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Abstract The paper deals with shape optimization of elastic bodies in unilateral
contact. The aim is to extend the existing results to the case of contact problems,
where the coefficient of friction depends on the solution. We consider the two-
dimensional Signorini problem, coupled with the physically less accurate model of
given friction, but assume a solution-dependent coefficient of friction. First, we
investigate the shape optimization problem in the continuous, infinite-dimensional
setting, followed by a suitable finite-dimensional approximation based on the finite-
element method. Convergence analysis is presented as well. Next, an algebraic form
of the state problem is studied, which is obtained from the discretized problem by
further approximating the frictional term by a quadrature rule. It is shown that if
the coefficient of friction is Lipschitz continuous with a sufficiently small modulus,
then the algebraic state problem is uniquely solvable and its solution is a Lipschitz
continuous function of the control variable, describing the shape of the elastic body.
For the purpose of numerical solution of the shape optimization problem via the
so-called implicit programming approach we perform sensitivity analysis by using
the tools from the generalized differential calculus of Mordukhovich. The paper is
concluded first order optimality conditions.
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1 Introduction

Shape optimization is a special branch of optimal control theory in which control
variables are related to the geometry of optimized systems. The present paper
deals with a particular problem of the so-called contact shape optimization, i.e. the
optimization of loaded structures composed from several deformable bodies being
in a mutual contact. Due to non-penetration and friction conditions prescribed on
contact parts, the mathematical models characterizing the behavior of such structures
lead to variational inequalities whose solutions represent equilibrium states of the
structure. A common feature of such problems is the fact that the control-to-state
mappings are not of the class C1 but only Lipschitz continuous functions of their
variables. In simple situations such as frictionless contact problems or problems
with the so-called given friction (both having a unique solution), the respective
solution maps are directionally differentiable (see [20] for continuous setting and
[5] for discrete problems). If, however, more realistic model of friction such as the
one obeying the Coulomb law is considered, the situation becomes more involved
since the state relations are now represented by implicit variational inequalities. The
present paper deals with shape optimization in contact problems with given friction
but with the coefficient of friction which depends on the solution, i.e. the case which
also leads to an implicit variational inequality. We present a complex study of this
problem: from the existence analysis of its continuous setting over its approximation
and convergence analysis up to sensitivity analysis of the discrete model.

For stability analysis it is convenient to model the respective algebraic problem
as a variational inequality. When this equilibrium arises, however, as a constraint in
a finite-dimensional optimization problem, we prefer to model it via a generalized
equation (GE). The reason is that this model enables us an efficient treatment via
the generalized differential calculus of B. Mordukhovich which will be our main tool
in this part of the paper. A similar situation arises in discretized contact problems
with Coulomb friction, cf. [1] and [2]. The GE considered here differs, however,
considerably from the corresponding GE in the case of 2D contact problems with
Coulomb friction. Indeed, its multivalued part is not polyhedral and depends also
on the design variable. This makes the analysis substantially more complicated.
Nevertheless, under standard assumptions we have succeeded to verify the respective
qualification conditions and arrived at a sharp estimate of a subdifferential of
the composite objective, resulting from the payoff in the mentioned optimization
problem and the considered control-to-state mapping. This enables us

(i) to solve this optimization problem via a suitable method of nondifferentiable
optimization, and

(ii) to derive 1st-order necessary optimality conditions.
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The numerical tests associated with (i) have been, however, postponed to a next
paper devoted to this subject.

The paper is organized as follows. At the beginning of Section 2 we introduce the
geometrical and mechanical setting of our state problem, the 2D Signorini problem
with given friction and a solution-dependent coefficient of friction. After recalling
results from [8] concerning the solvability of the state problem, we define the shape
optimization problem and prove its solvability. Section 3 is devoted to the approx-
imation of the optimal shape design problem by developing an appropriate finite
element discretization of the state problem. Existence of discrete optimal shapes
is established in this section. A natural question to ask is how the solutions of the
discrete problems relate to the continuous problem as the discretization parameter
h tends to 0. This issue is treated in Section 4. Thereafter in Section 5 the algebraic
formulation of the state problem is presented. Unfortunately, it is not equivalent to
the discretized problem from Section 3, due to approximating the friction term by
a quadrature formula. Therefore, properties of its solution are also investigated in
detail. The respective shape optimization problem (using the reduced form of the
algebraic state problem) amounts to a Mathematical Program with Equilibrium Con-
straints (MPEC), which is treated by the so-called implicit programming approach
(cf. [13]). In particular, Section 6 deals with the computation of Clarke’s subgradients
of the composite objective functional by means of the generalized differential
calculus of Mordukhovich. We conclude the paper with establishing first order
optimality conditions for our MPEC.

Throughout the paper we use the following notation: the symbol Hk(�) (k ≥ 0
integer) stands for the Sobolev space of functions which are together with their
derivatives up to order k square integrable in �, i.e. elements of L2(�) (we set
H0(�) ≡ L2(�)). The norm in Hk(�) will be denoted by ‖ · ‖k,�. Vector functions
and the respective spaces of vector functions will be denoted by bold characters. Bold
characters will be used also for vectors in R

n, where we will assume the euclidean
scalar product 〈·, ·〉n and norm ‖ · ‖n, respectively. For a set A ⊂ X, A stands for the
closure of A with respect to the topology of X. For X = R

n and x̄ ∈ A we denote by
̂NA(x̄) the Fréchet (regular) normal cone to A at x̄:

̂NA (x̄) :=
{

x∗ ∈ R
n
∣

∣

∣ lim sup
x

A−→x̄

〈x∗, x − x̄〉n

‖x − x̄‖n
≤ 0

}

,

whereas the limiting (Mordukhovich) normal cone to A at x̄ will be denoted by
NA(x̄):

NA (x̄) := Lim sup
x

A−→x̄

̂NA(x).

Here the symbol “Lim sup” stands for the Kuratowski–Painlevé outer limit of sets
(cf. [19]). Given a multifunction Q : R

n ⇒ R
m, we denote its graph by Gr Q :=

{ (x, y) ∈ R
n × R

m | y ∈ Q(x) }. At a reference point (x̄, ȳ) ∈ Gr Q the regular coderiv-
ative of Q is given by the multifunction ̂D∗ Q(x̄, ȳ) : R

m ⇒ R
n, which is defined as

follows:

̂D∗ Q
(

x̄, ȳ
) (

y∗) := { x∗ ∈ R
n | (x∗, −y∗) ∈ ̂NGr Q

(

x̄, ȳ
) }

.
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Analogously, the multifunction D∗ Q(x̄, ȳ) : R
m ⇒ R

n, defined by

D∗ Q
(

x̄, ȳ
) (

y∗) := { x∗ ∈ R
n | (x∗, −y∗) ∈ NGr Q

(

x̄, ȳ
) }

is called the limiting (Mordukhovich) coderivative of Q at (x̄, ȳ). Further, we will
employ another important notion from the theory of generalized differentiation,
namely that of calmness: a multifunction Q is said to be calm at (x̄, ȳ) ∈ Gr Q
provided ∃L > 0 ∃ neighbourhoods U , V of x̄, ȳ, respectively, such that:

Q(x) ∩ V ⊂ Q(x̄) + L‖x − x̄‖nBm(0, 1) ∀x ∈ U,

where Bm(0, 1) stands for the closed unit ball in R
m, centered at the origin.

2 Shape Optimization Problem: Continuous Setting

This section starts with the formulation of the state problem. Let an elastic body be
represented by a domain

� = { (x1, x2) ∈ R
2 | x1 ∈ (a, b), α(x1) < x2 < γ

}

(1)

and denote

�c = { (x1, x2) ∈ R
2 | x1 ∈ (a, b), x2 = α(x1)

}

, (2)

where α : [a, b ] → R
1+ is a non-negative, Lipschitz continuous function; −∞ < a <

b < ∞, γ > 0 given. The boundary ∂� will be split into three non-empty, disjoint
parts �P, �u and �c (given by (2)) with different boundary conditions: on �u the
body is fixed, while surface tractions of density P = (P1, P2) act along �P. On �c,
representing the contact part of ∂�, the body will be unilaterally supported by a rigid
foundation S = { (x1, x2) ∈ R

2 | x2 ≤ 0 }. In this case the non-penetration conditions
on �c read as follows:

u2 (x1, α (x1)) ≥ −α(x1), T2(u)(x1, α(x1)) ≥ 0,

(u2 (x1, α (x1)) + α (x1)) T2 (u) (x1, α (x1)) = 0

}

for x1 ∈ (a, b). (3)

Here u = (u1, u2) : � → R
2 is a displacement vector, T(u) = (T1(u), T2(u)) : ∂� →

R
2 is the stress vector associated with u. In addition to (3) we shall consider effects of

friction between � and S. We use the friction law of Tresca type, i.e. with an a-priori
given slip bound g : �c → R+, but with a coefficient of friction F which depends on
the solution. Thus the friction conditions on �c read as follows:

u1 = 0 =⇒ |T1(u)| ≤ F (0)g

u1 �= 0 =⇒ T1(u) = −sgn(u1)F (|u1|)g

}

on �c. (4)

Finally, � will be subject to body forces of density F = (F1, F2). The equilibrium
state of � is characterized by a displacement vector u which satisfies the system of
the linear equilibrium equations in �, the classical boundary conditions on �P, �u

and the unilateral and friction conditions (3) and (4), respectively on �c.
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To give the weak form of this problem we first introduce the following function
spaces:

V = { v ∈ H1(�) | v = 0 on �u
}

V = V × V

}

(5)

and the closed, convex set K ⊂ V of kinematically admissible displacements:

K = { v = (v1, v2) ∈ V | v2 (x1, α (x1)) ≥ −α(x1) a.e. in (a, b) } . (6)

Further let a : V × V → R and L : V → R be defined by

a(u, v) =
∫

�

τij(u)εij(v) dx

L(v) =
∫

�

Fivi dx +
∫

�P

Pivi ds, F ∈ L2(�), P ∈ L2(∂�), (7)

where τ(u) = (τij(u)
)2

i, j=1, ε(u) = (εij(u)
)2

i, j=1 is the stress tensor and the linearized
strain tensor, respectively corresponding to u. The constitutive law between τ(u) and
ε(u) is given by linear Hooke’s law:

τij(u) = cijklεkl(u). (8)

The elasticity coefficients cijkl ∈ L∞(�̂
)

satisfy the usual symmetry and ellipticity
conditions in �̂:

cijkl = c jikl = cklij a.e. in �̂ ∀i, j, k, l = 1, 2

∃Cell > 0 : cijkl(x)ξijξkl ≥ Cellξijξij a.a. x ∈ �̂ ∀ξij = ξ ji ∈ R,

⎫

⎬

⎭

(9)

where �̂ ⊃ � is a given domain whose choice will be specified later. Recall that the
components of the stress vector T(u) are given by Ti(u) = τij(u)n j, i = 1, 2, where
n = (n1, n2) is the unit outward normal vector to ∂�.

