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Jǐrina Vejnarová�
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Abstract. Conditioning belongs to the most important topics of any
theory dealing with uncertainty. From the viewpoint of construction of
Bayesian-network-like multidimensional models it seems to be inevitable.
In evidence theory, in contrary to the probabilistic framework, various
rules were proposed to define conditional beliefs and/or plausibilities (or
basic assignments) from joint ones. Two of them — Dempster’s condi-
tioning rule and focusing (more precisely their versions for variables) —
have recently been studied in connection with the relationship between
conditional independence and irrelevance and it has been shown, that for
none of them conditional irrelevance is implied by conditional indepen-
dence, which seems to be extremely inconvenient. Therefore we suggest
a new conditioning rule for variables, which seems to be more promis-
ing from the viewpoint of conditional irrelevance, prove its correctness
and also study the relationship between conditional independence and
irrelevance based on this conditioning rule.

Keywords: Evidence theory, conditioning, multidimensional models,
conditional independence, conditional irrelevance.

1 Introduction

The most widely used models managing uncertainty and multidimensionality
are, at present, so-called probabilistic graphical Markov models. The problem
of multidimensionality is solved in these models with the help of the notion
of conditional independence, which enables factorization of a multidimensional
probability distribution into small parts (marginals, conditionals or just factors).

It is easy to realize that if we need efficient methods for representation of
probability distributions (requiring an exponential number of parameters), so
much greater is the need of an efficient tool for representation of belief functions,
which cannot be represented by a distribution (but only by a set function), and
therefore the space requirements for its representation are superexponential. To
solve this problem many conditional independence concepts have been proposed
[3,8,11].
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However, another problem appears when one tries to construct an evidential
counterpart of Bayesian network: problem of conditioning, which is not suffi-
ciently solved in evidence theory. There exist many conditioning rules [6], but is
any of them compatible with our [8] conditional independence concept? In [16]
we dealt with two conditioning rules and studied the relationship between con-
ditional irrelevance based on them and our notion of conditional independence
[8], but the results were not satisfactory. Therefore, in this paper we propose a
new conditioning rule which seems to be more promising.

The contribution is organized as follows. After a short overview of necessary
terminology and notation (Section 2), in Section 3 we recall two conditioning
rules and introduce the new one. In Section 4 the above-mentioned concept of
conditional independence is recalled, a new concept of conditional irrelevance is
presented and the relationship between conditional independence and conditional
irrelevance is studied.

2 Basic Concepts

In this section we briefly recall basic concepts from evidence theory [12] concern-
ing sets and set functions.

2.1 Set Projections and Extensions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, each
Xi having its values in a finite set Xi. In this paper we will deal with a multidi-
mensional frame of discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N) XK =×i∈KXi.
When dealing with groups of variables on these subframes, XK will denote a

group of variables {Xi}i∈K throughout the paper.
A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i.e.

for K = {i1, i2, . . . , ik}
x↓K = (xi1 , xi2 , . . . , xik) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A
into XM :1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.
In addition to the projection, in this text we will also need an inverse operation
usually called cylindrical extension. The cylindrical extension of A ⊂ XK to XL

(K ⊂ L) is the set
A↑L = {x ∈ XL : x↓K ∈ A}.

Clearly, A↑L = A×XL\K .

1 Let us remark that we do not exclude situations where M = ∅. In this case A↓∅ = ∅.
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A more complicated case is to make common extension of two sets, which will
be called a join. By a join2 of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N) we
will understand a set

A �� B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆ C↓K �� C↓L, but generally
C �= C↓K �� C↓L.

Let us also note that if K and L are disjoint, then the join of A and B is just
their Cartesian product A �� B = A × B, if K = L then A �� B = A ∩ B. If
K ∩ L �= ∅ and A↓K∩L ∩B↓K∩L = ∅ then also A �� B = ∅. Generally,

A �� B = (A×XL\K) ∩ (B ×XK\L),

i.e. a join of two sets is the intersection of their cylindrical extensions.

2.2 Set Functions

In evidence theory [12] (or Dempster-Shafer theory) two dual measures are used
to model uncertainty: belief and plausibility measures. Both of them can be
defined with the help of another set function called a basic (probability or belief)
assignment m on XN , i.e. ,

m : P(XN ) −→ [0, 1],

where P(XN ) is power set of XN and
∑

A⊆XN
m(A) = 1. Furthermore, we

assume that m(∅) = 0.
A set A ∈ P(XN ) is a focal element if m(A) > 0. Let F denote the set of all

focal elements, a focal element A ∈ F is called an m−atom if for any B ⊆ A
either B = A or B ∈/ F . In other words, an m− atom is a setwise-minimal focal
element.

