
Chapter 14

Visual Data Recognition and Modeling based on
Local Markovian Models

Michal Haindl

Abstract An exceptional 3D wide-sense Markov model which can be completely
solved analytically and easily synthesized is presented. The model can be modified
to faithfully represent complex local data by adaptive numerically robust recursive
estimators of all its statistics. Illumination invariants can be derived from some of
its recursive statistics and exploited in content based image retrieval, supervised or
unsupervised image recognition. Its modeling efficiency is demonstrated on several
analytical and modeling image applications, in particular on unsupervised image or
range data segmentation, bidirectional texture function (BTF) synthesis and com-
pression, dynamic texture synthesis and adaptive multispectral and multichannel
image and video restoration.

14.1 Introduction

Recognition and processing of multi-dimensional data (or set of spatially related
objects) is more accurate and efficient if we take into account all interdependen-
cies between single objects. Objects to be processed like for example multi-spectral
pixels in a digitized image, are often mutually dependent (e.g., correlated) with a
dependency degree related to a distance between two objects in their corresponding
data space. These relations can be incorporated into a pattern recognition process
through appropriate multi-dimensional data model. If such a model is probabilis-
tic we can use consistent Bayesian framework for solving many pattern recognition
tasks.
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Features derived from multi-dimensional data models are information preserving in
the sense that they can be used to synthesise data spaces closely resembling original
measurement data space as can be illustrated on the recent best visual representation
of real material surfaces in the form of bidirectional texture function [220]. Virtual
or augmented reality systems require object surfaces covered with realistic nature-
like color textures to enhance realism in virtual scenes. Similarly, realistic textures
are used in computer games, CAD systems and some other computer graphics appli-
cations. Such textures can be either digitized natural textures or textures synthesized
from an appropriate mathematical model. However digitized 3D textures are far less
convenient alternative, because of extreme virtual system memory demands, visible
discontinuities and several other drawbacks [214].

Mathematical multi-dimensional data models are useful for describing many of the
multi-dimensional data types provided that we can assume some data homogeneity
so some data characteristics are translation invariant. While the 1D models like time
series are relatively well researched and they have rich application history in con-
trol theory, econometric, medicine and many other recognition applications, multi-
dimensional models are much less known and their applications are still limited.
The reason is not only unsolved theory difficulties but mainly their huge computing
power demands which prevented their wider use until recently.

We introduced in [223] a fast multiresolution Markov random field (MRF) based
model and the simultaneous causal autoregressive random field model [222], re-
spectively. Although the former method avoids the time consuming Markov chain
Monte Carlo simulation so typical for applications of Markov models it requires
several approximations. The later method is very efficient for multispectral image
representation not only because it does not suffer with some problems of alternative
options (see [214, 217] for details) but it is also easy to analyze as well as to syn-
thesise and last but not least it is still flexible enough to imitate a large set of natural
and artificial textures or other spatial data.

It is possible to divide data models applications into two broad categories: synthesis
and analysis. Analytical applications include data classifications or unsupervised
segmentation, data space directionality analysis, motion detection and some others.
Frequent synthesis applications are missing data reconstruction, restoration, image
compression and static or dynamic texture synthesis.

In the application Sections 14.4 and further we demonstrate advantages and weak
points of the studied Markovian model on several multispectral image recognition
and modeling examples.



14 Visual Data Recognition and Modeling 261

14.2 3D Causal Simultaneous Autoregressive Model

Modeling visual data requires non-standard multi-dimensional (three-dimensional
for static color textures, 4D for videos or even 7D for static BTFs) models. However
if such a nD data space can be factorized then these data can be also approximated
using a set of lower-dimensional probabilistic models. Although full nD models
allow unrestricted spatial-spectral-temporal-angular correlation modeling their main
drawback is large amount of parameters to be estimated and in the case of some
models (e.g. Markov models) also the necessity to estimate all these parameters
simultaneously. The 3D causal simultaneous autoregressive model (3DCAR) is an
exceptional model which can be utilized to build much more complex nD data
models. For example, the 7D BTF models illustrated in Fig.14.5 are composed from
up to one hundred 3DCARs.

