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To perform efficient inference in Bayesian networks bymeans of a Junction Treemethod, the

network graph needs to be triangulated. The quality of this triangulation largely determines

the efficiency of the subsequent inference, but the triangulation problem is unfortunately

NP-hard. It is common for existingmethods to use the treewidth criterion for optimality of a

triangulation.However, this criterionmay lead toa somewhatharder inferenceproblemthan

the total table size criterion. We therefore investigate new methods for depth-first search

and best-first search for finding optimal total table size triangulations. The search methods

are made faster by efficient dynamic maintenance of the cliques of a graph. This problem

was investigated by Stix, and in this paper we derive a new simple method based on the

Bron–Kerbosch algorithm that compares favourably to Stix’ approach. The new approach is

generic in the sense that it can be used with other algorithms than just Bron–Kerbosch. The

algorithms for finding optimal triangulations are mainly supposed to be off-line methods,

but they may form the basis for efficient any-time heuristics. Furthermore, the methods

make it possible to evaluate the quality of heuristics precisely and allow us to discover parts

of the search space that are most important to direct randomized sampling to.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks [1] have over the last decades shown that they are among the most important AI techniques and

have enjoyedwide-spread use in industry as well as in academia. However, to perform efficient exact inference in a Bayesian

network, the underlying network oftenneeds to be compiled into a special data structure named a Junction Tree. The creation

of an efficient Junction Tree requires that we find a very cost efficient triangulation of the graph of the Bayesian network [2].

It is this triangulation problem that we address in this paper.

Triangulation algorithms aim at minimizing different criteria. The most common are the fill-in, the treewidth and the

total table size criteria. The fill-in criterion requires the triangulated graph to have theminimum total number of fill-in edges.

The treewidth of a graph is the size of the largest cliqueminus one, and the treewidth criterion requires the triangulated graph

to haveminimum treewidth. The total table size criteria requires the triangulated graph to have theminimum total table size.

Commonly seen triangulation heuristics includemin-fill, min-width andmin-weight which all greedily pick the next vertex

to eliminate based on a local (myopic) score. In min-fill a vertex is chosen if its elimination leads to the fewest fill-in edges;

in min-width a vertex is chosen if it has the fewest number of neighbours; in min-weight a vertex v is chosen if the product

of the cardinalities of the state spaces of variables corresponding to the vertex and its neigbours in the graph is minimal [3].
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We consider the problem of finding optimal total table size triangulations of Bayesian networks. We solve this problem

by searching the space of all possible triangulations. This search is carried out by trying all possible elimination orders and

choosing one of those that have a minimal total table size. Of all commonly-used optimality criteria, the total table size

yields the most exact bound of the memory and time requirement of the probabilistic inference. However, finding optimal

triangulations is difficult. The decision problems of determining if a graph has treewidth less or equal to a given constant k,

determining if a graph has a triangulationwith a fill-in of size less or equal to k, and determining if a graph has a triangulation

with total table size less or equal to k are all NP-complete. The optimization problems of finding a triangulationwithminimal

treewidth, fill-in, or total table size are all NP-hard. See [4] for the minimum fill-in problem and [5] for triangulation with

minimal total table size.

There are several issues thatmotivate an investigation of this problem. Since theproblem isNP-hard,we cannot expect the

problem to be solvable in a reasonable amount of time for large networks. However, triangulation can always be performed

off-line on specialized servers and saved for use by the inference algorithms. This is important as intractability or simply

poor performance is a major obstacle to more wide-spread adoption of Bayesian networks and decision graphs in statistics,

engineering and other sciences. Furthermore, efficient off-line algorithms allowus to evaluate the quality of on-linemethods

which can otherwise only be compared to other on-line methods. An off-line method, on the other hand, can effectively

answer whether the subsequent inference can ever be tractable. Finally, off-line methods can often be turned into good

any-time heuristics, for example in the spirit of [6].

Previous research on triangulation has also used best-first search [7] and depth-first search [8], however, the optimality

criteria is the treewidth of the graph and so the found triangulation is (in the best case) only guaranteed to bewithin a factor

of n (n being the number of vertices of the graph) from the optimal total table size triangulation—this factor could mean the

difference between an intractable and a tractable inference. With the treewidth optimality criterion, one can continuously

apply the preprocessing rules of [9], but for the total table size criterion we can (so far) only remove simplicial vertices

which makes this problem considerably harder. The seminal idea of divide-and-conquer triangulation using decomposable

subgraphs dates back to Tarjan [10]. Leimer refines this approach such that the generated subgraphs are not themselves

decomposable (i.e., they aremaximal prime subgraphs and this unique decomposition is denoted amaximal prime subgraph

decomposition) [11]. Basically, this means that the problem of triangulating a graph G is nomore difficult than triangulating

the largest maximal prime subgraph of G. This decomposition is exploited in [12].

In [13] a dynamic programming algorithm is given based on decompositions by minimal separators, and again the

optimality criterion is treewidth. As noted by its authors, the method may be adopted to yield an optimal total table size

triangulation as well. Finally, an overview of triangulation approaches is given in [14].

This paper is an extended version of two papers [15,16] presented at The Fifth European Workshop on Probabilistic

Graphical Models (PGM 2010) in Helsinki.

2. Preliminaries

We shall use the following notation and definitions. G = (V, E) is an undirected graph with vertices V (also written as

V(G)) and edges E (also written as E(G)). For a set of edges F, V(F) is the set of vertices {u, v : {u, v} ∈ F}. ForW ⊆ V, G[W]
is the subgraph induced byW . Two vertices u and v are connected in G if there is an edge between them. A graph G is complete

if all pairs of vertices {u, v} (u �= v) are connected in G. A set of verticesW ⊆ V is complete in G if G[W] is a complete graph.

The neighbours nb(v, G) of a vertex v ∈ V is the setW ⊆ V such that each u ∈ W is connected to v. The family fa(v, G) of a
vertex v is the set nb(v, G) ∪ {v}, and the neighbours and the family of a set of vertices is defined similarly.