Belief and plausibility measures are defined for any A ⊆ XN by the equalities

Bel(A) =
∑

B⊆A

m(B), P l(A) =
∑

B∩A 	=∅
m(B),

respectively.
For a basic assignment m on XK and M ⊂ K, a marginal basic assignment

of m on XM is defined (for each A ⊆ XM ) by the equality

m↓M (A) =
∑

B⊆XK

B↓M=A

m(B). (1)

Analogously we will denote by Bel↓M and Pl↓M marginal belief and plausibility
measures on XM , respectively.

2 This term and notation are taken from the theory of relational databases [1].
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3 Conditioning

Conditioning belongs to the most important topics of any theory dealing with
uncertainty. From the viewpoint of the construction of Bayesian-network-like
multidimensional models it seems to be inevitable.

3.1 Conditioning of Events

In evidence theory the “classical” conditioning rule is the so-called Dempster’s
rule of conditioning defined for any ∅ �= A ⊆ XN and B ⊆ XN such that
Pl(B) > 0 by the formula

m(A|DB) =

∑

C⊆XN :C∩B=A

m(C)

Pl(B)

and m(∅|DB) = 0.
From this formula one can immediately obtain:

Bel(A|DB) =
Bel(A ∪BC)−Bel(BC)

1−Bel(BC)
,

P l(A|DB) =
Pl(A ∩B)

Pl(B)
. (2)

This is not the only possibility how to perform conditioning, another — in a way
symmetric — conditioning rule is the following one called focusing defined for
any ∅ �= A ⊆ XN and B ⊆ XN such that Bel(B) > 0 by the formula

m(A|FB) =

⎧
⎨

⎩

m(A)

Bel(B)
if A ⊆ B,

0 otherwise.

From the following two equalities one can see, in which sense are these two
conditioning rules symmetric:

Bel(A|FB) =
Bel(A ∩B)

Bel(B)
, (3)

Pl(A|FB) =
Pl(A ∪BC)− Pl(BC)

1− Pl(BC)
.

Formulae (2) and (3) are, in a way, evidential counterparts of conditioning in prob-
abilistic framework. Let us note that the seemingly “natural” way of conditioning

m(A|PB) =
m(A ∩B)

m(B)
(4)

is not possible, since m(A|PB) need not be a basic assignment. It is caused by
a simple fact that m, in contrary to Bel and Pl is not monotonous with respect
to set inclusion. A simple counterexample can be found in [16].
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Nevertheless, in Bayesian-networks-likemultidimensional models we need con-
ditional basic assignments (or beliefs or plausibilities) for variables. This problem
will be in the center of our attention in the next subsection.

3.2 Conditional Variables

In [16] we presented the following two definitions of conditioning by variables,
based on Dempster conditioning rule and focusing.

Let XK and XL (K∩L = ∅) be two groups of variables with values in XK and
XL, respectively. Then the conditional basic assignment according to Dempster’s
conditioning rule of XK given XL ∈ B ⊆ XL (for B such that Pl↓L(B) > 0) is
defined as follows:

mXK |DXL
(A|DB) =

∑

C⊆XK∪L:(C∩B↑K∪L)↓K=A

m(C)

Pl↓L(B)

for A �= ∅ and mK|L(∅|B) = 0. Similarly, the conditional basic assignment ac-

cording to focusing of XK given XL ∈ B ⊆ XL (for B such that Bel↓L(B) > 0)
is defined by the equality

mXK |FXL
(A|FB) =

∑

C⊆XK∪L:C⊆B↑K∪L&C↓K=A

m(C)

Bel↓L(B)

for any A �= ∅ and mK|FL(∅|FB) = 0.
In the above-mentioned paper we proved that these definitions are correct,

i.e. these rules define (generally different) basic assignments. Nevertheless, their
usefulness for multidimensional models is rather questionable, as we shall see in
Section 4.3.

Therefore, in this paper we propose a new conditioning rule which is, in a
way, a generalization of (4). Although we said above, that it makes little sense
for conditioning events, it is sensible in conditioning of variables, as expressed by
Theorem 1 below. The above-mentioned problem of non-monotonicity is avoided,
because a marginal basic assignment is always greater (or equal) to the joint one.