A digitized image Y is assumed to be defined on a finite rectangular N×M× d
lattice I, r = {r1,r2,r3} ∈ I denotes a pixel multiindex with the row, columns and
spectral indices, respectively. The notation • has the meaning of all possible values
of the corresponding index and Ic

r ⊂ I is a causal or unilateral neighbourhood of
pixel r, i.e.

Ic
r ⊂ IC

r = {s : 1≤ s1 ≤ r1,1≤ s2 ≤ r2,s 6= r} .

The 3D causal simultaneous autoregressive model (3DCAR) is the wide-sense
Markov model which can be written in the following regression equation form:

Ỹr = ∑
s∈Ic

r

AsỸr−s + er ∀r ∈ I (14.1)

where As are matrices (14.2) and the zero mean white Gaussian noise vector er has
uncorrelated components with data indexed from Ic

r but noise vector components
can be mutually correlated.

As1,s2 =

as1,s2
1,1 . . . as1,s2

1,d
...

. . .
...

as1,s2
d,1 . . . as1,s2

d,d

 (14.2)

are d × d parameter matrices, The model can be expressed in the matrix form
(14.51) where

Xr = [Ỹ T
r−s : ∀s ∈ Ic

r ] , (14.3)
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Xr is a dη×1 vector, η = card(Ic
r ) and γ

γ = [A1, . . . ,Aη ] (14.4)

is a d× dη parameter matrix. To simplify notation the multiindexes r,s, . . . have
only two components further on in this section.

An optimal support can be selected as the most probable model given past data, i.e.,
max j{p(M j|Y (r−1))} .

p(Y (r−1)|M j) =
∫ ∫

p(Y (r−1)|γ,Σ−1)p(γ,Σ−1|M j)dγdΣ
−1 (14.5)

and for implemented uniform priors start we get a decision rule [228]:

Theorem 14.1. The most probable AR model given past data Y (r−1), the normal-
Wishart parameter prior and the uniform model prior is the model Mi for which

i = argmax
j
{D j}

D j = −
d
2

ln |Vx(r−1)| −
β (r)−dη +d +1

2
ln |λ(r−1)| +

d2η

2
lnπ

+
d

∑
i=1

[
lnΓ (

β (r)−dη +d +2− i
2

)− lnΓ (
β (0)−dη +d +2− i

2
)

]
(14.6)

where Vx(r−1) = Ṽx(r−1)+Vx(0) with Ṽx(r−1) defined in (14.12), Vx(0) is an appro-
priate part of V0 (14.13), β (r) is defined in (14.7),(14.8) and λ(r−1) is (14.9).

Proof. [213] ut

β (r) = β (0)+ r−1 = β (r−1)+1 , (14.7)

β (0)> η−2 , (14.8)

and
λ(r) =Vy(r)−V T

xy(r)V
−1
x(r)Vxy(r) . (14.9)
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Vr−1 = Ṽr−1 +V0 , (14.10)

Ṽr−1 =

(
Ṽy(r−1) Ṽ T

xy(r−1)
rṼxy(r−1) Ṽx(r−1)

)
, (14.11)

Ṽy(r−1) =
r−1

∑
k=1

YkY T
k , (14.12)

Ṽxy(r−1) =
r−1

∑
k=1

XkY T
k , (14.13)

Ṽx(r−1) =
r−1

∑
k=1

XkXT
k . (14.14)

Marginal densities p(γ|Y (r−1)) and p(Σ−1|Y (r−1)) can be evaluated from (14.15),
(14.16), respectively.

p(γ|Y (r−1)) =
∫

p(γ,Σ−1|Y (r−1))dΣ
−1 (14.15)

p(Σ−1|Y (r−1)) =
∫

p(γ,Σ−1|Y (r−1))dγ (14.16)

The marginal density p(Σ−1|Y (r−1)) is the Wishart distribution density [213]

p(Σ−1 |Y (r−1)) =
π

d(1−d)
4 |Σ−1| β (r)−dη

2

2
d(β (r)−dη+d+1)

2 ∏
d
i=1 Γ (β (r)−dη+2+d−i

2 )
|λ(r−1)|

β (r)−dη+d+1
2

exp
{
−1

2
tr{Σ−1

λ(r−1)}
}

(14.17)

with

E
{

Σ
−1 |Y (r−1)

