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Abstract

Conditional probability tables (CPTs) of threshold functions represent a generalization
of two popular models – noisy-or and noisy-and. They constitute an alternative to these
two models in case they are too rough. When using the standard inference techniques the
inference complexity is exponential with respect to the number of parents of a variable.
In case the CPTs take a special form (in this paper it is the noisy-threshold model) more
efficient inference techniques could be employed. Each CPT defined for variables with
finite number of states can be viewed as a tensor (a multilinear array). Tensors can be
decomposed as linear combinations of rank-one tensors, where a rank one tensor is an
outer product of vectors. Such decomposition is referred to as Canonical Polyadic (CP) or
CANDECOMP-PARAFAC (CP) decomposition. The tensor decomposition offers a com-
pact representation of CPTs which can be efficiently utilized in probabilistic inference. In
this paper we propose a CP decomposition of tensors corresponding to CPTs of threshold
functions and their noisy counterparts. We performed experiments on subnetworks of the
well-known QMR-DT network generalized by replacing noisy-or by noisy-threshold mod-
els. Each generated subnetwork contained more then one hundred variables. The results
of our experiments reveal that by using the suggested decomposition of CPTs we can get
computational savings in several orders of magnitude.

1 Introduction

In many applications of Bayesian net-
works (Jensen and Nielsen, 2007), conditional
probability tables (CPTs) have a certain
local structure. Canonical models (Dı́ez and
Druzdzel, 2006) form a commonly used class
of CPTs with the local structure being defined
as a combination of a deterministic part with
independent probabilistic influence of each
parent variable, see Figure 1.

∗This work was supported by Czech Science Founda-
tion through projects 201/08/0539 and 102/09/1278.

The joint probability distribution of the
Bayesian network in Figure 1 is

P (Y |X ′1, . . . , X ′k)
k∏

i=1

P (X ′i|Xi)P (Xi) ,

where the first term P (Y |X ′1, . . . , X ′k) corre-
sponds to a deterministic function and terms
P (X ′i|Xi) to the probabilistic part (often called
noise). We can replace the Bayesian network
of Figure 1 by a model without auxiliary vari-
ables X ′1, . . . , X ′k by marginalizing them out
from the Bayesian network. The values of
P (Y |X1, . . . , Xk) can be computed from the
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Figure 1: A Bayesian network with a
canonical model with explicit deterministic
part P (Y |X ′1, . . . , X ′k) and probabilistic parts
P (X ′i|Xi), i = 1, . . . , k.

original model by

P (Y |X1, . . . , Xk) =∑
X′1

. . .
∑
X′k

P (Y,X ′1, . . . , X
′
k) ·

k∏
i=1

P (X ′i|Xi) .

Assume CPT with the state y of variable Y
being observed. As it was suggested in (Savicky
and Vomlel, 2007) we can rewrite each CPT as
a product of two-dimensional potentials ψi, i =
1, . . . , k

P (y|X1, . . . , Xk) =
∑
B

k∏
i=1

ψ(B,Xi) , (1)

where B is an auxiliary variable. This trans-
formation can be visualized by the undirected
graph given in Figure 2.

X1 X2 . . . Xk

B

Figure 2: Model of P (y|X1, . . . , Xk) after the
transformation using auxiliary variable B.

In order to guarantee the above equality, vari-
able B has to have certain number of states.

However, the equality can be always satisfied
if the number of states of B is the product of
the number of states of variables X1, . . . , Xk.
The transformation becomes computationally
advantageous if the number of states is low,
which is the case of CPTs of canonical mod-
els. It was observed in (Savicky and Vomlel,
2007) that since each CPT can be understood
as a tensor1 the minimum number of states of
B equals the rank of tensor A whose values are
defined as

Ai1,...,ik = P (y|X1 = xi1 , . . . , Xk = xik),

for all combinations of states (xi1 , . . . , xik) of
variables X1, . . . , Xk. The decomposition of
tensors into the form corresponding to the right
hand side of formula (1) has been studied for
more than forty years (Carroll and Chang,
1970; Harshman, 1970) and it is known now
as Canonical Polyadic (CP) or CANDECOMP-
PARAFAC (CP) decomposition. In (Comon et
al., 2008) it is called an outer-product decom-
position.