Definition 1. Let XK and XL (K ∩ L = ∅) be two groups of variables with
values in XK and XL, respectively. Then the conditional basic assignment of
XK given XL ∈ B ⊆ XL (for B such that m↓L(B) > 0) is defined as follows:

mXK |PXL
(A|PB) =

∑

C⊆XK∪L:

C↓K=A&C↓L=B

m(C)

m↓L(B)
(5)

for any A ⊆ XK .

Now, let us prove that this definition is makes sense.
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Theorem 1. The set function mXK |PXL
defined for any fixed B ⊆ XL, such

that m↓L(B) > 0 by Definition 1 is a basic assignment on XK .

Proof. LetB ⊆ XL be such thatm↓L(B) > 0.Asnonnegativity ofmXK|pXL
(A|pB)

for any A ⊆ XK and the fact that mXK |pXL
(∅|pB) = 0 follow directly from the

definition, to prove thatmXK |pXL
is a basic assignment it is enough to show that

∑

A⊆XK

mXK |PXL
(A|PB) = 1.

To check it, let us sum the values of the numerator in (5)

∑

A⊆XK

∑

C⊆XK∪L:

C↓K=A&C↓L=B

m(C) =
∑

C⊆XK∪L

C↓L=B

m(C)

= m↓L(B),

where the last equality follows directly from (1). ��

4 Conditional Independence and Irrelevance

Independence and irrelevance need not be (and usually are not) distinguished
in the probabilistic framework, as they are almost equivalent to each other.
Similarly, in possibilistic framework adopting De Cooman’s measure-theoretical
approach [7] (particularly his notion of almost everywhere equality) we proved
that the analogous concepts are equivalent (for more details see [13]).

4.1 Independence

In evidence theory the most common notion of independence is that of random
set independence [5].3 It has already been proven [14,15] that it is also the only
sensible one, as e.g. application of strong independence to two bodies of evidence
may generally lead to a model which is beyond the framework of evidence theory.

Definition 2. Let m be a basic assignment on XN and K,L ⊂ N be disjoint.
We say that groups of variables XK and XL are independent with respect to a
basic assignment m (in notation K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K ×A↓L, and m(A) = 0 otherwise.

This notion can be generalized in various ways [3,11,15]; the concept of condi-
tional non-interactivity from [3], based on conjunction combination rule, is used
for construction of directed evidential networks in [4]. In this paper we will use

3 Klir [9] calls it non-interactivity.
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the concept introduced in [8,15], as we consider it more suitable: in contrary to
other conditional independence concepts [3,11] it is consistent with marginaliza-
tion, in other words, the multidimensional model of conditionally independent
variables keeps the original marginals (for more details see [15]).

Definition 3. Letm be a basic assignment onXN andK,L,M ⊂ N be disjoint,
K �= ∅ �= L. We say that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if
the equality

m↓K∪L∪M(A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M �� A↓L∪M , and m(A) = 0
otherwise.

It has been proven in [15] that this conditional independence concept satisfies
so-called the semi-graphoid properties taken as reasonable to be valid for any
conditional independence concept (see e.g. [10]) and it has been shown in which
sense this conditional independence concept is superior to previously introduced
ones [3,11].

4.2 Irrelevance

Irrelevance is usually considered to be a weaker notion than independence (see
e.g. [5]). It expresses the fact that a new piece of evidence concerning one variable
cannot influence the evidence concerning the other variable, in other words is
irrelevant to it.

More formally: a group of variables XL is irrelevant to XK (K ∩L = ∅) if for
any B ⊆ XL such that Pl↓L(B) > 0 (or Bel↓L(B) > 0 or m↓L(B) > 0)

mXK |XL
(A|B) = m(A) (6)

for any A ⊆ XK .4

It follows from the definition of irrelevance that it need not be a symmetric
relation. Its symmetrized version is sometimes taken as a definition of indepen-
dence. Let us note, that in the framework of evidence theory neither irrelevance
based on Dempster conditioning rule nor that based on focusing even in cases
when the relation is symmetric, imply independence, as can be seen from exam-
ples in [16].

Generalization of this notion to conditional irrelevance may be done as follows.
A group of variables XL is conditionally irrelevant to XK given XM (K,L,M
disjoint, K �= ∅ �= L) if

mXK |XLXM
(A|B) = mXK |XM

(A|B↓M ) (7)

is satisfied for any A ⊆ XK and B ⊆ XL∪M .