}
= (β (r)−dη +d +1)λ

−1
(r−1) (14.18)

E
{
(Σ−1−E{Σ−1 |Y (r−1)})T (Σ−1−E{Σ−1 |Y (r−1)}) |Y (r−1)

}
=

2(β (r)−dη +1)
λ(r−1)λ

T
(r−1)

. (14.19)

The marginal density p(γ |Y (r−1)) is matrix t distribution density [213]:
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p(γ |Y (r−1)) =
∏

d
i=1 Γ (β (r)+d+2−i

2 )

∏
d
i=1 Γ (β (r)−dη+d+2−i

2 )
π
− d2η

2 |λ(r−1)|−
dη

2 |Vx(r−1)|
d
2

∣∣∣I +λ
−1
(r−1)(γ− γ̂r−1) Vx(r−1)(γ− γ̂r−1)

T
∣∣∣− β (r)+d+1

2
(14.20)

with the mean value

E
{

γ |Y (r−1)
}
= γ̂r−1 (14.21)

and covariance matrix

E
{
(γ− γ̂r−1)

T (γ− γ̂r−1) |Y (r−1)
}
=

V−1
x(r−1)λ(r−1)

β (r)−dη
. (14.22)

Similar statistics can be easily derived [213] for the alternative Jeffreys non-informative
parameter prior.

Theorem 14.2. The one-step-ahead predictive posterior density for the normal-
Wishart parameter prior has the form of d-dimensional Student’s probability density
(14.23)

p(Yr |Y (r−1)) =
Γ (β (r)−dη+d+2

2 )

Γ (β (r)−dη+2
2 ) π

d
2 (1+XT

r V−1
x(r−1)Xr)

d
2 |λ(r−1)|

1
2

(
1+

(Yr− γ̂r−1Xr)
T λ
−1
(r−1)(Yr− γ̂r−1Xr)

1+XT
r V−1

x(r−1)Xr

)− β (r)−dη+d+2
2

, (14.23)

with β (r)−dη +2 degrees of freedom, if β (r) > dη then the conditional mean
value is

E
{

Yr |Y (r−1)
}
= γ̂r−1Xr , (14.24)

and
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E
{
(Yr− γ̂r−1Xr)(Yr− γ̂r−1Xr)

T |Y (r−1)
}
=

1+XrV−1
x(r−1)X

T
r

(β (r)−dη)
λ(r−1) . (14.25)

Proof. [213] ut

14.2.1 Adaptivity

The 3DCAR model can be made adaptive if we modify its recursive statistics using
exponential forgetting factor, i.e. a constant ϕ ≈ 0.99. This forgetting factor smaller
than 1 is used to weight the influence of older data:

γ̂
T
r = γ̂

T
r−1 +(ϕ2 +XT

r V−1
x(r−1)Xr)

−1V−1
x(r−1)Xr(Yr− γ̂r−1Xr)

T ,

|Vx(t)| = |Vx(t−1)|ϕ2η(1+XT
t V−1

x(t−1)Xt) ,

λt = λt−1(1+(Yt − γ̂
T
t−1Xt)

T
λ
−1
t−1(Yt − γ̂

T
t−1Xt)(ϕ

2 +XT
t V−1

x(t−1)Xt)
−1) .

14.2.2 Numerical Stability

The numerical stability of 3DCAR can be quarantined if all its recursive statistics
use the square-root factor updating applying either the Cholesky or LDLT decom-
position [216], respectively. Let us denote a lower triangular matrix Lt and a matrix
Bt as

Bt = V−1
i,t = LtLT

t , (14.26)

Bt = (B−1
t−1±dtdT

t )
−1 , (14.27)

Bt = (B̃−1
t−1ϕ

−2±α
2d̃tdT

t )
−1 , (14.28)

where dt is an updating vector with exponential forgetting ϕ and data normalization
α . The square-root updating factor of the inversion data gathering matrix Bt can be
computed recursively:
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Lt,i, j =
ζ̃t, j+1

ϕζ̃t, j

[
Lt−1,i, j∓

f̃t, j
ζ̃ 2

t, j+1

g̃(i)t, j+1

]
, (14.29)

where f̃t = LT
t−1dt and

g̃(i)t, j+1 =
i

∑
k= j+1

Lt−1,i,k f̃t,k

and

ζt,i =
α

ϕ

√
ϕ2

α2 ±
n

∑
j=i

f̃ 2
t, j =

α

ϕ
ζ̃t,i .