The function F : R+ → R+ in (4) is assumed to be continuous and bounded
in R+.

Definition 1 By a weak solution to the Signorini problem with Tresca model of
friction and a solution dependent coefficient of friction F we mean any u ∈ K solving
the following implicit variational inequality:

a(u, v − u) +
∫

�c

F (|u1|)g (|v1| − |u1|) ds ≥ L(v − u) ∀v ∈ K. (P)

From Green’s formula it easily follows that (P) is formally equivalent to the
classical formulation, in particular we recover (3) and (4).

The following existence and uniqueness results have been established in [8].

Theorem 1 Let the slip bound g ∈ L2(�c), g ≥ 0 on �c. Then (P) has at least one
solution.
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Theorem 2 Let g ∈ L∞(�c), g ≥ 0 on �c and let the coef f icient of friction be Lipschitz
continuous in R+:

∃CL > 0 : |F (x) − F (x̄)| ≤ CL|x − x̄| ∀x, x̄ ∈ R+.

If

0 < CL‖g‖0,∞,�c <
CellCK

C2
tr

, (10)

where Cell is the constant from (9), CK is the constant in Korn’s inequality and Ctr is
the norm of the trace mapping H1(�) → L2(�c), then (P) has a unique solution.

Up to now the function α defining the contact part �c of the boundary was fixed.
From now on we shall consider α to be a design variable by means of which one
can change the shape of �. To emphasize the fact that our state problem (P) is
now parametrized by α, we shall write α as the argument. Thus we shall use the
following notation: �(α), �c(α), V(α), K(α), etc. instead of �, �c, V, K, etc. Similarly,
the bilinear form a and the linear term L on �(α) will be denoted by aα and Lα ,
respectively.

In what follows we shall restrict ourselves to α belonging to the admissible set Uad

defined by

Uad = {

α ∈ C1,1([a, b ]) | 0 ≤ α ≤ C0 in [a, b ],
|α(x) − α(x̄)| ≤ C1|x − x̄| ∀x, x̄ ∈ [a, b ],
|α′(x) − α′(x̄)| ≤ C2|x − x̄| ∀x, x̄ ∈ [a, b ],
meas �(α) = C3

}

, (11)

i.e. Uad contains all functions which are together with their first derivatives Lipschitz
equi-continuous in [a, b ] and preserve the constant area of �(α). We shall suppose
that the constants C0, C1, C2 and C3 are chosen in such a way that Uad �= ∅.

Remark 1 Since most of the results in the subsequent parts is valid for a larger class
of admissible functions we introduce the set

Qad = {

α ∈ C0,1([a, b ]) | 0 ≤ α ≤ C0 in [a, b ],
|α(x) − α (x̄) | ≤ C1|x − x̄| ∀x, x̄ ∈ [a, b ],
meas �(α) = C3

} ⊃ Uad, (12)

with the same C0, C1 and C3 as in (11).

The set O of admissible shapes is defined by

O = { �(α) | α ∈ Uad } (13)

with �(α) as in (1). Here and in what follows we take �̂=(a, b)×(0, γ )⊃�(α) ∀α∈
Uad, where γ > 0 is from (1). In the sequel we shall suppose that F ∈ L2(�̂), P ∈
L2(∂�̂) and (9) holds for this choice of �̂. Finally, the slip bound g on �c(α) will be
assumed to be the trace on �c(α) of a function g ∈ H1(�̂), g ≥ 0 a.e. in �̂.
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Let I : 
 → R, where 
 = { (α, y) | α ∈ Qad, y ∈ V(α) } be a cost functional and
denote

G = { (α, u) | α ∈ Uad, u solves (P(α))
} ⊂ 
 (14)

the graph of the respective control-to-state mapping S, which is multivalued, in
general.

Definition 2 A domain �(α∗) ∈ O is said to be optimal iff a pair (α∗, u∗) solves the
following problem:

Find
(

α∗, u∗) ∈ G such that:

I
(

α∗, u∗) ≤ I(α, u) ∀(α, u) ∈ G .

}

(P)

To prove the existence of optimal shapes we first introduce convergence of
domains belonging to O . Let �n := �(αn), � := �(α), αn, α ∈ Uad, n = 1, 2, . . . We

say that {�n} tends to � and write �n
O−→ � iff αn → α in C1([a, b ]).

Since different functions have different domains of definition, we shall need their
extension to the common domain �̂: let v ∈ H1(�(α)) for some α ∈ Qad. Its extension
from �(α) to �̂ will be denoted by ṽ, i.e. ṽ ∈ H1(�̂), ṽ|�(α) = v on �(α) and

∃c > 0 : ‖ṽ‖1,�̂ ≤ c‖v‖1,�(α) ∀v ∈ H1(�(α)). (15)

Denote

M = { �(α) | α ∈ Qad } ⊃ O . (16)

Domains belonging to M possess the uniform extension property hence the constant
c in (15) can be chosen to be independent of α ∈ Qad (see [3]).

Convention From now on the symbol “ ˜ ” above a function v ∈ H1(�(α)) denotes
its extension on �̂ satisfying (15) with c > 0 independent of α ∈ Qad.

The main result of this section is the following existence theorem.

Theorem 3 Let the cost functional I be lower semicontinuous in the following sense:

�n
O−→ �, �n, � ∈ O

yn ⇀ y in H1(�̂), yn, y ∈ H1(�̂)

⎫

⎬

⎭

=⇒ lim inf
n→∞ I

(

αn, yn|�n

) ≥ I
(

α, y|�
)

. (17)

Then (P) has a solution.

The crucial role in the proof of Theorem 3 plays the following compactness result.

Lemma 1 The set G is compact in the following sense:

∀ {(αn, un)} ⊂ G ∃{(αn j, un j)} ⊂ {(αn, un)} ∃(α, u) ∈ G :
αn j → α in C1([a, b ]), ũn j ⇀ ũ in H1(�̂), j → ∞.
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Proof Let {(αn, un)} ⊂ G be given. Without loss of generality we may assume that
αn → α ∈ Uad in C1([a, b ]) as follows from the Arzelà–Ascoli theorem and the
definition of Uad. Arguing as in [5, Lemma 7.2] one can show that {ũn} is bounded in
H1(�̂) so that for an appropriate subsequence {ũn j} ⊂ {ũn} we have ũn j ⇀ ũ in H1(�̂).
Moreover ũ|�(α) ∈ K(α).

It remains to show that (α, ũ|�(α)) ∈ G . Let ξ ∈ K(α). Then one can find a sequence
{ξl} ⊂ H1(�̂) such that ξl → ξ̃ in H1(�̂) and for every l ∈ N there exists n0(l) ∈ N such
that ξl|�n ∈ K(αn) ∀n ≥ n0(l) (see [5]). Let l ∈ N be fixed. Since ξl|�n j

∈ K(αn j) for j
large enough, the definition of (P(αn j)) yields:

aαn j

(

un j, ξl − un j

)+
∫

�c

(

αn j

)
F
(|un j1|

)

g
(|ξl1| − |un j1|

)

ds ≥ Lαn j

(

ξl − un j

)

. (18)

We now pass to the limit first with j → ∞ and then with l → ∞ in (18). The limit
passage in the first and the third term has been already done in [5]:

lim
l→∞

(

lim sup
j→∞

aαn j

(

un j, ξl − un j

)

)

≤ aα

(

ũ, ξ − ũ
)

lim
l→∞

(

lim inf
j→∞

Lαn j

(

ξl − un j

)

)

≥ Lα

(

ξ − ũ
)

. (19)

To complete the proof we show that

lim
l→∞

(

lim
j→∞

∫

�c

(

αn j

)
F
(|un j1|

)

g
(|ξl1| − |un j1|

)

ds

)

=
∫

�c(α)

F (|ũ1|) g (|ξ1| − |ũ1|) ds.

(20)
Denote the integral on the left of (20) as I( j). Then

I( j) :=
∫ b

a
F
(|un j1 ◦ αn j|

)

g ◦ αn j

(|ξl1 ◦ αn j| − |un j1 ◦ αn j|
)

√

1 +
(

α′
n j

)2
dx1

=
∫ b

a
F
(|un j1 ◦ αn j|

)

g ◦ α (|ξl1 ◦ α| − |u1 ◦ α|)
√

1 +
(

α′
n j

)2
dx1

+
∫ b

a
F
(|un j1 ◦ αn j|

) (

g ◦ αn j|ξl1 ◦ αn j| − g ◦ α|ξl1 ◦ α|)
√

1 +
(

α′
n j

)2
dx1

−
∫ b

a
F
(|un j1 ◦ αn j|

) (

g ◦ αn j|un j1 ◦ αn j| − g ◦ α|u1 ◦ α|)
√

1 +
(

α′
n j

)2
dx1

=: I( j)
1 + I( j)

2 − I( j)
3 .