IfW is complete and no complete set U exists such thatW ⊂ U, thenW is a clique. (Remark: note that any complete set

is sometimes called a clique; then what we defined as a clique is called a maximal clique.) The set of all cliques of a graph

is denoted C(G) and the set of all cliques that intersects with a set of vertices W is denoted C(W, G). For a single vertex v

we also allow the notation C(v, G). If G′ = (V, E ∪ F) is the graph resulting from adding a set of new edges F to G, then

RC(G, G′) = C(G) \ C(G′) is the set of removed cliques, and NC(G, G′) = C(G′) \ C(G) is the set of new cliques. Figure 1

illustrates these concepts. Finally, a complete set of vertices C in G′ is called a clique candidate for G′.
The table sizeof a cliqueC is givenby ts(C) = ∏

v∈C |sp(v)|where sp(v)denotes the state space thevariable corresponding

to v in the Bayesian network. 1 Finally, the total table size of a graph G is given by tts(G) = ∑
C∈C(G) ts(C).

An undirected graph is triangulated (or chordal) if every cycle of length greater than 3 has a chord (that is, an edge

connecting two non-adjacent vertices on the cycle). For example, in Fig. 1 the graph on the left is not triangulated whereas

the graph on the right is triangulated. A triangulation ofG is a set of edges T such that T ∩E = ∅ and the graphH = (V, E∪T )

is triangulated. T is aminimal triangulation if no T
′ ⊂ T exists such that H

′ = (V, E ∪ T
′
) is triangulated. We denote the set

of all minimal triangulations of a graph G for T (G).
The elimination of a vertex v ∈ V of G = (V, E) is the process of removing v from G and making nb(v, G) a complete

set by adding missing edges between nodes in nb(v, G). The added edges are called fill-in edges. For example, in Fig. 2 (left),

eliminating the vertex 6 induces the two fill-in edges shown with dotted edges in the adjacent graph. The elimination of a

1 We assume sp(v) ≥ 2 for all variables v since variables with sp(v) < 2 can be omitted from the Bayesian network.
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Fig. 1. Left: The initial graph G = (V, E). Right: The updated graph G′ . We have C(G) = E and C(G′) = {{1, 2, 3, 4}, {3, 5, 6}, {3, 4, 6}}. So in this example we

have RC(G, G′) = C(G) and NC(G, G′) = C(G′).

Fig. 2. Example of the fill-in edges and partially triangulated graphs induced by an elimination order that starts with the sequence 〈6, 4〉: the dotted edges are

fill-in edges. Left: the initial graph. Middle left: the fill-in edges induced by eliminating vertex 6. Middle right: the fill-in edges induced by eliminating vertex 4.

Right: the final triangulated graph.

vertex induces a new graphH = (V, E∪F)[V \{v}]where F is the set of fill-in edges added toG tomake nb(v, G) a complete

set. If F = ∅, then v is a simplicial vertex.

An elimination order of G = (V, E) is a bijection f : V → {1, 2, . . . , |V|} prescribing an order for eliminating all vertices

of G. If a graph G = (V, E) is not triangulated, then wemay triangulate it using any given elimination order f by considering

the nodes in V in the order defined by f and sequentially adding fill-in edges to G so that after considering node v the set

B(v) = {w ∈ nb(v, G) : f (w) > f (v)}
induces a complete subgraph in the extended graph. The union of all the fill-in edges is a triangulation of G.

3. Searching for a triangulation of minimal total table size

In this section we shall discuss how we may search among all minimal triangulations and be guaranteed that a triangu-

lation of the minimal total table size is always included in the set of minimal triangulations. Furthermore, we prove that the

total table size of a graph must be monotonely increasing when edges are added to the graph. If these facts were not the

case, the methods presented in Section 5 could not be admissible.

The following lemma [17, Lemma 1] relates minimal triangulations with elimination orders.

Lemma 1. Let T be a minimal triangulation of G. Then there exists an elimination order f of G such that the union of all the fill-in

edges is T .

In this way each minimal triangulation T of G corresponds to at least one elimination order, and we may explore the

space T (G) by investigating all possible elimination orders.

By adding edges we can never lower the total table size. We state this formally in Lemma 3. This lemma is essentially

Lemma 4 in [18] but for completeness (and necessity) we provide a more general statement that is valid for any graph

(instead of graphs that are already triangulated). In the proof we use Lemma 2.

Lemma 2. By removing an edge {u, v} from a clique C ⊇ {u, v}we create at most two new cliques {u} ∪W and {v} ∪W where

W = C \ {u, v}.
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Proof. Obviously C is not a complete set anymore. Sets {u} ∪ W and {v} ∪ W are complete and they are cliques if there is

not any other complete set containing them in the graph. There are no other subsets of C that would not be subsets of either

{u} ∪ W or {v} ∪ W . �

Lemma 3. Assume an undirected graph G = (V, E) with |sp(v)| ≥ 2 for all v ∈ V. By adding an edge to G the value of the total

table size criteria cannot decrease.

Proof. By adding an edge {u, v} we can either:

• join two cliques C1 = {u} ∪ W and C2 = {v} ∪ W into one clique C = {u, v} ∪ W ,
• create a new clique that replaces one original clique, either clique {u} ∪ W or {v} ∪ W replaces W ∈ C(G), or
• create a new clique without removing any.

Since removing and adding edges are symmetric operations it follows from Lemma 2 that no other cases are possible. In the

first case we can write:

ts({u, v} ∪ W)

= |sp(u)| · |sp(v)| · ∏

w∈W

|sp(w)|

= 1

2
|sp(u)| · |sp(v)| · ∏

w∈W

|sp(w)| + 1

2
|sp(u)| · |sp(v)| · ∏

w∈W

|sp(w)|

≥ |sp(v)| · ∏

w∈W

|sp(w)| + |sp(u)| · ∏

w∈W

|sp(w)|
= ts({u} ∪ W) + ts({v} ∪ W).

In the second case:

ts({w} ∪ C) = |sp(w)| · ∏

x∈C

|sp(x)| > ts(C),

where w is either u or v. Clearly, also in the third case the total table size must increase. �

A consequence of Lemma 3 is that in order to find a triangulation minimizing the total table size criteria, it is sufficient

to search among minimal triangulations [18, Lemma 5]:

Lemma 4. Assume an undirected graph G = (V, E) with |sp(v)| ≥ 2 for all v ∈ V. Then there exists a minimal triangulation

that also minimizes the total table size criteria.

It follows from Lemma 1 that this can be accomplished by investigating all possible elimination orders, which is also the

assertion of Theorem 4 in [18].

4. The search space for triangulation algorithms

Our goal is to explore the space T (G) encoding all possible minimal ways to triangulate a graph G in. To do this, we

generate a search graph dynamically (on-demand) where each node corresponds to a subset of V being eliminated from G,

and where each edge is labeled with the particular vertex that has been eliminated. (Note that we exclusively use the term

“node” for vertices in the search graph whereas the term “vertex” is used exclusively for vertices in the undirected graph

being triangulated.) In the start node s no vertices have been eliminated, and in a goal node t all vertices have been eliminated

and the graph G has been triangulated.

