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Abstract The paper presents a general primal space classification scheme of nec-
essary and sufficient criteria for the error bound property incorporating the exist-
ing conditions. Several primal space derivative-like objects – slopes – are used to
characterize the error bound property of extended-real-valued functions on metric
sapces.

1 Introduction

In this paper f is an extended-real-valued function on a metric space X , f (x̄) = 0,
S f := {x ∈ X | f (x) ≤ 0}, and f+(x) := max( f (x),0). We are looking for characteri-
zations of the error bound property.

Definition 1. f has a local error bound at x̄ if there exists a c > 0 such that

d(x,S f ) ≤ c f+(x) for all x near x̄. (1)

For the summary of the theory of error bounds and its various applications, the
reader is referred to the survey papers [2, 5, 9, 10], as well as the book [1]. Recent
extensions to vector-valued functions can be found in [3].
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Property (1) can be equivalently defined in terms of the error bound modulus [5]:

Er(x̄) := liminf
x→x̄

f (x)>0

f (x)
d(x,S f )

, (2)

namely, f has a local error bound at x̄ if and only if Er f (x̄) > 0. Constant (2) pro-
vides a quantitative characterization of this property.

2 Slopes

Primal space characterizations of error bounds can be formulated in terms of slopes.
Recall that the (strong) slope [4] of f at x (| f (x)| < ∞) is defined as

|∇ f |(x) := limsup
u→x

( f (x)− f (u))+
d(u,x)

. (3)

The following modifications of (3) can be convenient for characterizing the error
bound property:

|∇ f |0(x̄) = liminf
x→x̄

f (x)− f (x̄)
‖x− x̄‖ , (4)

|∇ f |(x̄) = liminf
x→x̄, f (x)→ f (x̄)

|∇ f |(x), (5)

|∇ f |>(x̄) = liminf
x→x̄, f (x)↓ f (x̄)

|∇ f |(x), (6)

|∇ f |�(x̄) := liminf
x→x̄, f (x)↓ f (x̄)

sup
u �=x

( f (x)− f+(u))+
d(u,x)

. (7)

Constants (4)–(7) are called the internal slope, strict slope, strict outer slope, and
uniform strict slope of f at x̄ respectively.

The relationships between the constants are straightforward.

Proposition 1. (i) |∇ f |(x̄) ≤ |∇ f |>(x̄) ≤ |∇ f |�(x̄).
(ii) |∇ f |(x̄) = (−|∇ f |0(x̄))+.

(iii) |∇ f |0(x̄) ≤ |∇ f |�(x̄).
(iv) If |∇ f |0(x̄) > 0 then |∇ f |0(x̄) = Er f (x̄).

The inequalities in Proposition 1 can be strict.

Example 1. Let f : R → R be defined as follows:

f (x) =
{

0 if x < 0,
x if x ≥ 0.

Obviously |∇ f |(0) = |∇ f |(0) = |∇ f |0(0) = 0. At the same time, |∇ f |>(0) =
|∇ f |�(0) = 1.
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The next example is a modification of the corresponding one in [6].

Example 2. Let f : R → R be defined as follows:

f (x) =

⎧⎪⎨⎪⎩
−x if x ≤ 0,
1
i

if
1

i+ 1
< x ≤ 1

i
, i = 1,2, . . . ,

x if x > 1.

Obviously |∇ f |>(0) = |∇ f |(0) = 0. At the same time, |∇ f |�(0) = |∇ f |0(0) = 1.

The function in the above example is discontinuous. However, the second in-
equality in Proposition 1 (i) can be strict for continuous and even Lipschitz con-
tinuous functions. The function in the next example is piecewise linear and Clarke
regular at 0 (that is, directionally differentiable, and its Clarke generalized direc-
tional derivative coincides with the usual one).

Example 3. Let f : R → R be defined as follows:

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−x if x ≤ 0,

x

(
1 +

1
i

)
− 1

i(i+ 1)
if

1
i+ 1

< x ≤ 1
i+ 1

+
1

(i+ 1)2 , i = 1,2, . . . ,

1
i

if
1

i+ 1
+

1
(i+ 1)2 < x ≤ 1

i
, i = 1,2, . . . ,

x if x > 1.

f is everywhere Fréchet differentiable except for a countable number of points. One
can find a point x > 0 arbitrarily close to 0 with |∇ f |(x) = 0 (on a horizontal part of
the graph). The slopes of non-horizontal parts of the graph decrease monotonously
to 1 as x ↓ 0. It is not difficult to check that |∇ f |>(0)= |∇ f |(0) = 0 while |∇ f |�(0)=
|∇ f |0(0) = 1.

If f is convex then the second inequality in Proposition 1 (i) holds as equality.
For the function f in Example 1, it holds |∇ f |(0) < |∇ f |>(0). In the nonconvex

case one can also have the opposite inequality.

Example 4. Let f : R → R be defined as follows:

f (x) =
{

x if x < 0,
x2 if x ≥ 0.