Next we show that I( j)
3 → 0, j → ∞. From the definition of Uad and the fact that

max
x∈R+

F (x) ≤ F for some F > 0 we obtain:

∣

∣I( j)
3

∣

∣ ≤ F
√

1 + C2
1

∫ b

a
g ◦ αn j

(|un j ◦ αn j| − g ◦ α|u1 ◦ α|)dx1.
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Adding and subtracting the term g ◦ αn j|u1 ◦ α| we have:

∣

∣I( j)
3

∣

∣ ≤ F
√

1 + C2
1

(‖g ◦ αn j‖L2(a,b)‖un j1 ◦ αn j − u1 ◦ α‖L2(a,b)

+ ‖u1 ◦ α‖L2(a,b)‖g ◦ αn j − g ◦ α‖L2(a,b)

)

≤ F
√

1 + C2
1

(

Ĉtr‖g‖1,�̂‖un j1 ◦ αn j − u1 ◦ α‖L2(a,b)

+ ‖u1 ◦ α‖L2(a,b)‖g ◦ αn j − g ◦ α‖L2(a,b)

)

where Ĉtr is the norm of the trace mapping H1(�̂) → L2(a, b) and it can be
estimated independently of α ∈ Uad (see [18, Theorem A.4]). Since ‖un j1 ◦ αn j − u1 ◦
α‖L2(a,b) → 0, ‖g ◦ αn j − g ◦ α‖L2(a,b) → 0, j → ∞ (see [18, Lemma 2.1]) we obtain

that I( j)
3 → 0, j → ∞.

Similarly one can show that I( j)
2 → 0, j → ∞. Finally, from the Lebesgue domi-

nated convergence theorem and the fact that αn j → α in C1([a, b ]) we arrive at

I( j)
1 −→

j→∞

∫

�c(α)

F (|u1|)g(|ξl| − |u1|) ds −→
l→∞

∫

�c(α)

F (|u1|)g(|ξ | − |u1|) ds.

From this and (19) we arrive at the assertion of Lemma 1. ��

Proof (Theorem 3) It follows from (17) and Lemma 1. ��

From Theorem 2 we know that the solution of (P(α)) is unique provided that
(10) is satisfied. All the constants appearing on the right of (10) can be chosen
independently of α ∈ Uad. In particular, for the constant CK in Korn’s inequality
this property has been proven in [16]. Thus one can establish sufficient conditions
independent of α ∈ Uad under which (P(α)) has a unique solution.

3 Discretization of (P)

In this section we shortly describe a discretization of problem (P) by using a piecewise
linear approximation of Uad and a finite element approximation of the state problem.

Let d ≥ 1 be a given integer and set h := (b − a)/d. By δh we denote the equidis-
tant partition of [a, b ]:

δh : a ≡ a0 < a1 < · · · < ad(h) ≡ b , a j = a + jh, j = 0, . . . , d. (21)

With any δh we associate the set Uh
ad defined by

Uh
ad : = {

αh ∈ C([a, b ]) | αh|[ai−1,ai] ∈ P1([ai−1, ai]) ∀i = 1, . . . , d,

0 ≤ αh(ai) ≤ C0 ∀i = 0, . . . , d,

|αh(ai) − αh(ai−1)| ≤ C1h ∀i = 1, . . . , d,

|αh(ai+1) − 2αh(ai) + αh(ai−1)| ≤ C2h2, ∀i = 1, . . . , d − 1,

meas �(αh) = C3
}

, (22)
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where C0, . . . , C3 are the same as in (11). Notice that Uh
ad ⊂ Qad but Uh

ad �⊂ Uad, i.e.
Uh

ad is the external approximation of Uad. We denote the set of all discrete admissible
shapes by

Oh := {�(αh) |αh ∈ Uh
ad

}

(23)

with �(αh) defined by (1) replacing α by αh.
Since �(αh) is a polygonal domain, one can construct its triangulation T (h, αh)

whose nodes lie on the lines {ai} × R+, i = 0, . . . , d for ∀αh ∈ Uh
ad.

Let h > 0 be fixed. Next we shall use the system {T (h, αh)}, αh ∈ Uh
ad which

consists of topologically equivalent triangulations, i.e.

(T 1) the number of the nodes in T (h, αh) as well as the neighbours of each triangle
from T (h, αh) are the same for all αh ∈ Uh

ad;
(T 2) the position of the nodes of T (h, αh) depends continuously on changes of

αh ∈ Uh
ad;

(T 3) the triangulations T (h, αh) are compatible with the decomposition of ∂�(αh)

into �c(αh), �P(αh) and �u(αh) for any h > 0 and any αh ∈ Uh
ad.

In order to establish convergence results we shall also need:

(T 4) the system {T (h, αh)} is uniformly regular with respect to h > 0 as well as
αh ∈ Uh

ad, i.e. there exists a constant θ0 > 0 such that

θ(h, αh) ≥ θ0 ∀h > 0 ∀αh ∈ Uh
ad,

where θ(h, αh) denotes the minimal interior angle of all triangles from
T (h, αh).

The domain �(αh) with the triangulation T (h, αh) will be denoted by �h(αh), or
just shortly �h in what follows.

On �h(αh), αh ∈ Uh
ad we construct the following piecewise linear approximations

of V(αh), V(αh) and K(αh):

Vh(αh) := {vh ∈ C
(

�h
) | vh|T ∈ P1(T) ∀T ∈ T (h, αh), vh = 0 on �u(αh)

}

,

Vh(αh) := Vh(αh) × Vh(αh),

and

Kh(αh) := {vh = (vh1, vh2) ∈ Vh(αh) | vh2(ai, αh(ai)) ≥ −αh(ai) ∀ai ∈ Nh},
respectively, where Nh is the set of all contact nodes, i.e. ai ∈ Nh iff (ai, αh(ai)) ∈
�c(αh) \ �u(αh). Observe, that Kh(αh) ⊂ K(αh) ∀h > 0 ∀αh ∈ Uh

ad.
The discrete state problem reads as follows:

Find uh := uh(αh) ∈ Kh(αh) such that:
ah(uh, vh − uh)

+
∫ b

a
F (rh|uh1 ◦ αh|)g ◦ αh (|vh1 ◦ αh| − |uh1 ◦ αh|)

√

1 + (α′
h

)2
dx1

≥ Lh(vh − uh) ∀vh ∈ Kh(αh),

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(Ph(αh))

where rh : C([a, b ]) → C([a, b ]) stands for the piecewise linear Lagrange interpola-
tion operator on δh and ah := aαh , Lh := Lαh .
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As far the existence and uniqueness of solutions to (Ph(αh)) is concerned, the
following results are available.

Theorem 4 Let F be a non-negative, bounded and continuous function in R+. Then
(Ph(αh)) has a solution for any h > 0 and αh ∈ Uh

ad.

Proof See [8]. ��

Theorem 5 Let g ∈ C(�̂), g ≥ 0, and F be non-negative, bounded and Lipschitz
continuous in R+:

|F (x) − F (x̄)| ≤ CL|x − x̄| ∀x, x̄ ∈ R+. (24)

There exists a constant C̄ > 0 such that if

CL‖g‖
C(�̂)

< C̄

then the discrete state problems (Ph(αh)) admit a unique solution for any h > 0 and
any αh ∈ Uh

ad.

The proof and the explicit form of C̄ can be found in [18].
Let

Gh = { (αh, uh) | αh ∈ Uh
ad, uh solves (Ph(αh))

}

be the graph of the discrete, generally multivalued control-to-state mapping. The
discrete shape optimization problem is defined by:

Find
(

α∗
h, u∗

h

) ∈ Gh such that:

I
(

α∗
h, u∗

h

) ≤ I(αh, uh) ∀(αh, uh) ∈ Gh.

}

(Ph)

The standard way of proving the existence of a solution to (Ph) is to use its
algebraic formulation. In our case, however, this formulation is not fully equivalent
to (Ph) since it contains the frictional term evaluated only approximately by using the
numerical integration. To avoid this discrepancy we use the original setting of (Ph).

Modifying the approach from the previous section to the discrete case one can
show that the graph Gh is compact for any h > 0 (for the detailed proof see [18]) so
that the following result is straightforward.

Theorem 6 Let the cost functional I be lower semicontinuous in the following sense:

α
(n)

h → αh in C([a, b ]), α
(n)

h , αh ∈ Uh
ad

y(n) ⇀ y in H1(�̂), y(n), y∈H1(�̂), n→∞
}

=⇒ lim inf
n→∞ I

(

α
(n)

h , y(n)|
�

(n)

h

)

≥ I(α, y|�h),

where �
(n)

h := �h(α
(n)

h ), �h := �h(αh). Then (Ph) has a solution.

4 Convergence Analysis

In this section we shall analyze the mutual relation between solutions to (Ph) and (P)
as h → 0+ aiming to show that the discrete optimal shapes converge in some sense
to an optimal shape in the continuous setting.
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We start by recalling two auxiliary lemmas concerning the relationship of the
discrete admissible sets Uh

ad, h → 0+ and Uad whose proof can be found in [10] (see
also [18]).

Lemma 2 For any α ∈ Uad there exists a sequence {αh}, αh ∈ Uh
ad such that αh → α in

C([a, b ]), h → 0+.

Lemma 3 Let {αh}, αh ∈ Uh
ad be such that αh → α in C([a, b ]), h → 0+. Then α ∈ Uad

and there exists a subsequence {αhm} ⊂ {αh} satisfying:

α′
hm

→ α′ in L∞(a, b), hm → 0+.

We shall also need the following result on the approximation of a function ξ ∈
K(α), α ∈ Uad.