Since we are seeking optimal total table size triangulations we also need to associate this quantity with each node. By

definition, the total table size is easy to compute if we know the cliques of the partially triangulated graph, and therefore we

also need to associate this graph with each node. Below we give a small example of a path in the search space—in Section 6

we shall explain the algorithms in detail.

Example1. Consider thegraphs in Fig. 2 andassume that all variables (in theoriginal Bayesiannetwork) arebinary. Thegraph

associatedwith the start node swould be the graph on the left and this graph has a total table size of 22+22+22+23+23 =
28.

The graph associated with a successor node m of s (corresponding to the elimination of vertex 6) would correspond to

the graph in the middle (left) (including dotted edges) with total table size 22 + 22 + 23 + 24 = 32.
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And the successor node ofm (corresponding to the elimination of vertex 4) would be associated with graph on the right,

which is also a goal node, with total table size 23 + 24 + 24 = 40. Note that when introducing fill-in edges, we must not

add edges to vertices that have already been eliminated—this is why this step does not add the edge {2, 6} even though the

vertices are both neighbours of vertex 4.

By adding edges we can never lower the total table size (cf. Lemma 3). As a consequence, the total table size of a node

is never higher than the total table size of its successor node(s). This implies that the total table size associated with any

non-goal node n is a lower-bound on the total table size of any goal node that may be discovered from n. This property

guarantees that the algorithms in Section 6 are admissible.

5. Maintaining cliques of a dynamic graph

In this section we consider the problem of maintaining the set of cliques of a dynamic undirected graph. The graph is

dynamic in the sense that edges can be removed and added, but the set of vertices is invariant. When we add a new set of

edges, we call the problem incremental, and when we remove a set of edges, we call the problem decremental. Finding all

the cliques of a static graph is a hard problem: determining whether there is a clique of size k in a graph is NP-complete [19]

and listing all the cliques may require exponential time as there exists graphs with exponentially many cliques [20]—albeit

it is solvable in polynomial time for many classes of graphs. However, in this work we shall consider the initial set of cliques

for given (several well-known algorithms exists for this purpose).

Previous research has been motivated by fuzzy clustering [21], but we have another application in mind. Specifically, our

motivation is to find optimal triangulations of Bayesian networks with respect to the total table size criterion by using a

best-first or depth-first search. This requires a lower bound on the total table size for which we may use the total table size

of the current partially triangulated graph. In turn, this requires that we know the cliques of the current graph.

Finally, there also seem to be a growing interest in detecting cliques using graph theoretical methods in areas like com-

putational biochemistry, genomics and bioinformatics [22]. Some of these applications even ask for dynamic updates [23].

5.1. Stix’ approach to clique maintenance

Stix observed that it was somewhat expensive to recompute all cliques of a graph given that the graph had only changed

slightly. Therefore Stixderived the approachexplainedbelowand showed that it did indeedout-performa full recomputation

scheme [21].

Stix’ approach works by adding (removing) one edge at a time. To add (remove) a set of edges, the technique is simply

applied once for each edge. The technique (both for incremental and decremental problems)may be summarized as follows:

(1) Let G = (V, E) be an undirected graph, and let G′ = (V, E ∪ {{v,w}}).
(2) Initially let C = C(G).
(3) Generate a set of clique candidates K for the updated graph G′.
(4) Add/remove a candidate C ∈ K to/from C depending on whether it is a clique in G′.
(5) In the end, C equals C(G′).

The check in step (4) is shown in Algorithm 1wherewe have improved Stix’ approach by only considering the neighbours

nb(C, G′) of a clique candidate C (notice that this algorithm should be called with the updated graph G′ as its second

argument).

Stix’ algorithm is based on the following theorem:

Theorem 1 [21]. Let G = (V, E) be an undirected graph, and let G′ = (V, E ∪ {{v,w}}) be the graph after adding the edge

{v,w}. Then
1. All cliques of C(G) that do not contain v or w are in C(G′).
2. For all A ∈ C(v, G) and for all B ∈ C(w, G) we have

(a) L = A ∩ B ∪ {v,w} is a clique candidate for G′.
(b) |A \ B| = 1 �⇒ A �∈ C(G′); otherwise A is a clique candidate for G′.
(c) |B \ A| = 1 �⇒ B �∈ C(G′); otherwise B is a clique candidate for G′.

3. The set C(G′) is fully determined by statement (1) and by inspecting all the clique candidates of statement (2).

Stix’ algorithm with several improvements is presented as Algorithm 2. Notice that the first part of condition 2(b) and

2(c) is not checked in Algorithm 2.We conducted experiments with these conditions being checked, but found it to be about

40% slower. Furthermore, we accumulate clique candidates in a set to reduce the number of calls to IsClique(·).
Next we illustrate how Stix’ algorithm works in a small example.



T.J. Ottosen and J. Vomlel / International Journal of Approximate Reasoning 53 (2012) 1350–1366 1355

Algorithm 1 . Verifying a complete set C is a clique (improved version). In Stix’ original version, line 3 iterated over all

vertices in V \ C

1: function IsClique(C, G)
2: Input: A non-empty, complete set of vertices C, and a graph G.

3: for all v ∈ nb(C, G) do
4: if C ⊆ nb(v, G) then return false

5: end if

6: end for

7: return true

8: end function

Algorithm 2. Incremental clique maintenance by single-edge updates (improved version). In Stix’ original version the set

K of clique candidates was not used; instead the call to IsClique(·) was applied immediately after constructing a clique

candidate

1: function EdgeBasedUpdate(C, G, F)
2: Input: A graph G = (V, E), the set of cliques C of G, and the set of new edges F.

3: for all {u, v} ∈ F do

4: Let G′ = (V, E(G) ∪ {{u, v}})
5: Set K = ∅
6: for all A ∈ C(u, G) do � Generate clique candidates by Theorem 1

7: for all B ∈ C(v, G) do
8: Let C = A ∩ B ∪ {u, v}
9: Set K = K ∪ {C}

10: end for

11: end for

12: for all K ∈ C(u, G) ∪ C(v, G) do
13: if !IsClique(K, G′) then Set C = C \ {K}
14: end if

15: end for

16: for all K ∈ K do

17: if IsClique(K, G′) then Set C = C ∪ {K}
18: end if

19: end for

20: Set G = G′
21: end for

22: return C
23: end function

Fig. 3. The sequence of graphs considered by Stix’ algorithm (Algorithm 2) when adding the set of edges {{3, 4}, {3.5}}. Left: The initial graph—a dotted edge

indicates it is about to be added to the graph. Middle: the graph after the first edge has been added. Right: The final graph.