14.2.3 3DCAR Model Properties

The 3DCAR (analogously also the 2DCAR model) model has advantages in ana-
lytical solutions (Bayes, ML, or LS estimates) for Ir, γ̂ , σ̂2, Ŷr statistics. It allows
extremely simple fast synthesis, adaptivity and building efficient recursive appli-
cation algorithms. Its major drawback in some image representation applications
might be its mostly artificial causality which can introduce a directional bias into
modelled image data.

14.3 Illumination Invariants

Textures are important clues to specify objects present in a visual scene. However,
the appearance of natural textures is highly illumination and view angle dependent.
As a consequence, most recent realistic texture based classification or segmentation
methods require multiple training images [438] captured under all possible illumi-
nation and viewing conditions for each class. Such learning is obviously clumsy,
probably expensive and very often even impossible if required measurements are
not available.

If we assume fixed positions of viewpoint and illumination sources, uniform illumi-
nation sources and Lambertian surface reflectance, than two images Ỹ ,Y acquired
with different illumination spectra can be linearly transformed to each other:

Ỹr = BYr ∀r . (14.30)
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It is possible to show that assuming (14.30) the following features are illumination
invariant:

1. trace: traceAm, m = 1, . . . ,η K

2. eigenvalues: νm, j of Am, m = 1, . . . ,η K,
j = 1, . . . ,C

3. 1+ZT
r V−1

zz Zr ,

4.
√

∑r (Yr− γ̂Zr)
T

λ−1 (Yr− γ̂Zr) ,

5.
√

∑r (Yr−µ)T
λ−1 (Yr−µ) ,

µ is the mean value of vector Yr,

Above textural features derived from the 3DCAR model are robust to illumination
direction changes, invariant to illumination brightness and spectrum changes, and
simultaneously also robust to Gaussian noise degradation. This property was ex-
tensively verified on University of Bonn BTF texture measurements [325], where
illumination sources are spanned over 75% of possible illumination half-sphere.

14.4 Unsupervised Image Recognition

Unsupervised or supervised texture segmentation is the prerequisite for successful
content-based image retrieval, scene analysis, automatic acquisition of virtual mod-
els, quality control, security, medical applications and many others. Although more
than 1000 different methods were already published [479], this problem is still far
from being solved. This is among others due to missing reliable performance com-
parison between different techniques because very limited effort was spent [227] to
develop suitable quantitative measures of segmentation quality that can be used to
evaluate and compare segmentation algorithms. Spatial interaction models and espe-
cially Markov random field-based models are increasingly popular for texture repre-
sentation [263, 372, 214], etc. Several researchers dealt with the difficult problem of
unsupervised segmentation using these models see for example [341, 314, 10, 215],
[225, 224, 226], or Chapter 15.

Our unsupervised segmenter is illustrated on a multiscale unsupervised automatic
detection of potentially cancerous regions of interest containing fibroglandular tis-
sue in digital screening mammography. The mammogram tissue textures are locally



268 Michal Haindl

represented by four causal multispectral random field models recursively evaluated
for each pixel and several scales. The segmentation part of the algorithm is based
on the underlying Gaussian mixture model and starts with an over segmented initial
estimation which is adaptively modified until the optimal number of homogeneous
mammogram segments is reached.

B-3056-1 left MLO segmentation ground truth

C-0016-1 right CC segmentation ground truth

Fig. 14.1 Cancerous mammograms (patients age 58 (top) and 80 (bottom)), radiologist associated
ground truth and detected regions of interest using the multiple segmenter approach, respectively.