Lemma 4 Let αh → α in C([a, b ]), h → 0+, where αh ∈ Uh
ad, α ∈ Uad and let ξ ∈ K(α)

be given. Then there exists a sequence {ξl} ⊂ H2(�̂) such that

ξl → ξ̃ in H1(�̂), l → ∞ (25)

and ∀l ∈ N ∃h0 := h0(l) > 0 such that

ξl|�(αh) ∈ K(αh) ∀h < h0. (26)

Proof See Lemma 3.1 in [7]. ��

In order to pass to the limit in the frictional term we now prove the following
result.

Lemma 5 Let {αh}, αh ∈ Uh
ad and {vh}, vh ∈ Vh(αh), h → 0+ be such that

αh → α in C([a, b ]) and ṽh ⇀ v in H1(�̂
)

,

where α ∈ Uad and v ∈ H1(�̂). Then

rh|vh ◦ αh| → |v ◦ α| in L2(a, b), h → 0+. (27)

Proof From the triangle inequality

‖rh|vh ◦ αh|− |v ◦ α|‖L2(a,b) ≤ ‖rh|vh ◦ αh|− |vh ◦ αh|‖L2(a,b)+‖|vh ◦ αh|− |v ◦ α|‖L2(a,b)

we see that it is sufficient to prove that the first term tends to zero (the second one
tends to zero as follows from Lemma 2.1 in [18]). Throughout the rest of the proof
let c > 0 denote a generic constant independent of h > 0.

Using the approximation property of the linear Lagrange interpolation operator
rh and the inverse inequality between H1(a, b) and H1/2(a, b) we may write:

‖rh|vh ◦ αh| − |vh ◦ αh|‖L2(a,b) ≤ ch|vh ◦ αh|H1(a,b) ≤ ch1/2‖vh ◦ αh‖H1/2(a,b). (28)

If we prove that there exists a constant c > 0 such that

‖vh ◦ αh‖H1/2(a,b) ≤ c‖vh‖H1(�(αh)) ∀h > 0 ∀αh ∈ Uh
ad (29)
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then by the uniform extension property and the boundedness of {ṽh} ⊂ H1(�̂) we
obtain from (28):

‖rh|vh ◦ αh| − |vh ◦ αh|‖L2(a,b) ≤ ch1/2 → 0, h → 0+.

To prove (29), first define the mapping

ϕαh(x1, x2) :=
(

x1,
2γ 2 − γ (x2 + αh(x2))

γ − αh(x2)

)T

which maps �(αh) onto � = (a, b) × (γ, 2γ ). Its inverse is given by

ϕ−1
αh

(x1, x2) :=
(

x1, 2γ − x2

(

1 − αh(x1)

γ

)

− αh(x1)

)T

, (x1, x2) ∈ �.

It is straightforward to verify that the Jacobian ∇ϕ−1
αh

satisfies:

(i) ∃c > 0 : ‖∇ϕ−1
αh

‖ ≤ c a.e. in �, ∀h > 0 ∀αh ∈ Uh
ad,

(ii) | det ∇ϕ−1
αh

| = 1 − αh(x1)/γ ≥ 1 − C0/γ a.e. in �,

where ‖ · ‖ in (i) stands for the Frobenius norm of the matrix. For each h > 0 define
the function

wh := vh ◦ ϕ−1
αh

∈ H1(�).

From (i) and (ii) it easily follows:

(k) wh(x1, 2γ ) = vh(x1, αh(x1)) ∀x1 ∈ (a, b) ∀h > 0,
(kk) ∃c > 0 : ‖wh‖H1(�) ≤ c‖vh‖H1(�(αh)) ∀h > 0.

Finally, denoting � := (a, b) × {2γ } and exploiting the embedding H1(�) ↪→
H1/2(�) and (k), (kk) we obtain

‖vh ◦ αh‖H1/2(a,b) = ‖wh‖H1/2(�) ≤ c‖wh‖H1(�) ≤ c‖vh‖H1(�(αh)).

Thus (29) is satisfied and the proof is complete. ��

To establish a convergence result we shall need the following analogy of Lemma 1.

Lemma 6 Let a sequence {(αh, uh)}, h → 0+, where (αh, uh) ∈ Gh, be given. Then there
exists a subsequence {(αh j, uh j)} and functions α ∈ Uad, u ∈ H1(�̂) such that

αh j → α in C([a, b ]) ũh j ⇀ u in H1(�̂
)

, h j → 0+. (30)

Moreover
(

α, u|�(α)

) ∈ G . (31)

Proof The existence of a subsequence {αh j} and a function α ∈ Uad such that αh j → α

in C([a, b ]) follows from the Arzelà–Ascoli theorem and Lemma 3. Again, it is easy
to show that {‖ũh‖H1(�̂)} is bounded. Thus (30) holds for an appropriate subsequence
{(αh j, ũh j)}. To prove (31) we have to show that u|�(α) solves (P(α)). The fact that
u|�(α) ∈ K(α) is obvious (see [5, Lemma 7.2]). Let ξ ∈ K(α) be arbitrary and find
a sequence {ξl} ⊂ H2(�̂) satisfying (25) and (26). Fix l ∈ N and denote by πh jξl the
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piecewise linear Lagrange interpolant of ξl|�h j
on T (h j, αh j). From assumption (T 4)

on the system {T (h, αh)}, h → 0+, αh ∈ Uh
ad the following estimate holds:

‖πh jξl − ξl‖H1
(

�h j

) ≤ ch j‖ξl‖H1
(

�̂

) ∀h j > 0, (32)

where c > 0 does not depend on h j. From (26) we see that πh jξl ∈ Kh j(αh j) for h j

small enough so that it can be used as a test function in (P(αh j)):

ah j

(

uh j, πh jξl − uh j

)

+
∫ b

a
F
(|rh j|uh j1 ◦ αh j|

)

g ◦ αh j

(|πh jξl1 ◦ αh j| − |uh j1 ◦ αh j|
)

√

1 + (α′
h j

)2
dx1

≥ Lh j

(

πh jξl − uh j

)

. (33)

The limit passages in the first and the third term are obvious (see [5]):

lim
l→∞

(

lim sup
h j→0+

ah j

(

uh j, πh jξl − uh j

)

)

≤ aα(u, ξ − u), (34)

lim
l→∞

(

lim inf
h j→0+

Lh j

(

πh jξl − uh j

)

)

≥ Lα(ξ − u). (35)

The frictional term in (33) will be denoted by I(h j). As in the proof of Lemma 1 this
term can be written in the form: I(h j) = I

(h j)

1 + I
(h j)

2 − I
(h j)

3 , where I
(h j)

k , k = 1, 2, 3 are
the straightforward modifications of I( j)

k , k = 1, 2, 3 from there. Arguing as in the
proof of Lemma 1 one can show that

I
(h j)

2 → 0 and I
(h j)

3 → 0 as h j → 0+

making use of (32). Without loss of generality we may assume that

α′
h j

→ α′ a.e. in [a, b ], h j → 0+

and

rh j|uh j1 ◦ αh j| → |u1 ◦ α| a.e. in [a, b ], h j → 0+

as a consequence of (27). From this, continuity of F , uniform boundedness of {α′
h j

}
and Lebesgue’s dominated convergence theorem we get:

I
(h j)

1 =
∫ b

a
F
(

rh j|uh j1 ◦ αh j|
)

g ◦ α (|ξl1 ◦ α| − |u1 ◦ α|)
√

1 + (α′
h j

)2
dx1

−→
h j→0+

∫

�c(α)

F (|u1|)g(|ξl1| − |u1|) ds −→
l→∞

∫

�c(α)

F (|u1|)g(|ξ1| − |u1|) ds.

This, together with (34) and (35) show that
(

α, u|�(α)

) ∈ G . ��
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In what follows, we shall suppose that the cost functional I is continuous in the
following sense:

αh → α, in C([a, b ]), αh ∈ Uh
ad, α ∈ Uad,

ũh ⇀ ũ, in H1(�̂), where uh, u solves (Ph(αh)) and (P(α)), resp.

}

=⇒

=⇒ lim
h→0+

I(αh, uh) = I(α, u).

(36)

Further, denote

G := {(α, u) ∈ G | ∀{h}, h → 0+ ∃{h j} ⊂ {h} ∃ {(αh j, uh j)
}

,
(

αh j, uh j

) ∈ Gh j :
αh j → α in C([a, b ]) and ũh j ⇀ ũ in H1(�̂), h j → 0+

}

.

Then the following convergence result holds.

Theorem 7 Let the cost functional I satisfy (36) and let {(α∗
h, u∗

h)}, h → 0+ be a
sequence of optimal pairs, i.e. (α∗

h, u∗
h) ∈ Gh is a solution to (Ph). Then there exists a

subsequence {(α∗
h j

, u∗
h j

)} and functions α∗ ∈ Uad, u ∈ H1(�̂) such that:

α∗
h j

→ α∗ in C([a, b ]) and ũ∗
h j

⇀ u in H1(�̂
)

, h j → 0+. (37)

Moreover (α∗, u∗) ∈ G , where u∗ := u|�(α∗) satisf ies:

I(α∗, u∗) ≤ I(α, u) ∀(α, u) ∈ G . (38)

Proof The fact that (α∗, u∗) ∈ G follows easily from Lemma 6 and the definition
of G .

Now choose arbitrary (α, u) ∈ G and an approximating sequence {(αh j, uh j)}, h j →
0+ from the definition of G . One has:

I
(

α∗
h j

, u∗
h j

)

≤ I
(

αh j, uh j

) ∀ j = 1, 2, . . .

Using (36) and passing to the limit with h j → 0+ we immediately obtain (38). ��

The set G represents those optimal pairs (α, u) ∈ G that can be approximated by a
subsequence {(αh j, uh j)} of discrete optimal pairs. Theorem 7 then states that from a
sequence of discrete optimal pairs one can always extract a subsequence converging
to a generally sub-optimal pair (α∗, u∗) ∈ G , i.e. the optimal one with respect to G .