In this paper we deal with conditional prob-
ability tables representing one specific type
of canonical models – deterministic threshold
functions and their noisy counterparts. An
(`, k) threshold function is a function of k binary
arguments that takes the value one if at least `
out of its k arguments take value one – otherwise
the function value is zero. The noisy version al-
lows noise at the inputs of the function. The
noisy threshold models represent a generaliza-
tion of two popular models - noisy-or and noisy-
and. They constitute an alternative to noisy-or
and noisy-and in case they are too rough. The
conditional probability tables of the threshold
functions appear, for example, in medical ap-
plications of Bayesian networks (Visscher et al.,
2009; van Gerven et al., 2007; Jurgelenaite et
al., 2006; Jurgelenaite and Heskes, 2006).

For CP tensor decompositions of other canon-
ical models see Vomlel (2011) where the tensors
of `-out-of-k functions are studied and Savicky
and Vomlel (2007), where CP decompositions of

1The formal definition of a tensor can be found in the
next section.
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tensors of several other canonical models (noisy-
max, noisy-min, noisy-add, noisy-xor) are de-
scribed.

The rest of this paper is organized as follows.
In Section 2 we introduce the necessary tensor
notation, define tensors of the threshold func-
tions, and present their basic properties. Sec-
tion 3 represents the main original contribution
of this paper. We propose an algorithm for the
CP decomposition of tensors of the threshold
functions based on the upper bound of the sym-
metric rank of these tensors. In Section 4 we
conclude the paper by computational compar-
isons performed on a generalized version of the
QMR-DT network.

2 Preliminaries

Tensor is a mapping2 A : I → R, where I =
I1 × . . . × Ik, k is a natural number called the
order of tensor A, and Ij , j = 1, . . . , k are index
sets. Typically, Ij are sets of integers of cardi-
nality nj . Then we can say that tensor A has
dimensions n1, . . . , nk. In this paper all index
sets will be Ij = {0, 1}, j = 1, . . . , k.

Tensor A has rank one if it can be written as
an outer product of vectors, i. e.,

A = a1 ⊗ . . .⊗ ak ,

where aj , j = 1, . . . , k are real valued vectors of
length |Ij |.

Each tensor can be decomposed as a linear
combination of rank-one tensors:

A =
r∑

i=1

bi · ai,1 ⊗ . . .⊗ ai,k , (2)

The rank of a tensor A, denoted rank(A), is the
minimal r over all such decompositions. The de-
composition of a tensor A to tensors of rank one
that sum up to A is called CP tensor decompo-
sition.

A special class of tensors that appear in the
problems that motivated our research in this
area (Savicky and Vomlel, 2007; Vomlel, 2002)

2Often tensor values are from C. However in this
paper we will restrict them to be from R.

are tensors representing functions. In this pa-
per we will pay special attention to tensors rep-
resenting the threshold function, i.e. a Boolean
function taking value 1 if and only if ` of more
of its k inputs have value 1.

Definition 1. Tensor T (`, k) : {0, 1}k → {0, 1}
represents an (`, k)-threshold function if it holds
for (i1, . . . , ik) ∈ {0, 1}k:

T i1,...,ik(`, k) = δ(i1 + . . .+ ik ≥ `)
δ(i ≥ `) =

{
1 if i ≥ `
0 otherwise.

Example 1.

T (2, 4) =


(

0 0
0 1

) (
0 1
1 1

)
(

0 1
1 1

) (
1 1
1 1

)
 .

Tensors representing the threshold function
have certain nice properties, e. g., they are sym-
metric.

Definition 2. Tensor A : {0, 1}k → R is sym-
metric if for (i1, . . . , ik) ∈ {0, 1}k it holds that

Ai1,...,ik = Aiσ(1),...,iσ(k)
,

for any permutation σ of {1, . . . , k}.
For symmetric tensors it is possible to define

a symmetric rank as follows.

Definition 3. The symmetric rank srank(A)
of a tensor A is the minimum number of sym-
metric rank-one tensors such that their linear
combination equals A

A =
r∑

i=1

bi · ai ⊗ . . .⊗ ai︸ ︷︷ ︸
k copies

=
r∑

i=1

bi · a⊗k
i , (3)

where we adopt the notation of (Comon et al.,
2008).

Remark. It is not known whether it holds
for symmetric tensors A that rank(A) =
srank(A).
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Each symmetric tensor A : {0, 1}k → R of
rank one can be written as

A =
{

(0, a)⊗k if A0,...,0 = 0
b · (1, a)⊗k otherwise,

(4)

where a, b ∈ R.
In the following lemma we treat the border

cases with symmetric rank one.