Example 2. Consider the graph in Fig. 3 on the left which we want to update with the set of edges {{3, 4}, {3, 5}}. When

adding the edge {3, 4}, line 7-13 in Stix’ algorithm combines the two sets of cliques C(3, G) = {{1, 3}, {3, 6}} and C(4, G) =
{{2, 4, 5}, {4, 5, 6}}. The resulting set of clique candidates is then K = {{3, 4}, {3, 4}, {3, 4}, {3, 4, 6}}. Then follows a

series of calls to IsClique(·)which determines that the clique {3, 6} must be removed from and the clique {3, 4, 6} must

be added to C .
In the second iteration we add the edge {3, 5} and get the set of candidates K = {{3, 5}, {3, 5}, {3, 4, 5}, {3, 4, 5, 6}}

and determine that the cliques {3, 4, 6} and {4, 5, 6} must be removed and the clique {3, 4, 5, 6} must be added.

The above example shows that there are two potential performance problems with Stix’ approach when adding multiple

edges:
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1. Many duplicate clique candidates are generated and existing cliques are combined multiple times, and

2. A great number of calls to IsClique(·) are needed to prune candidates and remove old cliques.

To overcome these problems, one might try to generalize Stix’ theoretical results to account for a larger set of edges being

added at one time. However, it turns out that such an approach suffers evenmore from the problems above. In the following

we shall therefore present a radically different approach that overcomes both problems, that is, an approachwhere (a) fewer

clique candidates are generated, and (b) nomaximality check is needed to determine the relevance of such clique candidates.

5.2. Clique maintenance by local search

The general idea behind this method is simple: instead of running the Bron–Kerbosch algorithm [24] (or a similar algo-

rithm for finding cliques) on the whole graph, run it on a smaller subgraph where all the new cliques appear and existing

cliques disappear. Then simply update the set of cliques based on the vertices of the subgraph and the newly found cliques.

Algorithm 3 is themodified Bron–Kerbosch algorithmwhich by using a pivot can reduce the search space (to get the original

algorithm simply exchange the iteration in line 6 with “for all v ∈ P do”). In our implementation we pick the pivot deter-

ministically as the first vertex in P because this is very easy (for alternative pivot selection strategies see [25,26]). We also

tested the techniques of [27,28], but found that the Bron–Kerbosch algorithm with pivot was much faster.

Algorithm 3. The Bron–Kerbosch algorithm with pivot. The algorithm returns the set of cliques in the graph G = (V, E)
when called with the arguments (G, ∅, V, ∅)

1: function BKWithPivot(G, R, P, X)
2: if P = ∅ and X = ∅ then return {R}
3: else

4: Let C = ∅
5: Let u = SelectPivot(P, X, G)
6: for all v ∈ P \ nb(u, G) do
7: Set P = P \ {v}
8: Let Rnew = R ∪ {v}
9: Let Pnew = P ∩ nb(v, G)

10: Let Xnew = X ∩ nb(v, G)
11: Let K = BKWithPivot(G, Rnew, Pnew, Xnew)

12: Set X = X ∪ {v}
13: Set C = C ∪ K
14: end for

15: Return C
16: end if

17: end function

To find all cliques of a graph G, the algorithm should be called with the argument tuple (G, ∅, V(G), ∅). However, an

important observation is that the algorithm can also search a subgraph G[W] for cliques by simply passing the arguments

(G, ∅,W, ∅). It is this ability that our new cliquemaintenance algorithm takes advantage of. Our new algorithm for dynamic

clique maintenance is presented in Algorithm 4, and explained in the next example.

Example 3. Consider again Fig. 3. We immediately update the graph G = (V, E) with the set of new edges {{3, 4}, {3, 5}}
(line 6). The set U becomes {3, 4, 5} and fa(U, G′) actually equals V and so we will run Bron–Kerbosch on the whole graph

(of course, for larger graphs this is rarely the case). Then we iterate through the existing cliques and remove those that

intersect with U (line 9-13)—this step only leaves the clique {1, 2} in C . Then we add all the cliques found in the subgraph

G′[fa(U, G′)] (line 14-18) if and only if they intersect with U—in this case only {1, 2} is not added. We can observe that the

clique {2, 4, 5} is both removed and added again by the algorithm.

As the above example explains, our algorithm sometimes removes and adds the same clique. This is usually not a problem

in practice, as comparison of cliques is much faster than calling IsClique(·). The correctness of the algorithm follows from

the results below.

Lemma 5. Let G = (V, E) be an undirected graph, and let G′ = (V, E ∪ F) be the graph resulting from adding a set of new edges

F to G. Let U = V(F). If C ∈ NC(G, G′), then C ⊆ fa(U, G′).

Proof. Since C is a new clique, it must contain at least two vertices from U. Since C is complete all vertices v ∈ C \ U must

be connected to some vertex in U. Hence v is a neighbour of U. �

Lemma 6. Let G and G′ be given as in Lemma 5. Then C ∈ RC(G, G′) if and only if there exists K ∈ NC(G, G′) such that C ⊂ K.
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Algorithm 4. Incremental clique maintenance by local search

1: function SetBasedUpdate(C, G, F)
2: Input: A graph G = (V, E), the set of cliques C of G, and the set of new edges F.

3: Let U = V(F)
4: Let G′ = (V, E ∪ F)
5: Let Cnew = BKWithPivot(G′, ∅, fa(U, G′), ∅)
6: for all C ∈ C do � Remove old cliques

7: if C ∩ U �= ∅ then Set C = C \ {C}
8: end if

9: end for

10: for all C ∈ Cnew do � Add new cliques

11: if C ∩ U �= ∅ then Set C = C ∪ {C}
12: end if

13: end for

14: return C
15: end function

Proof. By Lemma 5, all new cliques K ⊆ fa(U, G′). Since a newly formed clique K is the only way to remove an existing

clique C from C(G′), the result follows. �

Theorem 2. Let G, G′, F and U be given as in Lemma 5. The cliques of C(G′) can be found by removing the cliques from C(G) that
intersect with U and adding cliques of G′[fa(U, G′)] that intersect with U.