It is readily seen that (α∗, u∗) from Theorem 7 will be optimal in the sense of
Definition 2 if and only if G = G .

A sufficient condition is formulated in the next lemma.

Lemma 7 Let (P(α)) be uniquely solvable ∀α ∈ Uad. Then G = G .

Proof Since G ⊂ G , we need to prove the opposite inclusion.
Choose any α ∈ Uad and denote by u(α) the unique solution corresponding to

(P(α)). By Lemma 2 we can find a sequence {αh}, αh ∈ Uh
ad such that

αh → α in C([a, b ]), h → 0+.
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For each h denote by uh an arbitrary solution to the discrete state problem (Ph(αh)),
i.e. (αh, uh) ∈ Gh. Due to Lemma 6 we are able to extract a subsequence so that

αh j → α in C([a, b ]) and ũh j ⇀ χ in H1(̂�), j → ∞,

where χ |�(α) = u(α) as follows from (31) and the uniqueness of u(α). Thus (α, u(α)) ∈
G and the proof is complete. ��

5 Shape Optimization Problem: Algebraic Setting

Next we shall introduce the algebraic formulation of the discretized contact problem
(Ph(αh)) and establish some basic properties of its solution. The shape optimization
problem is then defined using the so-called reduced form of the state problem. Note
that from now on the discretization parameter h > 0 is supposed to be f ixed.

Let us set n := dim Vh(αh) and p := card Nh, i.e. p is the number of the contact
nodes. For the sake of simplicity let us further assume that p = d(h) + 1 (cf. (21)).
Considering the Courant basis of the space of all piecewise linear functions over the
partition δh of [a, b ], the set Uh

ad is isomorphic to a convex compact set Uad ⊂ R
p
+,

i.e. αh ∈ Uh
ad iff α = (α1, . . . , αp) ∈ Uad, where αi = αh(ai−1), i = 1, . . . , p. Also, by

means of the Courant basis of Vh(αh), the set Kh(αh) may be identified with the
closed convex set:

K (α) := {v ∈ R
n | vν ≥ −α

}

, α ∈ Uad,

where vν ∈ R
p stands for the subvector of v ∈ R

n consisting of the second compo-
nents of the displacement vector v at all contact nodes, i.e. (vν)i = vh2(ai−1,

αh(ai−1)) ∀i = 1, . . . , p. Analogously, vτ ∈ R
p consists of the first components of v

at the contact nodes.
The frictional term in (Ph(αh)) will be approximated by a quadrature formula

whose integration nodes coincide with the contact nodes:
∫ b

a
F (rh|uh1 ◦ αh|) g ◦ αh (|vh1 ◦ αh| − |uh1 ◦ αh|)

√

1 + (α′
h

)2
dx1

≈
p
∑

i=1

ωi(α)F (|(uτ )i|) (|(vτ )i| − |(uτ )i|) .

The algebraic formulation of the contact problem with a solution-dependent
coefficient of friction reads as:

Find u ∈ K (α) such that:

〈A(α)u, v − u〉n +
p
∑

i=1

ωi(α)F (|(uτ )i|)
(|(vτ )i| − |(uτ )i|

)

≥ 〈L(α), v − u〉n ∀v ∈ K (α).

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(P ′(α))

Here A ∈ C1(Uad; R
n×n) and L ∈ C1(Uad; R

n) denote the matrix and vector-valued
function, respectively associating with any α ∈ Uad the stiffness matrix A(α) and the
load vector L(α), respectively. Note that the functions ωi, i = 1, . . . , p, depend on
the weights of the quadrature rule and the values of αh and g at the contact nodes, as
well. We shall assume that ωi ∈ C1(Uad; (0,∞)) ∀i = 1, . . . , p.
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Instead of dealing with (P ′(α)), we shall be working with its equivalent formula-
tion (M (α)), which involves Lagrange multipliers releasing the constraint v ∈ K (α).
Let us begin with the following auxiliary problem.

For a given ϕ ∈ R
p
+ consider the following problem:

Find (u, λ) ∈ R
n × R

p
+ such that:

〈A(α)u, v − u〉n +
p
∑

i=1

ωi(α)F (ϕi)
(|(vτ )i| − |(uτ )i|

)

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ R
n,

〈μ − λ, uν + α〉p ≥ 0 ∀μ ∈ R
p
+,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(M (α, ϕ))

which represents a contact problem with given friction and a coefficient of friction,
which does not depend on the solution. The following result is very easy to prove (see
e.g. [6]).

Theorem 8 For any (α, ϕ) ∈ Uad × R
p
+ there exists a unique solution (u, λ) ∈ R

n × R
p
+

to (M (α, ϕ)).

Next, let us define the mapping:

� : Uad × R
p
+ → R

p
+, (α, ϕ) �→ |uτ |,

where u is the first component of the solution to (M (α, ϕ)).

Corollary 1 For α ∈ Uad given, u solves (P ′(α)) if f there exist λ ∈ R
p
+ and ϕ ∈ R

p
+

such that (u, λ) is a solution to (M (α, ϕ)) and ϕ is a fixed point of �(α, ·). The pair
(u, λ) is then a solution to:

Find (u, λ) ∈ R
n × R

p
+ such that:

〈A(α)u, v − u〉n +
p
∑

i=1

ωi(α)F (|(uτ )i|)
(|(vτ )i| − |(uτ )i|

)

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ R
n,

〈μ − λ, uν + α〉p ≥ 0 ∀μ ∈ R
p
+.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(M (α))

Theorem 9 For each α ∈ Uad, there exists at least one solution to (M (α)).

Proof There exists R > 0, such that for all (α, ϕ) ∈ Uad × R
p
+:

‖u‖n ≤ R, ‖λ‖p ≤ R, (39)

where (u, λ) is the (unique) solution of (M (α, ϕ))—see [2, Proposition 3.3]. It is
straightforward to prove that �(α, ·) : R

p
+ → R

p
+ is continuous, hence the existence

of a solution to (M (α)) follows from Brouwer’s fixed point theorem. ��

Proposition 1 Let α ∈ Uad be f ixed, and F be Lipschitz continuous in R+ (cf. (24)).
Then there exists a real q > 0, independent of α, such that:

‖(u, λ) − (ū, λ̄
)‖n+p ≤ q‖ϕ − ϕ̄‖p ∀ϕ, ϕ̄ ∈ R

p
+, (40)

where (u, λ) and (ū, λ̄) are the (unique) solutions to (M (α, ϕ)) and (M (α, ϕ̄)).
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Proof One may follow the steps (3.13)–(3.15) on p. 424 of [2] to obtain:

‖u − ū‖n ≤ C1CL‖ϕ − ϕ̄‖p,

‖λ − λ̄‖p ≤ C2CL‖ϕ − ϕ̄‖p,

}

(41)

where the constants C1, C2 > 0 do not depend on α ∈ Uad, ϕ ∈ R
p
+ and CL comes

from (24). ��

An immediate consequence of Proposition 1 is the following result on the unique
solvability of (M (α)).

Theorem 10 Suppose that F is Lipschitz continuous (cf. (24)) with CL > 0
suf f iciently small. Then (M (α)) has exactly one solution for all α ∈ Uad.

Proof If CL < C−1
1 , then (41)1 implies contractivity of �(α, ·) for all α ∈ Uad. ��

Next we show that under the assumptions of Theorem 10 the solution of (M (α))
is Lipschitz continuous on Uad. To do so, we shall need another auxiliary result.

Proposition 2 Let ϕ ∈ R
p
+ be f ixed. Then there exists a constant C > 0 which does not

depend on ϕ and such that:

∥

∥(u, λ) − (ū, λ̄
)∥

∥

n+p ≤ C‖α − ᾱ‖p ∀α, ᾱ ∈ Uad, (42)

where (u, λ) and (ū, λ̄) are the solutions to (M (α, ϕ)) and (M (ᾱ, ϕ)), respectively.

Proof Note that u ∈ K (α) and ū ∈ K (ᾱ) solve the following variational inequalities:

〈A(α)u, v − u〉n +
p
∑

i=1

ωi(α)F (ϕi)
(|(vτ )i| − |(uτ )i|

) ≥ 〈L(α), v − u〉n ∀v ∈ K (α),

〈A(ᾱ)ū, v − ū〉n +
p
∑

i=1

ωi(ᾱ)F (ϕi)
(|(vτ )i| − |(ūτ )i|

) ≥ 〈L(ᾱ), v − ū〉n ∀v ∈ K (ᾱ),

respectively. Also note that the sets K (α) and K (ᾱ) may be written in the following
way: K (α) = a + K (0) and K (ᾱ) = ā + K (0), where the vector a ∈ R

n is such that
aν = −α and all its other elements are 0 (analogously for ā). Thus:

∃w, w̄ ∈ K (0) : u = a + w and ū = ā + w̄. (43)

Let us notice that the matrices A(α) are positively definite uniformly with respect
to α ∈ Uad, i.e. there exists γ̄ > 0 such that 〈A(α)v, v〉n ≥ γ̄ ‖v‖2

n ∀v ∈ R
n and ∀α ∈

Uad. This follows from the fact that the constant CK of Korn’s inequality can be
chosen independently of α ∈ Qad and the definition of topological equivalency of
{T (h, αh)}, αh ∈ Uh

ad (see (T 1)–(T 4)).
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Inserting v := a + w̄ ∈ K (α) into the first inequality, v := ā + w ∈ K (ᾱ) into the
second one and summing the two inequalities yields:

γ̄ ‖w − w̄‖2
n ≤ 〈A(α)(w − w̄), w − w̄〉n

≤ 〈A(α)(ā − a), w − w̄〉n + 〈(A(ᾱ) − A(α)
)

ū, w − w̄〉n

+
p
∑

i=1

F (ϕi)
(

ωi(α) − ωi(ᾱ)
)(|(w̄τ )i| − |(wτ )i|

)+ 〈L(α) − L(ᾱ), w − w̄〉n

≤ c‖α − ᾱ‖p‖w − w̄‖n,

using that A, L, ωi are Lipschitz continuous in Uad and F is bounded. Hence:

‖w − w̄‖n ≤ c‖α − ᾱ‖p,

and finally:

‖u − ū‖n ≤ ‖a − ā‖n + ‖w − w̄‖n ≤ (1 + c)‖α − ᾱ‖p. (44)

To estimate the Lagrange multipliers, we proceed as follows. From (M (α, ϕ))1 and
(M (ᾱ, ϕ))1 one easily obtains (see (3.9) in [2, p. 423]):

〈A(α)u, v〉n = 〈L(α), v〉n + 〈λ, vν〉p ∀v ∈ R
n, vτ = 0,

〈A(ᾱ)ū, v〉n = 〈L(ᾱ), v〉n + 〈λ̄, vν〉p ∀v ∈ R
n, vτ = 0.