Lemma 1. The symmetric rank of ten-
sors T (`, k) representing the respective (`, k)-
threshold function for ` ∈ {0, k} is one.

Proof.
T (k, k) = (0, 1)⊗k

T (0, k) = (1, 1)⊗k .

In the next lemma another we present a case
with a low symmetric rank equal to two.

Lemma 2. The symmetric rank of ten-
sors T (1, k) representing the respective (1, k)-
threshold function is two.

Proof.
T (1, k) = (1, 1)⊗k − (1, 0)⊗k

and there does not exist any vector a such that

T (1, k) = a⊗k .

To see this note that T (1, k)0,...,0 = 0. This
requires a = (0, a), a ∈ R. But tensor (0, a)⊗k

has all its values but the one at (1, . . . , 1) equal
to zero and thus cannot be equal to T (1, k).

3 A CP tensor decomposition

In this section we will construct a CP decom-
position of the tensor T (`, k) representing an
(`, k)-threshold function. In the previous sec-
tion we have already treated the border cases
for ` ∈ {0, 1, k}.

If we restrict the rank-one tensors in the de-
composition as defined by formula (3) to tensors
with a non-zero value at the (0, . . . , 0) position
then we can rewrite formula (3) as

A =
r∑

i=1

bi · (1, ai)⊗k , (5)

where ai, bi ∈ R, i = 1, . . . , k. Note that, gener-
ally, this restricted decomposition need not be

a minimal decomposition of A (with respect to
r). On the other hand, it can be used to pro-
vide an upper bound on the symmetric rank of
a tensor A.

It follows from formula (5) that a sufficient
condition for a symmetric decomposition of a
tensor of an (`, k)-threshold function to have
rank r is the following system of equations:

a0
1 · b1 + . . .+ a0

r · br = δ(0 ≥ `)
a1

1 · b1 + . . .+ a1
r · br = δ(1 ≥ `)

...
ak

1 · b1 + . . .+ ak
r · br = δ(k ≥ `) , (6)

which is a system of k + 1 equations with 2r
variables.

Let m ∈ N+, a = (a1, . . . , am), aj ∈ R, j ∈
{1, . . . ,m}, and V (a) be a Vandermonde matrix
m×m defined as

V (a) =


1 . . . 1
a1 . . . am

am−1
1 . . . am−1

m

 .

Further let e(`) be the vector of length k hav-
ing its values ei(`) at positions i = 1, . . . , ` equal
to zero and for i = `+ 1, . . . , k equal to one i.e.,

e(`) = (δ(0 ≥ `), . . . , δ(k − 1 ≥ `))T . (7)

A sufficient condition for the solution of the
system (6) for r = k is to solve the following
system of 3k equations. Let a = (a1, . . . , ak),
b = (b1, . . . , bk), c = (c1, . . . , ck), and a ∗ b
denote elementwise multiplication (Hadamard
product) of vectors a and b. All but the last
equation of system (6) correspond to system (8),
all but the first equation of system (6) corre-
spond to systems (9) and (10):

V (a) · b = e(`) (8)
V (a) · c = e(`− 1) (9)

c = a ∗ b . (10)

If values of ai, i = 1, . . . , k are distinct then

b = V (a)−1 · e(`) (11)
c = V (a)−1 · e(`− 1) . (12)
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Note that the explicit formula for the inverse
of the Vandermonde matrix is known. Let

p(x) =
k∏

j=1

(x− aj) and (13)

pi(x) =
∏
j 6=i

(x− aj) (14)

be polynomials in variable x. Further let
p[j], j = 1, . . . , k + 1 denote the coefficient in
the term with xj−1 of polynomial p(x) so that

p(x) =
k+1∑
j=1

p[j] · xj−1 .

Finally, let p|x=ai denote the substitution of ai

in place of x in polynomial p(x). We can write
equations (11) and (12) for i = 1, . . . , k as

bi =

∑k
j=`+1 pi[j]
pi|x=ai

(15)

ci =

∑k
j=` pi[j]
pi|x=ai

. (16)

Substituting (15) and (16) into (10) we get for
i = 1, . . . , k:

ai =
ci
bi

=

∑k
j=` pi[j]∑k

j=`+1 pi[j]
, (17)

where the right hand side depends on aj , j 6= i
only. Due to symmetry, if one equation of (17)
holds then all equations hold and the system
can be reduced to one equation only, e.g., to

ak =

∑k
j=` pk[j]∑k

j=`+1 pk[j]
, (18)

where the right hand side depends on
a1, . . . , ak−1. If we set a1, . . . , ak so that they are
pairwise distinct, ak satisfies (18), and from (11)
we compute b1, . . . , bk, which is under the above
constraints always possible, then we have a so-
lution of system (6). As a consequence we have
following lemma.