Proof. We first show we add all new cliques by considering just G′[fa(U, G′)]. By Lemma 5, this subgraph contains all the

new cliques. Furthermore, any new clique C must intersect with U; otherwise it could not contain a new edge. Therefore all

the new cliques are added.

We remove all relevant cliques if C ∈ RC(G, G′) implies C ∩ U �= ∅. So let C ∈ RC(G, G′). Assume C ∩ U = ∅; then for

each v ∈ nb(C, G) ∩ U, C �⊆ nb(v, G) (otherwise C could not be a clique in G). But then no new clique can cover C which is

a contradiction to Lemma 6. Hence C ∩ U �= ∅, and therefore we remove all relevant cliques.

Last we consider that we might also remove a clique C ∈ C(G) ∩ C(G′). Since C ∩ U �= ∅, then C ⊆ fa(U, G′), and C will

be added again when we add cliques from G′[fa(U, G′)] that intersect with U. �

Remark. Theorem 2 also implies that we can apply further pruning based on the set U in Algorithm 3. In particular, the

for-loop in line 7 can be skipped if (R ∪ P) ∩ U = ∅. We have not implemented this pruning, however.

Remark. Stix derives a second approach to deal with the decremental problem. A nice property of our approach is that it

works almost unaltered for this case (simply remove the set F of edges from the graph instead of adding them).

Remark. If Algorithm 4 is to be used with large sparse graphs, then it becomes a problem that in lines 8–11we need to scan

all existing cliques instead of just those in fa(U, G). In this case, an implementation should maintain a list of references of

cliques for each vertex. In each list should be put a reference to a clique if that clique contains the vertex, and we then only

need to scan the lists induced by U. We have not implemented this optimization either.

We report the results of experimental comparisons of algorithms for dynamic clique maintenance in Section 7.1.

6. Optimal total table size triangulation algorithms

We have now shown how we may efficiently compute the total table size for each successor m of a node n in the search

space T (G), and we have furthermore established that the total table size for a node n is a lower-bound of any possible

triangulation associated with the set of goal nodes reachable from n. Given this, we may use standard algorithms like best-

first search and depth-first search to explore the search space and at the same time be guaranteed that the algorithms

terminate with an optimal solution.

Best-first search is an algorithm that successively expands nodes with the shortest distance to the start node until a goal

node has a shorter or equally short path than all non-goal nodes. The benefit of the best-first strategy is that we may avoid

exploring paths that are far from the optimal path. The disadvantage of a best-first strategy is that the algorithmmust keep

track of a frontier (or fringe) or nodes that still needs to be explored. Depth-first search, on the other hand, explores all paths

in a depth-first manner and therefore uses only �(|V|) memory for a graph G = (V, E). However, depth-first search is

typically forced to explore more paths than best-first search.

To compute a cost for each path in the search graph, we associate the following with each node n:
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1. H = (V, E ∪ F): the original graph with all fill-in edges F accumulated along the path to n from the start node s.

2. R: the remaining graph H[V \ W] where W are the vertices of G eliminated along the path from s to n.

3. C : the set of cliques for H , C(H).
4. tts: the total table size for the graph H .

5. L: a list of vertices describing the elimination order.

To maintain tts(H) efficiently we need C(H) which in turn requires H , and we saw how this can be done in Section 5. The

graph R makes it easy to determine if the graph H is triangulated and may be computed on demand to reduce memory

requirements.

In theworst case, the complexity of any best-first searchmethod isO(β(|V|)·|V|!) (whereβ(·) is a function that describes

the per-node overhead) because we must try each possible elimination order. However, it is well known that the remaining

graph H[V \ W] is the same no matter what order the vertices in W have been eliminated in, and so we can use coalescing

of nodes and thus reduce the worst case complexity to O(β(|V|) · 2|V|) [29].
For depth-first search the complexity is often thought to remain at �(γ (|V|) · |V|!), however, at the expense of memory

we may also apply coalescing for pruning purposes. Hence, depth-first search can be made to run in O(γ (|V|) · |V|!) time

using O(2|V|) memory, but the hidden constants will be much smaller in connection with memory consumption compared

to best-first search.

Both γ (|V|) and β(|V|) take at least O(|V|3) time as they are dominated by the removal of simplicial vertices (the lookup

into the coalescing map takes O(|V|) time due to the computation of the hash-key, and the priority queue look-up for best-

first search may take O(|V|) time since the queue may become exponentially large). Getting a more precise bound on the

two functions is difficult as the complexity of maintaining the cliques and total table size depends very much on the graph

being triangulated (of course, if the graph has an exponential number of cliques, updating the cliques will dominate the

complexity; in Section 7.2 we shall see that this is often the case even though the number of cliques is far from exponential).

In Algorithm5we describe the basic best-first searchwith coalescing, and depth-first searchwith coalescing and pruning

based on the currently best path is described in Algorithm 6. We establish an initial solution via a greedy min-fill heuristic.

The idea of using an initial upper-bound (and improving it during the search) to prune non-optimal paths is well-known,

see e.g., [30]. The procedure EliminateVertex(·) simply eliminates a vertex from the remaining graph R and updates the

cliques and total table size of the partially triangulated graph H (see Section 5). The procedure EliminateSimplicial(·)
removes all simplicial vertices from the remaining graph. It is this procedure that has O(|V |3) complexity.

Algorithm 5. Best-first search with coalescing for finding an optimal triangulation of the graph G with respect to the total

table size criterion

1: function TriangulationByBFS(G)

2: Let s = (G, G, C(G), tts(G), 〈〉)
3: EliminateSimplicial(s)

4: if |V(s.R)| = 0 then return s

5: end if

6: Letmap = ∅ � Coalescing map

7: Let O = {s} � The open set

8: while O �= ∅ do

9: Let n = arg min
x∈O

x.tts � Select node to expand

10: if |V(n.R)| = 0 then return n � Return optimal goal node

11: end if

12: Set O = O \ {n}
13: for all v ∈ V(n.R) do
14: Let m = Copy(n)

15: EliminateVertex(m, v) � Update graph, cliques and tts

16: EliminateSimplicial(m) � Remove simplicial vertices

17: if map[m.R].tts ≤ m.tts then continue

18: end if

19: Set O = O \ {map[m.R]}
20: Set map[m.R] = m

21: Set O = O ∪ {m}
22: end for

23: end while

24: end function
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Algorithm 6. Depth-first search with coalescing and upper-bound pruning for finding an optimal triangulation of the graph

G with respect to the total table size criterion. In line 6 we establish an initial solution via a greedy min-fill heuristic.