Our method segments pseudo-color multiresolution mammograms each created
from the original grey scale mammogram and its two nonlinear gamma transforma-
tions. We assume to down-sample input image Y into M = 3 different resolutions
Y (m) =↓ιm Y with sampling factors ιm m = 1, . . . ,M identical for both directions
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and Y (1) = Y . Local texture for each pixel Y (m)
r is represented using the 3D CAR

model parameter space Θ
(m)
r . The concept of decision fusion for high-performance

pattern recognition is well known and widely accepted in the area of supervised
classification where (often very diverse) classification technologies, each providing
complementary sources of information about class membership, can be integrated
to provide more accurate, robust and reliable classification decisions than the single
classifier applications. The proposed method circumvents the problem of multiple
unsupervised segmenters combination [226] by fusing multiple-processed measure-
ments into a single segmenter feature vector.

Smooth pseudo-color mammogram textures require three dimensional models for
adequate representation. We assume that single multi spectral texture can be lo-
cally modelled using a 3D simultaneous causal autoregressive random field model
(3DCAR). This model can be expressed as a stationary causal uncorrelated noise
driven 3D autoregressive process [228]:

Yr = γXr + er , (14.31)

where γ = [A1, . . . ,Aη ] is the 3×3η parameter matrix, er is a white Gaussian noise
vector with zero mean and a constant but unknown variance, Xr is a corresponding
vector of the contextual neighbors Yr−s and r,r− 1, . . . is a chosen direction of
movement on the image index lattice I. The optimal neighborhood (Ic

r ) as well as the
Bayesian parameters estimation of a 3DCAR model can be found analytically under
few additional and acceptable assumptions using the Bayesian approach (14.6). The
recursive Bayesian parameter estimation of the 3DCAR model is [228]:

γ̂
T
r−1 = γ̂

T
r−2 +

V−1
x(r−2)Xr−1(Yr−1− γ̂r−2Xr−1)

T

(1+XT
r−1V−1

x(r−2)Xr−1)
, (14.32)

where Vx(r−1) = ∑
r−1
k=1 XkXT

k +Vx(0). Each matrix contains local estimations of the
3DCAR model parameters. These models have identical contextual neighborhood
Ic
r but they differ in their major movement direction (top-down, bottom-up, right-

ward, leftward). The local texture for each pixel and M resolutions α1, . . . ,αM is
represented by four parametric matrices t,b,r, l e.g. γ̂

i,α j
r for i ∈ {t,b,r, l}, j =

1, . . . ,M which are subsequently compressed using the local PCA (for computa-
tional efficiency) into γ̃

i,α j
r . Single resolution compressed parameters are com-

posed into M parametric matrices:

γ̃
α j T
r = {γ̃ t,α j

r , γ̃
b,α j
r , γ̃

r,α j
r , γ̃

l,α j
r }T j = 1, . . . ,M .

The parametric space γ̃α j is subsequently smooth out, rearranged into a vector and
its dimensionality is reduced using the PCA feature extraction (γ̄α j). Finally we
add the average local spectral values ζ

α j
r to the resulting feature vector:
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Θr = [γ̄α1
r ,ζ α1

r , . . . , γ̄αM
r ,ζ αM

r ]T . (14.33)

Rough scale pixels parameters are simply mapped to the corresponding fine scale
locations.

Multi-spectral, multiresolution texture segmentation is done by clustering in the
combined 3DCAR models parameter space Θ defined on the lattice I where
Θr is the modified parameter vector (14.33) computed for the lattice location r.
We assume that this parametric space can be represented using the Gaussian mixture
model (GM) with diagonal covariance matrices due to the previous 3DCAR para-
metric space decorrelation. The Gaussian mixture model for 3DCAR parametric
representation is as follows:

p(Θr) =
K

∑
i=1

pi p(Θr |νi,Σi) , (14.34)

p(Θr |νi,Σi) =
|Σi|−

1
2

(2π)
d
2

e−
(Θr−νi)

T Σ
−1
i (Θr−νi)
2 . (14.35)

The mixture model equations (14.34),(14.35) are solved using a modified EM algo-
rithm. The algorithm is initialized using νi,Σi statistics estimated from the corre-
sponding regions obtained by regular division of the input detected breast area. An
alternative initialisation can be random choice of these statistics. For each possible
couple of regions the Kullback Leibler divergence