By subtracting the two equations we get:
〈

λ − λ̄, vν

〉

p = 〈(A(α) − A(ᾱ)
)

ū, v
〉

n + 〈A(ᾱ)
(

u − ū
)

, v
〉

n

+ 〈L(α) − L(ᾱ), v〉n ∀v ∈ R
n, vτ = 0.

Now, dividing this equation by ‖v‖n and taking supremum over the set {v ∈ R
n | vν �=

0 and the remaining components of v are 0}, we arrive at:

‖λ − λ̄‖p ≤ c‖α − ᾱ‖p,

making use of (44) and the fact that A and L are Lipschitz continuous on Uad. ��

Theorem 11 Assume that F is Lipschitz continuous with a suf f iciently small modu-
lus CL, so that Proposition 1 holds for q < 1. Then the (unique) solution (u(α), λ(α))

to (M (α)) is a Lipschitz continuous function of α ∈ Uad.

Proof Let α, ᾱ ∈ Uad be given and denote the solutions to (M (α)) and (M (ᾱ))

by (u, λ) and (ū, λ̄), respectively. Since the corresponding mappings �(α, ·) and
�(ᾱ, ·) are contractive, these solutions may be revealed by the method of successive
approximations in the following way.

Choose an arbitrary ϕ(0) ∈ R
p
+ and compute the solutions to (M (α, ϕ(0))) and

(M (ᾱ, ϕ(0))) - denote them by (u(0), λ(0)) and (ū(0), λ̄(0)). Set ϕ(1) := �(α, ϕ(0)) and
ϕ̄(1) := �(ᾱ, ϕ(0)). By Proposition 2 we already know that:

∥

∥

(

u(0), λ(0)
)− (ū(0), λ̄(0)

)∥

∥

n+p ≤ C‖α − ᾱ‖p, (45)
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and hence also:

∥

∥ϕ(1) − ϕ̄(1)
∥

∥

p ≤ ∥∥u(0) − ū(0)
∥

∥

n ≤ C‖α − ᾱ‖p. (46)

Now, solve problems (M (α, ϕ(1))) and (M (ᾱ, ϕ̄(1))) to obtain (u(1), λ(1)) and
(ū(1), λ̄(1)). Further, denote the solution to (M (α, ϕ̄(1))) by (U(1), �(1)). Thus, we may
estimate:

∥

∥

(

u(1), λ(1)
)− (ū(1), λ̄(1)

)∥

∥

n+p ≤ ∥∥(u(1), λ(1)
)− (U(1), �(1)

)∥

∥

n+p

+ ∥∥(U(1), �(1)
)− (ū(1), λ̄(1)

)∥

∥

n+p

≤ q
∥

∥ϕ(1) − ϕ̄(1)
∥

∥

p + C‖α − ᾱ‖p

≤ C(1 + q)‖α − ᾱ‖p,

as follows from Propositions 1, 2 and (46). Continuing this iterative process, in the kth
step one has (u(k), λ(k)) and (ū(k), λ̄(k)), the solutions to (M (α, ϕ(k))) and (M (ᾱ, ϕ̄(k))),
respectively, along with the estimate:

∥

∥

(

u(k), λ(k)
)− (ū, λ̄(k)

)∥

∥

n+p ≤ C
(

1 + q + q2 + · · · + qk) ‖α − ᾱ‖p

≤ C
1 − q

‖α − ᾱ‖p.
(47)

Then one sets ϕ(k+1) := �(α, ϕ(k)), ϕ̄(k+1) := �(ᾱ, ϕ̄(k)), and starts the iteration loop
with k := k + 1.

The sequences {ϕ(k)} and {ϕ̄(k)} generated by this process converge to the unique
fixed points of the mappings �(α, ·) and �(ᾱ, ·), respectively, and the sequences
{(u(k), λ(k))}, {(ū(k), λ̄(k))} converge to the (unique) solutions of (M (α)) and (M (ᾱ)),
respectively. Thus it is sufficient to pass to the limit k → ∞ in (47) to obtain the
assertion of the theorem. ��

Modifying Proposition 2 and Theorem 11 appropriately, one may easily prove the
following result (cf. also [12, Theorem 3.2]), which will be useful in the next section.

Theorem 12 Let α ∈ Uad be f ixed and L, L̄ ∈ R
n be arbitrary. Let the assumption of

Theorem 11 be satisf ied and denote by (u, λ), (ū, λ̄) the (unique) solutions to (M (α))
with the load vectors L and L̄, respectively. Then there exists C > 0, independent of α,
L, L̄ such that:

∥

∥(u, λ) − (ū, λ̄
)∥

∥

n+p ≤ C
∥

∥L − L̄
∥

∥

n .

Let us conclude this section with the shape optimization problem which uses the
reduced algebraic form of the state problem only. The reduction of (M (α)) consists
in eliminating all components of the displacement field u corresponding to the non-
contact nodes of the finite element partition of �(αh). One obtains a variational
inequality in terms of the variables uτ , uν and λ, defined on the contact zone, which
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may be formulated as the following generalized equation (GE) (for details see section
3 of [1]):

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + Q1(α, uτ )

0 = Aντ (α)uτ + Aνν(α)uν − Lν(α) − λ

0 ∈ uν + α + NR
p
+(λ).

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(48)

Here the multifunction Q1 : Uad × R
p ⇒ R

p is defined as:
(

Q1(α, uτ )
)

i := ωi(α)F (|(uτ )i|)∂|(uτ )i| ∀i = 1, . . . , p,

where “∂” denotes the subdifferential of convex functions, NR
p
+(·) is the normal cone

in the sense of convex analysis and submatrices Aττ , Aτν , Aνν ∈ C1(Uad; R
p×p) are

parts of the Schur complement to the stiffness matrix with Aντ = A
T
τν . In addition,

Aττ and Aνν are positive definite uniformly with respect to α ∈ Uad.
Introducing the state variable y := (uτ , uν, λ) ∈ (Rp)3, the GE (48) may be written

in the compact form:

0 ∈ F(α, y) + Q(α, y), (49)

with α ∈ Uad being the control variable and

F(α, y) :=
⎛

⎝

Aττ (α) Aτν(α) 0
Aντ (α) Aνν(α) −I

0 I 0

⎞

⎠ y −
⎛

⎝

Lτ (α)

Lν(α)

−α

⎞

⎠ , Q(α, y) :=
⎛

⎝

Q1(α, y1)

0
NR

p
+(y3)

⎞

⎠ .

Note that F is single-valued, continuously differentiable in its domain of definition
and Q is a closed-graph multifunction. Further, denote the corresponding control-to-
state map by S : Uad ⇒ (Rp)3:

S : α �→ {

y ∈ (Rp)3 | 0 ∈ F(α, y) + Q(α, y)
}

.

Let J : Uad × (Rp)3 → R be a continuously differentiable cost functional. The alge-
braic form of our shape optimization problem leads to the following MPEC:

minimize J(α, y)

subj. to 0 ∈ F(α, y) + Q(α, y)

α ∈ Uad.

⎫

⎬

⎭

(P)

In the sequel we shall assume that the assumptions of Theorem 11 are satisfied,
implying that S is single-valued and Lipschitz continuous in Uad. Then (P) may be
equivalently reformulated as the following nonlinear program:

minimize J (α) := J(α, S(α))

subj. to α ∈ Uad.

}

(P̃)

Since the composite cost functional J is locally Lipschitz continuous, (P̃) can
be solved by standard algorithms of nonsmooth optimization. Such algorithms,
however, require knowledge of some subgradient information, usually in the form
of one (arbitrary) subgradient from the Clarke subdifferential ∂J (cf. [4, Theorem
2.5.1]) at each iteration step. This can be facilitated by the chain rule in [4, Theorem
2.6.6]:

∂J (ᾱ) = ∇α J
(

ᾱ, ȳ
)+ (∂S(ᾱ)

)T∇y J
(

ᾱ, ȳ
)

, (50)
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valid at any reference point ᾱ ∈ Uad, ȳ := S(ᾱ). Thus, for the required subgradient
information it is sufficient to determine an element from

(

∂S(ᾱ)
)T∇y J(ᾱ, ȳ). In (50),

∂S(ᾱ) stands for the generalized Jacobian of Clarke, defined in [4, Definition 2.6.1].
The rest of the paper is devoted to this task.

6 Sensitivity Analysis

As already indicated, instead of working with the generalized differential calculus
of Clarke, we are going to employ the substantially richer differential calculus
of Mordukhovich ([15]). The reason is that the computation of the generalized
Jacobian of S for the GE (48) via [4, Definition 2.6.1] requires quite a considerable
effort, whereas by using the Mordukhovich theory one can employ a number of
efficient rules, e.g. [19, Chapter 10] and [15, Chapter 3]. These rules do not have
any counterpart in the Clarke’s calculus and suit very well to sensitivity and stability
issues [15, Chapter 4].

