0
0

−1

⎞

⎠ , ∇yL(x̄, ȳ, λ̄) =
⎛

⎝

3 0 0
0 1 0
0 0 1

⎞

⎠ ,

and

K (x̄, ȳ) = {v ∈ R
3|v1 = v3, v2 ≤ v3, −v2 ≤ v3}. (34)

Since the equalities and inequalities in (34) fulfill the LICQ at (0, 0, 0), we can invoke
(4) and deduce that for all b ∈ R

3

D∗NK (x̄,ȳ)(0, 0)(b) =
⎛

⎝

1 0 0
0 1 −1

−1 −1 −1

⎞

⎠ (A1 × A2 × A3),

where

A1 =
{

R if b1 = b3
∅ else

A2 =
{

R+ if b2 ≥ b3
{0} else

A3 =
{

R+ if b2 + b3 ≤ 0
{0} else.

.

Conditions (27) take the form

b3 = −1, 0 ∈
⎛

⎝

0
0
4

⎞

⎠ +
⎛

⎝

3 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝

b1
b2
b3

⎞

⎠ +
⎛

⎝

d1
d2 − d3

−d1 − d2 − d3

⎞

⎠
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with di ∈ Ai (i = 1, 2, 3). These conditions are fulfilled, e.g., with

b̄ = (−1, 0,−1)T , d̄ = (3, 0, 0)T .

Alternatively, one might be tempted to apply [12, Theorem 3.1] to the associated
“enhanced” MPEC

minimize −x + 4y3
subject to

0 ∈ y −
⎛

⎝

1
0
x

⎞

⎠ + (∇q (y))T λ, (λ, q (y)) ∈ Gr N
R

4+ ,

(35)

at the “enhanced” solution (x̄, ȳ, λ̄) [where q is specified in (33)]. It turns out, however,
that the qualification condition of this statement is violated. Another option would be
to apply the upper estimate of D∗S(x̄, ȳ) along the lines of [11, Theorem 3.1]. This,
however, would require the verification of a calmness condition whose validity is not
evident in this example.

We note that in the previous example one could easily calculate the coderivative
D∗NK (x̄,ȳ)(0, 0) because the small dimension of m = 3 led to LICQ being satisfied
for the critical cone K (x̄, ȳ) at 0 even if LICQ was violated for Γ . This can no longer
be expected in larger dimension. In that case, LICQ may be violated for K (x̄, ȳ) too,
thus prohibiting the application of transformation formula (4). Nonetheless, one may
fall back on a transformation formula for coderivatives working in the polyhedral case
without any constraint qualification [7, Proposition 3.2]. Specifying this formula to
the case of the polyhedral critical cone K (x̄, ȳ), one would arrive at the following
formula:

D∗NK (x̄,ȳ)(0, 0)(b) =

⎧

⎪

⎨

⎪

⎩

d

∣

∣

∣

∣

∣

∣

∣

(d,−b) ∈
⋃

I+(ȳ,λ̄)⊆I1⊆I2⊆I (ȳ),CI2 �=∅
AI1,I2 × A0

I1,I2

⎫

⎪

⎬

⎪

⎭

,

where

AI1,I2 : =
⎧

⎨

⎩

∑

i∈I2

μi∇T qi (ȳ)

∣

∣

∣

∣

∣

∣

μi ≥ 0 (i ∈ I2\I1)

⎫

⎬

⎭

CI2 : = {v|∇qi (ȳ)v = 0 (i ∈ I2), ∇qi (ȳ)v < 0 (i ∈ I (ȳ) \I2)} .

4 When S is not directionally differentiable

Consider again Γ given by (5) and assume that all functions qi are convex. Our first
aim in this section is the computation of N̂Gr NΓ at a pair (ȳ, v̄) ∈ Gr NΓ . Let K denote
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the critical cone to Γ at ȳ with respect to v̄, i.e.,

K = TΓ (ȳ) ∩ {v̄}⊥.

Proposition 4.1 Let v̄ ∈ NΓ (ȳ) and assume that both MFCQ and CRCQ hold at ȳ.
Further, let λ be an arbitrary multiplier satisfying conditions

v̄ =
s

∑

i=1

λi∇qi (ȳ), λ ≥ 0, 〈q(ȳ), λ〉 = 0. (36)

Then

N̂Gr NΓ (ȳ, v̄) =
{

(

y∗, v∗) ∈ R
m × R

m |y∗ +
(

s
∑

i=1

λi∇2qi (ȳ)

)

v∗ ∈ K0, v∗ ∈ K
}

. (37)

Proof Put x̄ = ȳ + v̄ and consider the graph of the projection mapping on Γ denoted
by PΓ , at (x̄, ȳ). A straightforward application of Corollary 3.2 to the GE

x ∈ y + NΓ (y)

yields the formula

N̂Gr PΓ (x̄, ȳ) =
{

(

x∗, y∗) ∈ R
m × R

m |x∗ ∈ K, y∗ + AT x∗ ∈ K0
}

,

where A = I + ∑s
i=1 λi∇2qi (ȳ). Next we observe that

(y, v) ∈ Gr NΓ ⇐⇒ (y + v, y) ∈ Gr PΓ .

This allows us to invoke [10, Theorem 1.66], according to which

N̂Gr NΓ (ȳ, v̄) =
[

I I
I 0

]

N̂Gr PΓ (ȳ + v̄, ȳ)

=
{

(

y∗, v∗) ∈ R
m × R

m |y∗ − v∗ + AT v∗ ∈ K0, v∗ ∈ K
}

,

which leads directly to (37). The statement has been established. ��
By invoking [10, Theorem 1.66] once more, we can now compute the desired reg-

ular coderivative of the solution mapping to (1) without assuming condition (ii) of
Theorem 2.2.

