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When dealing with practical problems in the field of artificial intelligence, one rnust cope with
two basic issues: rnultidimensionality and uucertainty. The most widely used technique for it
at present is offered by graphical modelling, sometimes characterised as a "marriage between
probability theory and graph theory" [3], as it combines methodologies of both theories.

Nevertheless, it is well-known that (precise) probability theory is not always the optirnal tool
for modelling uncertainty, as it is not able to express imprecision (or even ignorance). Therefore
many alternative theories for uncertainty modeling have emerged in receut decades. Among
them, possibility theory is the most similar (from the formal point of view) to probability
theory. Therefore, it seems quite natural that possibilistic graphical models have been studied
since the early 1990s (e.g. [1, 2]).

In this contribution we will present a non-graphical approach (parameterised by a continuous
t-norm) to tbe constructiou of multidimensional possibilistic models řrorn sequences of low-
dimensional ones, We will show that any of the previously presented graphical models, i.e.,
possibilistic trees, dependence trees and possibilistic belief networks (or possibilistic directed
graphs), can be expressed using this technique. Furthermore, the dependence structure of these
models can be visualised by their transformation into possibilistic belief networks.

Nevertheless, these models may differ from each other for different t-norms regarding two
points of view. One of thern is consistency with marginals: it rnay happen that application of
the operator of composition based on, e.g., Codel's t-norm, leads to a model consistent with
the given marginals, while the sarne need not be true for that based OH, e.g., product r-norm.
This is caused by different conditional independence concepts induced by these rnodels.

Another difference may even appear in the case of consistency of the resulting model with
its rnarginals if we use it for decision making. Again, the optimal decision functions may be
mutually different. Therefore probabilistic interpretation of these models must also be discussed
to reveal the substance of these clifferences and to help us choose the proper model.
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