1: function TriangulationByDFS(G)

2: Let s = (G, G, C(G), tts(G), 〈〉)
3: EliminateSimplicial(s)

4: if |V(s.R)| = 0 then return s

5: end if

6: Let best = MinFill(s) � Best path

7: Letmap = ∅ � Coalescing map

8: ExpandNode(s, best,map) � Start recursive call

9: return best

10: end function

11: procedure ExpandNode(n,&best,&map)

12: for all v ∈ V(n.R) do
13: Let m = Copy(n)

14: EliminateVertex(m, v) � Update graph, cliques and tts

15: EliminateSimplicial(m) � Remove simplicial vertices

16: if |V(m.R)| = 0 then � Found a goal node

17: if m.tts < best.tts then Set best = m

18: end if

19: else � Not a goal node

20: if m.tts ≥ best.tts then continue

21: end if

22: if map[m.R].tts ≤ m.tts then continue

23: end if

24: Set map[m.R] = m

25: ExpandNode(m, best,map)

26: end if

27: end for

28: end procedure

7. Results

7.1. Dynamic clique maintenance

In this section we shall compare approaches for dynamic clique maintenance. For that purpose we have used a set of

public Bayesian networks. 2 We did not moralize the initial directed network even though this might lead to a slightly more

accurate test. By taking the underlying graphwehave got seven real-world undirected graphs. 3 For each graphwe generated

10 more by successively adding 5% of the missing (undirected) edges at random (in total 77 graphs). In particular, a random

edge was generated by picking its endpoints randomly, and if the edge was missing in the graph it was added; otherwise

we continued until a missing edge was generated. We have then performed two tests on this dataset:

1. Test 1. For each graph in the dataset, add all the missing edges in isolation. The set of cliques is updated after an edge

is added. Then the edge is removed, and the next edge is added etc.

2. Test 2. For each graph in the dataset (after all initial simplicial vertices are removed), triangulate the graph by making

all vertices simplicial in some random order. The set of cliques is updated after each vertex is made simplicial.

These two test scenarios were chosen because we believe that they show the worst-case performance (the scenario of Test

1), and the expected speedup for our triangulation problem (the scenario of Test 2). For each graphwe then ran the one-edge

test (Test 1) 2000 times and simplicial-vertices test (Test 2) 3000 times (with different random order of vertices for each

run of Test 2) and saved the mean time. We have then plotted the mean time of the improved Stix’ approach divided by the

mean time of the new approach (we call this the “saving ratio”).

In Figs. 4 and 5 we have collected the results of the two tests. The total time saving ratio for various graph densities are

summarized in Table 1.

We can see that even for Test 1, the newmethod always performs better, and there is a slight tendency for the saving ratio

to rise with the size of the graph. There seems to be no clear connection between the density of the graph and the saving

ratio.

2 http://compbio.cs.huji.ac.il/Repository/networks.html.
3 The seven graphs are: Insurance, Water, Mildew, Alarm, Barley, Hailfinder, and Carpo.

http://compbio.cs.huji.ac.il/Repository/networks.html
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Fig. 4. Results for Test 1: updating the set of cliques after adding a single edge. Each cross represents the mean time of our method divided by the mean time

for the improved Stix method on a particular graph. All points are above zero, which indicates that the new approach was always faster (notice the logarithmic

y-axis).
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Fig. 5. Results for Test 2: updating the set of cliques after adding fill-in edges. Each cross represents themean time of ourmethod divided by themean time for the

improved Stix method on a particular graph. All points are above zero, which indicates that the new approach was always faster (notice the logarithmic y-axis).

For Test 2 the new method is significantly better, especially for more dense graphs. There also seems to be a clear

connection between the density of the graph and performance, with the saving ratio increasing as the density increases.

We suspect that this is because denser graphs have a tendency to require more fill-in edges per non-simplicial vertex (on

average) than sparser graphs thereby leading to more iterations for Stix’ approach.

Referring to Table 1, then we can make several observations. First, the improved version of Stix’ algorithm is between

1.5 and 7 times faster than the original algorithm. Secondly, Stix’ original algorithm often performs worse than the Bron–

Kerbosch algorithm; we are therefore unable to reproduce the results reported by Stix (Table 1 in [21]) on our set of graphs.

We speculate that Stix might not have used a pivot in the Bron–Kerbosch algorithm. Third, and perhaps a little surprising,

we see that the Bron–Kerbosch algorithm in Test 2 basically performs equally to our new algorithm for densities above 0.2
and almost as good for densities in the range [0.1, 2). Luckily, it is easy to modify Algorithm 4 to fallback dynamically to the

Bron–Kerbosch algorithmwhen fa(U, G′) becomes too large (say, |fa(U, G′)| > |V |/2). In this manner, one can combine the

strengths of both algorithms (we have not implemented this optimization).
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Table 1

Total time saving ratio for different graph densities and for different methods: original Stix’

method (origS), improved Stix’ method (imprS), Bron–Kerbosch algorithm on the whole

graph (BK), and the new approach (localBK). A value above one indicates that the second

method was faster in terms of total running time for all graphs of the specified density.

Density δ origS/BK origS/imprS imprS/localBK BK/localBK

Test 1 results

δ ∈ [0, 0.1) 0.43 1.58 1.58 5.85

δ ∈ [0.1, 0.2) 0.57 1.78 1.51 4.75

δ ∈ [0.2, 0.3) 0.83 2.54 1.32 4.04

δ ∈ [0.3, 0.4) 1.53 3.94 1.27 3.27

δ ∈ [0.4, 0.5) 2.45 6.04 1.44 3.56

δ ∈ [0.5, 0.6) 5.15 6.94 1.85 2.50

imprS/localBK BK/localBK

Test 2 results

δ ∈ [0, 0.1) 9.415 1.303

δ ∈ [0.1, 0.2) 13.596 1.076

δ ∈ [0.2, 0.3) 24.137 1.016

δ ∈ [0.3, 0.4) 40.987 0.998

δ ∈ [0.4, 0.5) 82.285 1.005

δ ∈ [0.5, 0.6) 153.930 1.000

Since our newmethod is the fastest algorithmoverall, we have used it internally in all of the algorithms that are compared

in the next section. 4

7.2. Optimal triangulation

In this section we describe experiments with the methods for optimal triangulation minimizing the total table size

criteria. We also report results of experiments with several heuristics derived from these.