Lemma 3. The symmetric rank of a tensor
T (`, k) representing (`, k)-threshold function for
` = 2, . . . , k − 1 is at most k.

Table 1: An algorithm for the CP tensor de-
composition of tensors T (`, k) defined by for-
mula (5) for r = k.

Input: k, `
Output: (a1, . . . , ak) and (b1, . . . , bk)

Find a0 = (a1, . . . , ak) at random such that:
ai 6= aj , i 6= j∑k

j=`+1 pk[j] 6= 0

ak =
∑k
j=` pk[j]∑k
j=`+1 pk[j]

Find a = (a1, . . . , ak) minimizing κ(V (a))

subject to ak =
∑k
j=` pk[j]∑k
j=`+1 pk[j]

starting at initial point a0

For i ∈ {1, . . . , k} compute:

bi ←
∑k
j=`+1 pi[j]

pi|x=ai

Remark. Lemma 3 slightly lowers the gen-
eral upper bound for symmetric tensors
from (Comon et al., 2008, Section 4.1) for ten-
sors of (`, k)-threshold function. With complex
numbers being allowed in the decomposition
their upper bound for symmetric tensors with
all dimensions being two is k + 1.

The main contribution of this paper is the
construction of a CP tensor decomposition of
any tensor T (`, k) representing the respective
(`, k)-threshold function for ` = 2, . . . , k − 1 to
the sum of k symmetric tensors of rank-one. In
Table 1 we summarize the algorithm for the CP
decomposition defined by formula (5) for r = k.

Initial values of a1, . . . , ak−1 are drawn at ran-
dom from Gaussian distribution with mean µ =
0 and variance σ2 = 1. If (a1, . . . , ak−1) are such
that either (a1, . . . , ak) are not pairwise distinct
or
∑k

j=`+1 pk[j] = 0 then a new configuration
is generated. In our experiments, we never
had to generate new values of (a1, . . . , ak−1).
But since there is no guarantee that it cannot
happened therefore the loop is needed. From
the computational point of view it is advanta-
geous to have a defined so that the condition
number κ(V (a)) of matrix V (a) is minimized.
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Since the values of a and b can be precom-
puted one can spend some time with an opti-
mization algorithm searching for values a mini-
mizing κ(V (a)). We experimented with Nelder-
Mead method restarted from different starting
points. Note that if a1, . . . , ak are distinct then
for i = 1, . . . , k pi|x=ai 6= 0 and bi are well-
defined. Around k = 25 Vandermonde ma-
trices get easily badly conditioned. However,
in the numerical experiments we have not ob-
served any significant errors3 even in computa-
tions performed with CPTs for (`, k)-threshold
function with k = 25, 26, 274.

In the next example we will show that, gen-
erally, Lemma 3 does not provide a tight upper
bound even for ` ∈ 2, . . . , k − 1.
Example 2.

T (2, 5) = (1,−1
2

)⊗5 − 3 · (1, 1
2

)⊗5

+(1−
√

3
2

) · (1,−
√

3
2

)⊗5

+(1 +
√

3
2

) · (1,
√

3
2

)⊗5

which implies that for k = 5

srank(T (2, 5)) ≤ 4 = k − 1 < k .

On the other hand there exist tensors for
which Lemma 3 provides a tight upper bound.
Lemma 4. The symmetric rank of tensors
T (k−1, k) representing (k−1, k)-threshold func-
tion is k.

Proof. We will prove that srank(T (k− 1, k)) >
k − 1 by contradiction. Assume r = k − 1. In
this case the system (6) corresponds to

a0
1 · b1 + . . .+ a0

k−1 · bk−1 = 0
...

ak−2
1 · b1 + . . .+ ak−2

k−1 · bk−1 = 0

ak−1
1 · b1 + . . .+ ak−1

k−1 · bk−1 = 1

ak
1 · b1 + . . .+ ak

k−1 · bk−1 = 1 . (19)
3We compared one dimensional marginal probabili-

ties computed from the full CPTs with marginal proba-
bilities computed in models after CP decomposition.