4 Let us note that somewhat weaker definition of irrelevance one can found in [2], where
equality is substituted by proportionality. This notion has been later generalized
using conjunctive combination rule [3].
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Let us note that the conditioning in equalities (6) and (7) stands for an ab-
stract conditioning rule (any of those mentioned in the previous section or some
other [6]). Nevertheless, the validity of (6) and (7) may depend on the choice of
the conditioning rule, as we showed in [16] — more precisely irrelevance with
respect to one conditioning rule need not imply irrelevance with respect to the
other.

4.3 Relationship between Independence and Irrelevance

As mentioned at the end of preceding section, different conditioning rules lead
to different irrelevance concepts. Nevertheless, when studying the relationship
between (conditional) independence and irrelevance based on Dempster condi-
tioning rule and focusing we realized that they do not differ too much from each
other, as suggested by the following summary.

For both conditioning rules:

– Irrelevance is implied by independence.
– Irrelevance does not imply independence.
– Irrelevance is not symmetric, in general.
– Even in case of symmetry it does not imply independence.
– Conditional independence does not imply conditional irrelevance.

The only difference between these conditioning rules is expressed by the following
theorem proven in [16]

Theorem 2. Let XK and XL be conditionally independent groups of variables
given XM under joint basic assignment m on XK∪L∪M (K,L,M disjoint, K �=
∅ �= L). Then

mXK |FXLXM
(A|FB) = mXK |FXM

(A|FB↓M ) (8)

for any m↓L∪M-atom B ⊆ XL∪M such that B↓M is m↓M -atom and A ⊆ XK .

From this point of view focusing seems to be slightly superior to Dempster
conditioning rule, but still it is not satisfactory.

Now, let us make an analogous investigation for irrelevance based on the new
conditioning rule introduced by Definition 1.

Theorem 3. Let K,LM be disjoint subsets of N such that K,L �= ∅. It XK and
XL are independent given XM (with respect to a joint basic assignment m defined
on XK∪L∪M), then XL is irrelevant to XK given XM under the conditioning
rule given by Definition 1.

Proof. Let XK and XL be conditionally independent given XM then for any
A ⊆ XK∪L∪M such that A = A↓K∪M �� A↓L∪M

m(A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )
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and m(A) = 0 otherwise. From this equality we immediately obtain that for all
A such that m↓L(A↓L∪M ) > 0 (it implies that also m↓M (A↓M ) > 0) equality

m(A)

m↓L∪M (A↓L∪M )
=

m↓K∪M (A↓K∪M )

m↓M (A↓M )

is satisfied. Let us note that the left-hand side of the equality is equal to
mXK |XL∪M

(A↓K |A↓L∪M ), while the right-hand side equals mXK |XM
(A↓K |A↓L),

which means, that XL is irrelevant to XK . ��
The reverse implication is not valid, as can be seen from the next example.

Example 1. LetX1 andX2 be two binary variables (with values inXi = {ai, āi})
with joint basic assignment m defined as follows:

m({(a1, a2)}) = 1

4
,

m({a1} ×X2) =
1

4
,

m(X1 × {a2}) = 1

4
,

m(X1 ×X2 \ {(ā1, ā2)}) = 1

4
.

From these values one can obtain

m↓2({a2}) = m↓2(X2) =
1

2
.

Evidently, it is not possible to condition by {ā2} and we have to confine ourselves
to conditioning by {a2}:

mX1|PX2
({a1}|P {a2}) = 1

2 = m↓1({a1}),
mX1|PX2

({ā1}|P {a2}) = 0 = m↓1({ā1}),
mX1|PX2

(X1|P {a2}) = 1
2 = m↓1(X1),

i.e. X2 is irrelevant to X1,
5 but X1 and X2 are not independent, as the focal

element X1 ×X2 \ {(ā1, ā2)} is not a rectangle. ♦
Theorem 3 and Example 1 express the expected property: conditional indepen-
dence is stronger than conditional irrelevance. Nevertheless, it is evident from
the example, that irrelevance (with respect to this conditioning rule) does not
imply independence even in case of symmetry.

5 Conclusions

We introduced a new conditioning rule for variables in evidence theory, proved
its correctness and showed that conditional irrelevance based on this condition-
ing rule is implied by recently introduced conditional independence. From this

5 Since we can interchange X1 and X2, it is evident that also X1 is irrelevant to X2.
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viewpoint, it is superior to previously suggested conditioning rules. It will enable
us to decompose multidimensional models in evidential framework into condi-
tional basic assignments in a way analogous to Bayesian networks in probabilistic
framework.
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