For the purpose of triangulation experiments we have in addition to the 77 graphs (from Test 1 and Test 2) generated 50

random graphs with varying size and density. These graphs are special bipartite graphs that result from the application of

rank-one decomposition to BN2O networks—see [31] for details. These graphs have three characteristics: (1) they consist

solely of binary nodes, (2) they need not bemoralized after using the rank-one decomposition, and (3) bottom and top layers

are not connected. Thereby the initial graph is sparser than usual which gives triangulation algorithms more freedom (in

terms of choosing fill-in edges) when searching for a triangulation. For some of these graphs this freedom causes the simple

triangulation heuristics to terminate with triangulations that are far from optimal.

We have performed two different tests on this dataset:

1. Test 3. A comparison of depth-first search and best-first search, and

2. Test 4. A comparison between heuristic methods.

In both Tests 3 and 4 we do not perform any initial maximal prime subgraph decomposition [13] leading to harder problem

for the algorithms. For Test 4 we have implemented the following heuristic methods:

(a) Limited-branching depth-first search. This means that we only expand the n successors of a nodewhich have the lowest

total table size. For example, “limited-branch-5” expands at most five successors per node.

(b) Limited memory best-first search. Here we limit the size of the open setO to some fixed value n by removing the worst

nodes when the set is considered full. For example, “limited-mem-10k” has at most 10.000 nodes in its open set.

(c) The min-width, min-fill, and min-weight heuristics implemented so that a successor node is generated for all ties

instead of breaking ties randomly. These algorithms therefore perform a global search over all possible min-width,

min-fill, and min-weight induced triangulations, respectively. We refer to these algorithms as min-width*, min-fill*,

andmin-weight*, respectively.

The results from Test 3 are given in Fig. 6. It appears that the performance of depth-first search and best-first search is

comparable; best-first search is slightly better. In Table 2 we give summary statistics for this test. We computed the p-value

of the Wilcoxon two-sample test of the null hypothesis that the distribution of depth-first time minus best-first time is

symmetric about 0 with the alternative hypothesis being that the values for depth-first search are greater. The p-value is

0.01962, which means that the null hypothesis is rejected, that is, differences are significant at the 5% level (in favor of

best-first search being faster).

To see the importance of the efficiency of clique maintenance for the problem of finding an optimal triangulation, we

measured the percentage of the total processing time depth-first search and best-first search spent on clique maintenance.

4 All experiments in Sections 7.1 and 7.2 were conducted on a Core i7-2700k using only one 3.5 GHz core at a time. The implementation is written in C++ and

comprises about 20, 000 lines of code.



1362 T.J. Ottosen and J. Vomlel / International Journal of Approximate Reasoning 53 (2012) 1350–1366

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

BF
S 

Ti
m

e

DFS Time

The ratio of BFS and DFS running time

Fig. 6. Comparison of the running time of best-first search and depth-first search. Both algorithms terminate with an optimal triangulation. Each cross represents

a pair of running times of best-first search and depth-first search for a graph (values above the line indicate that depth-first search was faster).

Table 2

Summary statistics for exhaustive search algorithms. Each row summarizes the mean time

for graphswith n vertices. The value in parenthesis in the first column indicates the number

of graphs of that size.

Vertices (no. of graphs) Mean time of DFS Mean time of BFS

20 (10) 0.43s 0.31s

30 (20) 13.14s 12.11s

40 (10) 39.79s 38.63s

>40 (10) 212.18s 209.80s

Fastest 42% 62%
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Fig. 7. The percentage of running time spent by depth-first search on clique maintenance. Each cross corresponds to computations on one bipartite graph of a

BN2O network.

We report this percentage in Figs. 7 and 8. We can see that in the graphs with large total table size most running time is

actually spent by clique maintenance.

The results from Test 4 are given in the Table 3. Here we have run the heuristics on the 50 graphs (corresponding to BN2O

networks) from Test 3 and on 77 graphs (corresponding to Bayesian networks from the repository) from Tests 1 and 2. In the
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Fig. 8. The percentage of running time spent by best first search on cliquemaintenance. Each cross corresponds to computations on one bipartite graph of a BN2O

network.

Table 3

Results for heuristic algorithms. The first column describes the percentage of graphs that

were triangulated optimally, and the second column contains the maximum percent-wise

deviation from the total table size of an optimal triangulation. The third column indicates

total time for triangulating all graphs. Note that min-width* is equal to min-weight* for

BN2O models.

% Optimal Max %-wise deviation Total time (s)

BN2O models (50 models)

min-width* 82 23916 0.62

min-fill* 84 1322 0.45

lim.-br.-2 DFS 94 53 35.90

lim.-br.-3 DFS 98 27 85.70

lim.-br.-4 DFS 100 0 163.22

lim.-mem-100 BFS 96 2 772.84

lim.-mem-1k BFS 100 0 2115.32

Bayesian networks from the BN repository (21 models)

min-weight* 0 2372 0.05

min-width* 5 1408 0.33

min-fill* 10 931 0.20

lim.-br.-2 DFS 19 115 3.46

lim.-br.-3 DFS 62 76 25.94

lim.-br.-4 DFS 86 6 178.82

lim.-mem-100 BFS 38 261 24.01

lim.-mem-1k BFS 67 29 170.86

DFS 100 0 78737.33

results are included only 21 of these models for which all tested heuristics and depth-first search returned results in less

than one day (notice that no initial subgraph decomposition was done).

From the results for BN2O networks we can conclude that min-fill* and min-width* are quite often good heuristics, but

that their induced search spaces are too small to avoid triangulations that are far from optimal. The new heuristics seem to

avoid this pitfall. Even though the heuristics from Table 3 are not near as fast as normal greedy heuristics, they do provide

some significant insights. In particular, the results tell us which part of the search graph that is most beneficial to explore

and which parts we may well leave uninvestigated. This means that we can direct the sampling of randomized algorithms

(e.g., simulated annealing) to these parts of the search spacewhere an optimal or near-optimal solution is very likely to exist.

Firstwe shall discuss the results of theBN2Onetworks; notice that suchmodels only havebinary variables. Thereforemin-

width actually corresponds to the commonly usedmin-weight heuristic. The graphwheremin-width* found an exceedingly

poor triangulation has 40 vertices and a density around 0.36. The total table size for min-width* was 595, 634, 176, and this

means that no stochastic (breaking ties randomly) min-width heuristic can yield a triangulation that requires below some

2.4 GB of memory (assuming 4 bytes for a float). Contrast this with the optimal triangulation which leads to a memory

requirement of only 10 MB. Similarly to min-width*, in our experiments there was a different graph where min-fill* found
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an somewhat poor triangulation. It has also 40 vertices and its density is 0.36. The optimal triangulation uses less than 10

MB of memory whereas the one found by min-fill* uses more than 120 MB of memory.