Obviously |∇ f |(0) = 1 while |∇ f |>(0) = 0. Note that despite slope |∇ f |(0) being
positive, the function in this example does not have a local error bound at 0. Hence,
condition |∇ f |(x̄) > 0 is not in general sufficient for the error bound property to
hold at x̄.
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3 Error bound criteria

The next theorem generalizes and strengthens [5, Theorem 2].

Theorem 1. (i) Er f (x̄) ≤ |∇ f |�(x̄).
(ii) If X is complete and f+ is lower semicontinuous near x̄, then Er f (x̄) = |∇ f |�(x̄).
Proof. (i) If Er f (x̄) = 0 or |∇ f |�(x̄) = ∞, the conclusion is trivial. Let 0 < γ <
Er f (x̄) and |∇ f |�(x̄) < ∞. We are going to show that |∇ f |�(x̄) ≥ γ . By (2), there is
a δ > 0 such that

f (x)
d(x,S f )

> γ. (8)

for any x ∈Bδ (x̄) with f (x) > f (x̄). Take any x∈ Bδ (x̄) with f (x̄) < f (x)≤ f (x̄)+δ
(Such points x exist since |∇ f |�(x̄) < ∞.) By (8), one can find a w ∈ S f such that

f (x)
d(x,w)

> γ.

It follows that |∇ f |�(x̄) ≥ γ .
(ii) Let X be complete and f+ be lower semicontinuous near x̄. Thanks to (i),

we only need to prove that Er f (x̄) ≥ |∇ f |�(x̄). If Er f (x̄) = ∞, the inequality is
trivial. Let Er f (x̄) < γ <∞. Chose a δ > 0 such that f+ is lower semicontinuous on
B(γ−1+1)δ (x̄). Then by (2), there is an x ∈ Bδmin(1/2,γ−1)(x̄) such that

0 < f (x) < γd(x,S f ).

Put ε = f (x). Then f+(x)≤ inf f+ +ε . Applying to f+ the Ekeland variational prin-
ciple with an arbitrary λ ∈ (γ−1ε,d(x,S f )), one can find a w such that f (w) ≤ f (x),
d(w,x) ≤ λ and

f+(u)+ (ε/λ )d(u,w)≥ f+(w), ∀u ∈ B(γ−1+1)δ (x̄). (9)

Obviously,

d(w,x) < d(x,S f ) ≤ d(x, x̄), (10)

d(w, x̄) ≤ d(w,x)+ d(x, x̄) < 2d(x, x̄) ≤ δ ,

f (w) ≤ f (x) < γd(x, x̄) ≤ δ .

Besides, f (w) > 0 due to the first inequality in (10). It follows from (9) that

f (w) ≤ f+(u)+ (ε/λ )d(u,w) ≤ γd(u,w)

for all u ∈ B(γ−1+1)δ (x̄). If u /∈ B(γ−1+1)δ (x̄), then d(u,w) > (γ−1 + 1)δ −d(w, x̄) >

γ−1δ , and consequently
f (w) < δ < γd(u,w)

Thus, in both cases
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sup
u �=w

f (w)− f+(u)
d(u,w)

≤ γ.

This implies the inequality |∇ f |�(x̄) ≤ Er f (x̄). ��
Without lower semicontinuity, the inequality in Theorem 1 (i) can be strict.

Example 5. Let f : R → R be defined as follows:

f (x) =

⎧⎪⎨⎪⎩
−3x if x ≤ 0,

3x− 1
2i if

1
2i+1 < x ≤ 1

2i , i = 0,1, . . . ,

2x if x > 1.

Obviously, Er f (0) = 1 while |∇ f |�(0) = 3.

Example 6. Let f : R2 → R be defined as follows:

f (x1,x2) =

⎧⎪⎪⎨⎪⎪⎩
x1 + x2 if x1 > 0,x2 > 0,
−x1 if x1 > 0,x2 ≤ 0,
−x2 if x2 > 0,x1 ≤ 0,
0 otherwise,

and let R2 be equipped with the Euclidean norm. The function is discontinuous on
the set {(t,0)∈ R2 : t > 0}∪{(0, t)∈ R2 : t > 0}. Then Er f (0) = 2 and |∇ f |�(0) =
3.

In view of Theorem 1, inequality |∇ f |�(x̄) > 0 provides a necessary and sufficient
error bound criterion for lower semicontinuous functions on complete metric spaces.
In a slightly different form, a similar condition for the calmness [q] property of level
set maps first appeared in [8, Proposition 3.4]; see also [7, Corollary 4.3].

Taking into account Proposition 1, inequalities

|∇ f |0(x̄) > 0, |∇ f |(x̄) > 0 and |∇ f |>(x̄) > 0

provide sufficient error bound criteria
The relationships among the primal space error bound criteria are illustrated in

Fig. 1 (X is complete and f+ is lower semicontinuous near x̄).
In Banach spaces, it is possible to formulate corresponding dual space error

bound criteria in terms of subdifferential slopes [5].
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