To this aim, observe first that by Lipschitz continuity of S and formula (2.23)
in [14]:

∀y∗ ∈ (Rp)3 : (

∂S(ᾱ)
)Ty∗ = conv D∗S(ᾱ(y∗)).

Comparing with (50), we immediately see that it is sufficient to determine one
element from the set

D∗S(ᾱ)(∇y J(ᾱ, ȳ))

and we are done. The computation of the coderivative D∗S(ᾱ) in terms of the data
of our problem is facilitated on the basis of Theorem 2 in [11]. Before being able to
use the aforementioned result, however, the following property has to be verified:

Lemma 8 Let ᾱ ∈ Uad be f ixed, ȳ := S(ᾱ) and introduce the mapping � : R
p ×

(Rp)3 → R
p × (Rp)3 × (Rp)3:

� : (α, y) �→ (

α, y,−F(α, y)
)

.

Then the multifunction M : R
p × (Rp)3 × (Rp)3 ⇒ R

p × (Rp)3 def ined by

M : p �→ {

(α, y) | p + �(α, y) ∈ Gr Q
}

is calm at (0, 0, 0, ᾱ, ȳ).

Proof If M is not calm at (0, 0, 0, ᾱ, ȳ), one can easily disprove calmness of the
following multifunction M̃ : (Rp)3 ⇒ R

p × (Rp)3 at (0, ᾱ, ȳ):

M̃ : p̃ �→ {

(α, y) | (0, 0, p̃) + �(α, y) ∈ Gr Q
}

.

Therefore it is sufficient to show that M̃ is calm at (0, ᾱ, ȳ).
Let p̃ ∈ (Rp)3 be given. Then (α, y) ∈ M̃(p̃) ⇔ p̃ ∈ F(α, y) + Q(α, y), i.e.

p̃1 ∈ Aττ (α)y1 + Aτν(α)y2 − Lτ (α) + Q1(α, y1)

p̃2 = Aντ (α)y1 + Aνν(α)y2 − y3 − Lν(α)

p̃3 ∈ y2 + α + NR
p
+(y3).

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(51)
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Introducing the new variable ỹ := (y1, y2 − p̃2, y3), we see that (α, ỹ) solves (48) with
the load vector l̃ := (Lτ (α) + p̃1 − Aτν(α)p̃3, Lν(α) + p̃2 − Aνν(α)p̃3, −α)T . From
Theorem 10 it follows that there exists a unique solution (α, ỹ) to the perturbed GE
(51). Denoting (α, y) the solution to (48) with the original load vector l, we obtain
from Theorem 12:

‖(α, ỹ) − (α, y)‖ ≤ ∥∥l̃ − l
∥

∥ ≤ c‖p̃‖,
where c > 0 does not depend on α. From this the required calmness property follows
easily. ��

Theorem 13 Consider a reference pair (ᾱ, ȳ) ∈ Gr S.

(i) Let (p∗, v∗) ∈ R
p × (Rp)3 be a solution to the regular adjoint GE:

(

p∗
−∇y J(ᾱ, ȳ)

)

∈ ∇F(ᾱ, ȳ)Tv∗ + ̂D∗ Q(�(ᾱ, ȳ))(v∗). (RAGE)

Then p∗ ∈ D∗S(ᾱ)(∇y J(ᾱ, ȳ)).
(ii) For every p∗ ∈ D∗S(ᾱ)(∇y J(ᾱ, ȳ)) there exists a vector v∗ ∈ (Rp)3 such that

(p∗, v∗) is a solution of the (limiting) adjoint GE:
(

p∗
−∇y J(ᾱ, ȳ)

)

∈ ∇F(ᾱ, ȳ)Tv∗ + D∗ Q(�(ᾱ, ȳ))(v∗). (AGE)

Proof The first assertion follows immediately from [19, Theorem 10.6]. The second
one is implied by [9, Theorem 4.1], whose assumptions are fulfilled by virtue of
Lemma 8. ��

Note that due to Lipschitz continuity of S, AGE attains at least one solution p∗ and
whenever Q is normally regular at �((ᾱ, ȳ)), i.e. ̂NGr Q(�(ᾱ, ȳ)) = NGr Q(�(ᾱ, ȳ)),
RAGE and AGE coincide. On the other hand, in the nonregular case RAGE may
be difficult to solve or not solvable at all. Therefore the computation of the desired
subgradient ζ ∈ ∂J (ᾱ) is usually done via the AGE, while accepting the fact that
at nonregular points the computed vector may lie outside of ∂J (ᾱ). In such cases
the employed optimization algorithm might collapse and ζ has to be replaced by a
correct subgradient.

In light of the previous paragraph we will focus on the solution of the AGE (for
details see [11]). In particular, in the sequel we will express the most difficult part of
AGE, i.e. the coderivative D∗ Q(�(ᾱ, ȳ)) in terms of the problem data.

6.1 Computation of D∗Q

First of all, note that the components of Q are decoupled (this fact is a consequence
of the assumed model of given friction), hence its coderivative can be computed
componentwise:

∀q∗ ∈ (Rp)3 : D∗ Q(ᾱ, ȳ, q̄)(q∗) =
⎛

⎝

D∗ Q1(ᾱ, ȳ1, q̄1)(q∗
1)

0
D∗NR

p
+(ȳ3, q̄3)(q∗

3)

⎞

⎠ ,

at any reference point (ᾱ, ȳ, q̄) ∈ Gr Q.



54 J. Haslinger et al.

The third component is standard and the exact formula for it may be found e.g. in
[17, Lemma 2.2].

In order to deal with the first component, let us write the multifunction Q1 : R
p ×

R
p ⇒ R

p as a composition of an outer multifunction Z1 and an inner single-valued,
smooth mapping �:

Q1(α, u) =

⎛

⎜

⎜

⎜

⎝

ω1(α)F (|u1|)∂|u1|
ω2(α)F (|u2|)∂|u2|

...

ωp(α)F (|up|)∂|up|

⎞

⎟

⎟

⎟

⎠

= (Z1 ◦ �)(α, u), (52)

where

� = (�1, . . . , �p) : R
p × R

p → (

(0,∞) × R
)p

, � j(α, u) := (ω j(α), u j
)

,

and

Z1 : ((0,∞) × R
)p ⇒ R

p, y �→ (

Z (y1), . . . , Z (yp)
)

,

with

Z : (0,∞) × R ⇒ R, (x1, x2) �→ x1F (|x2|)∂|x2|.
Now the chain rule from [19, Theorem 10.40] allows us to compute the coderivative
of the composite multifunction (52) as follows:

Theorem 14 Let (ᾱ, ū, q̄) ∈ Gr Q1 be such that the following condition holds:

Ker ∇�(ᾱ, ū)T ∩ D∗ Z1(�(ᾱ, ū), q̄)(0) = {0}. (53)

Then:

∀q∗ ∈ R
p : D∗ Q1(ᾱ, ū, q̄)(q∗) ⊂ ∇�(ᾱ, ū)T D∗ Z1(�(ᾱ, ū), q̄)(q∗)

= ∇�(ᾱ, ū)T

⎛

⎜

⎜

⎜

⎝

D∗ Z (�1(ᾱ, ū), q̄1)(q∗
1)

D∗ Z (�2(ᾱ, ū), q̄2)(q∗
2)

...

D∗ Z (�p(ᾱ, ū), q̄p)(q∗
p)

⎞

⎟

⎟

⎟

⎠

.
(54)

Observe that the assertion of Proposition 14 requires the validity of the
qualification condition (53). We are going to show that (53) is satisfied at all points
(ᾱ, ū, q̄) ∈ Gr Q1 and hence the assertion of Proposition 14 holds automatically.

Remark 2 The right inclusion above becomes equality for points (ᾱ, ū, q̄), such that
the multifunction Z1 is normally regular at (�(ᾱ, ū), q̄) or ∇�(ᾱ, ū) is surjective.
In other cases, however, the formula on the right-hand side may provide a vector
outside of D∗ Q1.

6.2 Computation of D∗Z

In the sequel we will compute the coderivative of Z at a given point (x̄1, x̄2, z̄) ∈
Gr Z . The obtained results will then be used to validate condition (53), while at the
same time they play a central role in the assertion of Proposition 14 itself.
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Let us distinguish several situations according to the position of the reference
point (x̄1, x̄2, z̄) on the graph of Z .

Proposition 3 Let z∗ ∈ R be arbitrary and (x̄1, x̄2, z̄) ∈ Gr Z such that x̄2 > 0. Then:

D∗ Z (x̄1, x̄2, z̄)(z∗) = {z∗F (x̄2)
}× D∗F (x̄2)(x̄1z∗). (55)

Proof Due to the assumption on x̄2 there exists a neighbourhood O of (x̄1, x̄2) so
that:

Z (x1, x2) = x1F (x2) ∀(x1, x2) ∈ O .

Note that Z is single-valued and (locally) Lipschitz continuous in O . The computa-
tion of the regular normal cone to Gr Z at points of O is straightforward and yields:

̂NGr Z (x1, x2, z) = { (x∗
1, x∗

2, z∗) | x∗
1 = −z∗F (x2),

(

x∗
2, x1z∗) ∈ ̂NGr F (x2,F (x2))

}

.

(56)
Thus

NGr Z (x̄1, x̄2, z̄) = { (x∗
1, x∗

2, z∗) | x∗
1 = −z∗F (x̄2), (x∗

2, x̄1z∗) ∈ NGr F (x̄2,F (x̄2))
}

,

and the assertion follows immediately from the definition of the coderivative. ��

Proposition 4 Let z∗ ∈ R be arbitrary and (x̄1, x̄2, z̄) ∈ Gr Z such that x̄2 < 0. Then:

D∗ Z (x̄1, x̄2, z̄)(z∗) = {−z∗F (−x̄2)
}× (− D∗F (−x̄2)(−x̄1z∗)

)

. (57)

Proof In this case there exists a neighbourhood Õ of (x̄1, x̄2) such that:

Z (x1, x2) = −x1F (−x2) ∀(x1, x2) ∈ Õ .