If we look at the results in the second part of Table 3, we see that min-weight* is actually the worst heuristic. This must

be considered somewhat surprising as min-weight (with breaking ties randomly) is generally considered a good heuristic;

however, the running time does suggest that the search space for min-weight* is somewhat smaller than for min-fill* and

min-width* for our test graphs, which might be a consequence of a smaller number of ties to choose from at each step.

Furthermore, notice that our results do not say anything about the cardinality of the best total table size found by these

heuristics. It may be that min-fill* attains its best value only in a single elimination order, and that all other elimination

orders lead to a total table size that is worse than most elimination orders investigated by min-weight* (if one wanted to

investigate this, best-first search may be modified for such a purpose). We would also like to highlight a few of the results

from the table. The graph where min-weight*, min-width*, and min-fill* found an exceedingly poor triangulation has 32

vertices and a density around 0.39. The total table size for min-weight* was 1, 913, 187, 406, 080, and this means that no

stochastic (breaking ties randomly) min-weight heuristic can yield a triangulation that requires below some 7700 GB of

memory. Contrast this with the optimal triangulation which leads to a memory requirement of 310 GB.

7.3. Discussion

The fact that depth-first search came out nearly as fast as best-first search (sometimes even faster) must be considered

a surprise. We believe that the main reason for this is that the pruning via the coalescing map turns out to work quite

well—this pruning is the direct cause of the change in complexity from �(γ (|V|) · |V|!) to O(γ (|V|) · |V|!). The experiments

indicate that best-first search actually runs in O(γ (|V|) · 2|V|) time. Secondly, it is worth mentioning that depth-first search

only needs very few (otherwise expensive) free-store allocations.

The results of the comparison between depth-first search and best-first search should not be taken as a universal truth.

There are still improvements that can be made to both methods which may change the results in both directions.

For depth-first search we can think of two improvements. First, to further improve the pruning by the coalescing map,

thenwe should consider a hybrid best-first-depth-first schemewherewe explore themost promising paths earlier. Secondly,

it should be possible to guarantee an O(γ (|V|) · 2|V|) complexity bound by storing (in the coalescing map) the total table

size increase from the current node to the goal node. This total table size increase can be put into the coalescing map when

depth-first search returns from a recursive call.

For best-first search the most obvious enhancement would be to investigate special cache- and virtual memory friendly

data structures for the priority queue. This could have large impact on performance. Secondly, [32] uses a depth-first search

froma frontier-node to establish a lower-bound for the node in question. Such a technique can reduce the space requirements

for best-first-search exponentially in the look-ahead depth employed.

Having the above discussion in mind, we still believe that depth-first search performs surprisingly well, and that it is

worth reconsidering for the minimum treewidth criterion. In other words, the work of [8] would become very interesting

when combined with coalescing.

The experiments also reveal that many graphs are very difficult to triangulate optimally using ourmethods. For the BN20

networks, we could also generate instances that were too hard to solve in reasonable time. It appears to us that there is

no direct connection between the size and density of the graph and how hard it may be to triangulate with the technique

presented in this paper. Rather, a hard instance is characterized by having a narrow distribution of the total table size over

the different elimination orders. This forces the exhaustive search algorithms to explore almost the whole search space.

The method of Shoikhet and Geiger [13] uses decomposition based on minimal separators, and the well-known Hugin tool

builds on this idea while adopting it to minimize total table size instead of treewidth [33]. Eachminimal separator is used to

split the graph into so-called fragments which must all be optimally triangulated. These methods are therefore sensitive to

number of minimal separators rather than the narrowness of the distribution over total table sizes. In this sense we believe

that our method complements existing techniques. We leave it as further research to compare these techniques to ours,

and since these techniques also need to find optimal triangulations of fragments, it would be interesting to see if the two

approaches may be integrated.

8. Conclusion

This paper contains several contributions. First,we have described a newmethod formaintaining the cliques of a dynamic

graph and furthermore described simple ways to improve Stix’ method. The newmethod works by employing a local search

for cliques, and this local search can in principle be done by any existing clique search algorithm. The new method is both

simpler and more generic than previous methods, and experiments show that the new method performs better than the

improved Stix method, especially when adding a set of fill-in edges. The second best algorithm when adding fill-in edges

was a full recomputation via the Bron–Kerbosch algorithm with pivot, but for graph densities below 0.1, the new method

clearly wins. It follows that for large and sparse graphs, the new method can become significantly faster (especially when

considering the two non-implemented optimizations about per-vertex clique lists and fallback on Bron–Kerbosch when
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fa(U,G) becomes large). We also found that we were unable to reproduce the results reported by Stix on our test graphs, that

is, Stix’ method was slower than Bron–Kerbosch in many cases.

Secondly, we have described newmethods for finding optimal total table size triangulations of undirected graphs. Exper-

iments revealed that the methods rely heavily on efficient dynamic maintenance of the cliques of the partially triangulated

graphs. These triangulationmethods aremainly supposed to beusedoff-line, but theymayalso be transformed into any-time

heuristics.

Third, experiments show that depth-first search is almost as fast as best-first search which was quite unexpected. The

main reason is that we use pruning based on a coalescing map which lowers the time complexity from �(γ (n) · n!) to

O(γ (n) · n!) (n being the number of vertices in the graph and γ (n) being the per-node overhead). From the experiments

we can infer that this pruning is so effective that depth-first search actually runs in O(γ (n) · 2n) time. Therefore we believe

that it will be beneficial to reconsider depth-first search for triangulation with the minimum treewidth criterion [8] while

employing coalescing.

Fourth, we have examined the best-case quality of common heuristic algorithms on two different sets of graphs. The

experiments show that these heuristics will never be able to guarantee good triangulations on all types of graphs, for

example, on one model the min-width (and min-weight) heuristic would (in the best case) return a triangulation that

requires at least 2.4 GB of memory whereas the optimal solution requires only 10 MB. This shows that off-line triangulation

methods can be very beneficial in some cases.

Fifth, the results from heuristics with branching tell us which part of the search space is most beneficial to explore and

which parts we may well leave uninvestigated. In this way we can direct the sampling of randomized algorithms to these

parts of the search space where an optimal or near-optimal solution is very likely to exist.
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