Theorem 4.1 Consider the GE (1) with Γ given by (5), where all functions qi are con-
vex. Let (x̄, ȳ) ∈ Gr S and assume that Γ fulfills MFCQ and CRCQ at ȳ. Furthermore,
suppose that ∇x F(x̄, ȳ) is surjective. Then, formula (20) holds true.
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Proof Clearly, by the surjectivity of ∇x F(x̄, ȳ), one has for all y∗ ∈ R
m

D̂∗S(x̄, ȳ)(y∗) =
{

(∇x F(x̄, ȳ))T b
∣

∣

∣

0 = y∗ + a + (∇y F(x̄, ȳ)
)T

b, (a,−b) ∈ N̂Gr NΓ (ȳ,−F(x̄, ȳ))
}

.

The rest follows from (37) by putting v̄ = −F(x̄, ȳ) and from the fact that K =
K (x̄, ȳ), given by (9). ��
Let us point out the difference in the assumptions of Theorems 3.1 and 4.1. While
in the latter the Strong Second-Order Sufficient Condition is not imposed, one has
to pay the price of requiring the convexity of all functions qi independently of F .
Moreover, the surjectivity of ∇x F(x̄, ȳ) cannot be replaced by the weaker condition
(13) as imposed in Theorem 3.1. When (1) amounts to KKT conditions of a parametric
NLP, then, roughly speaking, Theorem 3.1 requires a kind of strong convexity of the
objective, whereas Theorem 4.1 needs a convex constraint set.

On the basis of Theorem 4.1 we immediately obtain necessary optimality conditions
for the MPEC

min{ f (x, y) | 0 ∈ F(x, y) + NΓ (y)}, (38)

where one does not have any non-equilibrium constraints.

Theorem 4.2 Let (x̄, ȳ) be a (local) solution of the MPEC (38), where f :Rn ×R
m →

R is continuously differentiable near (x̄, ȳ) and the GE fulfills all assumptions made
in Theorem 4.1. Then, there is an MPEC multiplier b̄ ∈ −K (x̄, ȳ) such that

0 = ∇x f (x̄, ȳ) + (∇x F(x̄, ȳ))T b̄ (39)

0 ∈ ∇y f (x̄, ȳ) + (∇yL(x̄, ȳ, λ̄)
)T

b̄ + K 0(x̄, ȳ), (40)

where λ̄ is an arbitrary multiplier satisfying conditions (7) with (x, y) = (x̄, ȳ).

Proof The statement follows immediately from the standard optimality condition

0 ∈ ∇ f (x̄, ȳ) + N̂Gr S(x̄, ȳ)

by virtue of Theorem 4.1. ��
These conditions correspond to the notion of S-stationarity as introduced in [20]. Their
nature is illustrated by the next example.

Example 4.1 Consider the bilevel program

minimize y3 − 0.5 x3
x1

subject to
0 ∈ x + NΓ (y), x, y ∈ R

3,

(41)
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where Γ is given in Example 3.2. Observe that the GE in (41) represents the necessary
and sufficient optimality conditions of the NLP

min{〈x, y〉 |y ∈ Γ }.

It can be easily verified that x̄ = (−1, 0, 1) , ȳ = 0 is a local solution to (41). Note
that the results of Sect. 3 are not applicable because assumption (ii) of Theorem 2.2
is violated. On the other hand, all assumptions of Theorem 4.2 are fulfilled. Clearly,
the equality

0 = x̄ +
4

∑

i=1

λi∇qi (ȳ)

holds, for instance, with λ̄1 = 1, λ̄2 = λ̄3 = λ̄4 = 0. Conditions (39), (40) attain the
form

0 =
⎛

⎝

0.5
0

0.5

⎞

⎠ + b̄; 0 ∈
⎛

⎝

0
0
1

⎞

⎠ +
⎛

⎝

2 0 0
0 0 0
0 0 0

⎞

⎠ b̄ + K 0(x̄, ȳ). (42)

Since b̄ := (−0.5, 0,−0.5)T belongs to −K (x̄, ȳ) and the second condition in (42)
is fulfilled as well, the pair (x̄, ȳ) satisfies the optimality condition of Theorem 4.2.

5 Conclusions

We have considered a of GEs with non-polyhedral constraint sets given by inequal-
ities under MFCQ, CRCQ and various additional conditions. In this setting we have
provided an exact formula for the regular coderivative of the respective solution map
and, under weakened assumptions, a tight upper estimate of it. These results have been
utilized in various types of MPECs and lead to various new sharp necessary optimality
conditions. Some of them (e.g., Theorem 4.2) are related to the notion of S-stationa-
rity and extend thus the available results for equilibria governed by complementar-
ity problems. The conditions of Theorem 3.4, however, are closer to the notion of
M-stationarity and eliminate possible problems with qualification conditions arising
in the standard approach (cf., e.g., [12,21]) in the absence of LICQ. Finally, we would
like to stress the fact that many of the previous results concerning formulae for the
coderivative of the solution mapping to GEs of the type considered here are formu-
lated as inclusions in which the larger set is expressed as the union over all (Lagrange)
multipliers, which in the absence of LICQ can result in a poor estimate of the true
expression. The advantage of the results here is then evident, as only one multiplier is
required.
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