4Note that computational complexity with the stan-
dard method is exponential with respect to k. Therefore
this method has difficulties with getting probabilities for
higher k.

Let a = (a1, . . . , ak−1). We can write the first
k − 1 equalities of (19) using a Vandermonde
matrix as

V (a) · b = 0 ,

which cannot hold unless the Vandermonde ma-
trix is singular, which is not the case. Note
that even if rank-one tensor of the form (0, a)⊗k

(which we excluded from formula (5)) were al-
lowed to be part of the decomposition then it
would not add any value to the left hand side
of the first k equations of system (19) since all
its values except A1,...,1 are zero. Therefore
srank(T (k− 1, k)) > k− 1. This together with
Lemma 3 implies srank(T (k − 1, k)) = k.

Due to Theorem 6 from (Savicky and Vom-
lel, 2007) the results derived for deterministic
part of canonical models can be easily com-
bined with the probabilistic part representing
the noise. See Section 3.5 in (Savicky and Vom-
lel, 2007) for details. A consequence is that the
upper bound of the symmetric rank (Lemma 3)
for tensors T (`, k) representing (`, k)-threshold
functions is also an upper bound on the rank of
their noisy counterparts.

In this section all results were derived for
P (y|X1, . . . , Xk) with y = 1. Corresponding re-
sults for y = 0 can be achieved after flipping
the values on each coordinate in tensors and in
vectors that generate the tensors of a CP de-
composition.

4 Experiments

We performed experiments with the Quick
Medical Reference - Decision Theoretic ver-
sion (QMR-DT) derived from the original
QMR (Miller et al., 1986) by (Shwe et al., 1991).
The Bayesian network of QMR-DT contains 570
diseases (variables Xi) and 4075 observations
(variables Yj). The conditional probability ta-
bles for observations given related diseases are
noisy-or models. We generalized the QMR-DT
by replacing noisy-or with noisy-threshold mod-
els. The experiments were performed with sub-
networks of QMR-DT. In the first test, we ran-
domly selected 14 observations. We included all
their parents in the generated subnetwork.
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Figure 3: A part of the QMR-DT network.

In Figure 3 we give an example of a subnet-
work of the QMR-DT network generated by two
observations and their parents. In this way we
generated forty different networks.

For each network we compared computational
complexity of the junction tree method (Jensen
et al., 1990) applied to models after two differ-
ent transformations:

• moralization and triangulation (the stan-
dard method)

• the tensor CP decomposition applied to
CPTs with number of parents higher than
four5 followed by triangulation.

We measured the computational complexity by
the total table size of models computed by
Hugin optimal triangulation6.

In the second test, we repeated the same pro-
cess with 28 observations instead of 14. In
both tests we have got together eighty bipar-
tite graphs with their size in the range from 46
to 585 nodes. The results of experiments are
summarized in Figure 4. Note the logarithmic
scales. If the total table size is larger than 264

the models are intractable in Hugin. Numeri-
cal experiments reveal that we can get a gain
in the order of several magnitudes and many
intractable models became tractable.

A different approach exploiting a local
structure in CPTs are arithmetic circuits
(ACs) (Darwiche, 2003). In (Vomlel and Sav-
icky, 2008) the CP tensor decomposition was
used to preprocess Bayesian networks contain-
ing noisy-or models. The ACs of the prepro-

5For CPTs with less than four parents we used mor-
alization instead.

6Hugin Expert A/S, http://www.hugin.com

cessed networks were compared with ACs cre-
ated by Ace7 from networks after parent divorc-
ing. The CP tensor decomposition decreased
the size of ACs for a majority of tested net-
works (about 88%). We conjecture we would
get similar results for experiments reported in
this section. However, we did not perform these
experiments – they should be a topic of a our fu-
ture research along with comparisons with other
methods exploiting local structure of CPTs.

5 Conclusions

We proposed a CP decomposition of tensors cor-
responding to threshold functions. We applied
this decomposition to probabilistic inference in
Bayesian networks containing conditional prob-
ability tables representing noisy threshold func-
tions. We performed computational experi-
ments with a generalized version of QMR-DT
where the noisy-or models were replaced by
noisy threshold models. The CP tensor decom-
position led to a computational gain in the or-
der of several magnitudes and made many in-
tractable models manageable.
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