The rest is done in a similar fashion. ��

Remark 3 The previous two cases have the mechanical interpretation of sliding, i.e.
represent those contact points, where the displacement in the tangential direction is
nonzero.

Proposition 5 Let z∗ ∈ R be arbitrary and (x̄1, 0, z̄) ∈ Gr Z such that |z̄| < x̄1F (0).
Then:

D∗ Z (x̄1, 0, z̄)(z∗) =
{{0} × R, if z∗ = 0

∅, otherwise.
(58)

Proof As readily seen, there exists a neighourhood U of (x̄1, 0, z̄) such that:

U ∩ Gr Z = U ∩ (R × {0} × R
)

,

whence we immediately get:

̂NGr Z (x1, 0, z) = {0} × R × {0} ∀(x1, 0, z) ∈ U ∩ Gr Z . (59)

��
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The setting of the previous proposition corresponds to contact points, where
strong sticking is present, i.e. the tangential component of the stress vector is below
the threshold value to trigger motion in the tangential direction. If this critical value
is attained at a contact point, but there is still no tangential motion, we speak of weak
sticking, which is investigated below.

Proposition 6 Let z∗ ∈ R and x̄1 > 0 be arbitrary. Then:

D∗ Z (x̄1, 0, x̄1F (0))(z∗) ⊂ {z∗F (0)} × D∗F (0)(x̄1z∗), if z∗ > 0,

D∗ Z (x̄1, 0, x̄1F (0))(z∗) = {z∗F (0)} × (−∞, x̄1z∗ D+F (0)], if z∗ < 0,

D∗ Z (x̄1, 0, x̄1F (0))(z∗) = {0} × R, if z∗ = 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(60)

where the symbol D+F (0) := lim supη→0+
F (η)−F (0)

η
stands for the upper Dini deriv-

ative of F at 0.

Proof The analysis in this case becomes more involved, since the point ā :=
(x̄1, 0, x̄1F (0)) may be approached by sequences corresponding to different mechan-
ical regimes:

NGr Z (ā) = Lim sup
(x1,x2,z)

Gr Z−→ā

̂NGr Z (x1, x2, z) = N1 ∪ N2 ∪ N3,

where

N1 := Lim sup
(x1,x2,z)

Gr Z−→ā
x2>0

̂NGr Z (x1, x2, z), N2 := Lim sup
(x1,0,z)

Gr Z−→ā
z<x1F (0)

̂NGr Z (x1, 0, z),

and

N3 := Lim sup
x1→x̄1

̂NGr Z (x1, 0, x1F (0)).

Observe that the regular normal cones generating in N1 and N2 have already been
computed in (56) and in (59), respectively. From these relations it is clear that

N1 ⊂ { (x∗
1, x∗

2, z∗) | x∗
1 = −z∗F (0),

(

x∗
2, x̄1z∗) ∈ NGr F (0,F (0))

}

, (61)

and

N2 = {0} × R × {0}.
The treatment of N3 is, however, more delicate. As a first step, let us compute the
contingent cone to Gr Z at a := (x1, 0, x1F (0)), for x1 > 0 fixed. Note that Gr Z
locally around the reference point a coincides with the union G1 ∪ G2, where

G1 = { (x′
1, x′

2, z′) | |x′
1 − x1| < ε, x′

2 = 0, x′
1F (0) − ε < z′ ≤ x′

1F (0)
}

,

G2 = { (x′
1, x′

2, z′) | |x′
1 − x1| < ε, 0 ≤ x′

2 < ε, z′ = x′
1F

(

x′
2

) }

,

for a sufficiently small ε > 0. Moreover, the following holds:

TGr Z (a) = TG1(a) ∪ TG2(a). (62)
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By the definition of the contingent cone:

TG1(a) = { (h, k, l) | ∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :
λiki = 0, x1F (0) + λili ≤ (x1 + λihi)F (0)

} = { (h, 0, l) | l ≤ hF (0)
}

.

Analogously:

TG2(a) = { (h, k, l) | ∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :
0 ≤ λiki, x1F (0) + λili = (x1 + λihi)F (λiki)

}

=
{

(h, k, l)
∣

∣

∣ ∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :

0 ≤ ki, li = hiF (λiki) + x1ki
F (λiki) − F (0)

λiki

}

= { (h, k, l) | 0 ≤ k, l = hF (0) + x1ξk, ξ ∈ �
}

,

where � := Lim supη→0+
F (η)−F (0)

η
. Since F is assumed to be Lipschitz continuous,

the inclusion � ⊂ [D−F (0), D+F (0)] ⊂ R holds, whereas � contains at least the
endpoints of the interval. Now it is sufficient to compute the (negative) polars to
these cones to obtain:

̂NG1(a) = (TG1(a)
)0 = { (x∗

1, x∗
2, z∗) | x∗

1 = −z∗F (0), z∗ ≥ 0
}

(63)

and similarly:

̂NG2(a) = { (x∗
1, x∗

2, z∗) | x∗
1 = −z∗F (0), x∗

2 ≤ −x1z∗ξ ∀ξ ∈ �
}

. (64)

Finally, combining (62), (63) and (64) yields:

̂NGr Z (a) = ̂NG1(a) ∩ ̂NG2(a)

= { (x∗
1, x∗

2, z∗) | x∗
1 = −z∗F (0), x∗

2 ≤ −x1z∗ D+F (0), z∗ ≥ 0
}

.

From this it is obvious that N3 = ̂NGr Z (ā).
In this way we have now an upper estimate of NGr Z (ā) and the result follows

easily by the definition of the coderivative. Indeed, for instance, the first formula in
(60) follows from (61) and the fact that for z∗ > 0 and i = 2, 3 there does not exist
any (x∗

1, x∗
2) such that (x∗

1, x∗
2,−z∗) ∈ Ni. The statement has been established. ��

Remark 4 Note that if F is continuously differentiable, then the inclusion in (60)
becomes equality in the form D∗ Z (x̄1, 0, x̄1F (0))(z∗) = {z∗F (0)} × {x̄1z∗F ′+(0)},
with F ′+(0) being the right-hand derivative of F at 0.

A straightforward modification of the proof of Proposition 6 implies the following
result, concerning the point ā := (x̄1, 0,−F (0)).
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Proposition 7 Let z∗ ∈ R and x̄1 > 0 be arbitrary. Then:

D∗ Z (x̄1, 0,−x̄1F (0))(z∗) = {−z∗F (0)} × [x̄1z∗ D+F (0), +∞), if z∗ > 0,

D∗ Z (x̄1, 0,−x̄1F (0))(z∗) ⊂ {−z∗F (0)} × (− D∗F (0)(−x̄1z∗)
)

, if z∗ < 0,

D∗ Z (x̄1, 0,−x̄1F (0))(z∗) = {0} × R, if z∗ = 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(65)

We are now in a position to verify the qualification condition (53).

Corollary 2 Let (ᾱ, ū, q̄) ∈ Gr Q1 be arbitrary. Then (53) holds.

Proof By (55), (57), (58), (60) and (65) we see that D∗ Z (x̄1, x̄2, z̄)(0) ⊂ {0} × R for
any (x̄1, x̄2, z̄) ∈ Gr Z , implying:

D∗ Z1(�(ᾱ, ū), q̄)(0) ⊂ ({0} × R
)p

.

Choosing now w ∈ (R2
)p such that wi = (0, ci)

T for all i = 1, . . . , p, then:

0 = ∇�(ᾱ, ū)Tw =
p
∑

i=1

∇�i(ᾱ, ū)Twi =
p
∑

i=1

(∇ωi(ᾱ)T 0
0 ei

)(

0
ci

)

=
(

0
c

)

.

��

In this way we have proved that the upper estimate (54), needed in AGE, is valid.
Although sensitivity analysis has been designed primarily for numerical realiza-

tion along the lines of [1], the numerical treatment of (P) is not studied in this
paper. Nevertheless, the obtained results enable us to establish necessary optimality
conditions, that may serve e.g. as a stopping criterion in the prepared numerical
algorithm or for testing optimality of a design computed in some other way.

Theorem 15 Let (ᾱ, ȳ) be a local solution to (P) (in particular ȳ = S(ᾱ)). Then:

(1) 0 ∈ ∇α J(ᾱ, ȳ) + D∗S(ᾱ)(∇y J(ᾱ, ȳ)) + NUad(ᾱ);
(2) ∃ v∗ ∈ (Rp)3:

0 ∈ ∇ J(ᾱ, ȳ) + ∇F(ᾱ, ȳ)Tv∗ + D∗ Q(ᾱ, ȳ,−F(ᾱ, ȳ))(v∗) + NUad×(Rp)3(ᾱ, ȳ).

Proof The optimality condition in (1) amounts directly to the respective condition
in [15, Corollary 5.35]. This relation together with Theorem 13 (ii) it yields (2). ��

7 Conclusion

In this paper we studied shape optimization for 2D contact problems with given
friction and a coefficient of friction, which depends on the solution. In particular,
we have shown existence of an optimal domain (optimal with respect to a given cost
functional) in a class of admissible ones, whose contact boundaries can be described
by functions which are together with their first derivatives Lipschitz equicontinuous.
A suitable discretization was then introduced and besides proving existence of
discrete optimal domains, we established convergence results as well. Since the
proposed discretization is not suitable for direct computer implementation, another
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level of approximation was introduced, resulting in an algebraic shape optimization
problem. Sensitivity analysis of the algebraic model was then conducted on the basis
of the generalized differential calculus of B. Mordukhovich. In this way, the paper
paved a way for an efficient numerical treatment of the considered model in a
number of applications.
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