D(p(Θr |νi,Σi) || p(Θr |ν j,Σ j)) =∫
Ω

p(Θr |νi,Σi) log
(

p(Θr |νi,Σi)

p(Θr |ν j,Σ j)

)
dΘr (14.36)

is evaluated and the most similar regions, i.e.,

{i, j}= argmin
k,l

D(p(Θr |νl ,Σl) || p(Θr |νk,Σk))

are merged together in each step. This initialisation results in Kini subimages and
recomputed statistics νi,Σi . Kini > K where K is the optimal number of tex-
tured segments to be found by the algorithm. Two steps of the EM algorithm are
repeating after the initialisation. The components with smaller weights than a fixed
threshold (p j <

0.01
Kini

) are eliminated. For every pair of components we estimate
their Kullback Leibler divergence (14.36). From the most similar couple, the com-
ponent with the weight smaller than the threshold is merged to its stronger partner
and all statistics are actualized using the EM algorithm. The algorithm stops when
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either the likelihood function has negligible increase (Lt −Lt−1 < 0.01) or the
maximum iteration number threshold is reached.

The parametric vectors representing texture mosaic pixels are assigned to the clus-
ters according to the highest component probabilities, i.e., Yr is assigned to the
cluster ω j∗ if

πr, j∗ = max j ∑
s∈Ir

ws p(Θr−s |ν j,Σ j) ,

where ws are fixed distance-based weights, Ir is a rectangular neighbourhood and
πr, j∗ > πthre (otherwise the pixel is unclassified). The area of single cluster blobs is
evaluated in the post-processing thematic map filtration step. Regions with similar
statistics are merged. Thematic map blobs with area smaller than a given threshold
are attached to its neighbour with the highest similarity value. Finally, regions which
have grey level mean value difference from the median mean value (over the same
type of digitized mammograms) of cancerous ground truth regions larger than a
specified threshold are eliminated.

14.5 Multispectral Image Restoration

Physical imaging systems and a recording medium are imperfect and thus a recorded
image represents a degraded version of the original scene. Similarly an image is
usually further corrupted during its processing, transmission or storage. The image
restoration task is to recover an unobservable image given the observed corrupted
image with respect to some statistical criterion. Image restoration is the busy re-
search area for already several decades and many restoration algorithms have been
proposed [9, 192, 3], see also Chapters 16, 2, 3 and 4.

Fig. 14.2 Original, corrupted, and reconstructed Cymbidium image.

The image degradation is supposed to be approximated by the linear degradation
model:
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Xr = ∑
s∈Ir

fsYr−s + er (14.37)

where f is a discrete representation of the unknown point-spread function. The
point-spread function can be non-homogeneous but we assume its slow changes rel-
ative to the size of an image. Ir is some contextual support set, and the degradation
noise e is uncorrelated with the unobservable image, i.e.,

E{Y e}= 0 . (14.38)

The point-spread function is unknown but such that we can assume the unobservable
image Y to be reasonably well approximated by the expectation of the corrupted
image

Ŷ = E{X} (14.39)

in regions with gradual pixel value changes. Pixels with steep step discontinuities
are left unrestored to avoid excessive blurring, i.e.,

Ŷr =

{
E{Xr} if |E{Xr}−Xr |< 1

ns
∑s |E{Xr−s}−Xr−s |

Xr otherwise
. (14.40)

The expectation (14.39) can be expressed as follows:

E{X} =
∫

X p(X)dX =
∫ 

X1 X2 . . . XM
XM+1 XM+2 . . . X2M

...
...

. . .
...

XNM−M+1 XNM−M+2 . . . XNM


NM

∏
r=1

p(Xr |X (r−1))dX1 . . .dXNM (14.41)

where

X (r−1) = {Xr−1, . . . ,X1} (14.42)

is a set of noisy pixels in some chosen but fixed ordering. For single matrix elements
in (14.41) it holds
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E{X j} =
∫

X j

NM

∏
r=1

p(Xr |X (r−1))dX1 . . .dXNM

=
∫

X j

j

∏
r=1

p(Xr |X (r−1))dX1 . . .dX j

=
∫

E{X j |X ( j−1)}
j−1

∏
r=1

p(Xr |X (r−1))dX1 . . .dX j−1

= E{E{X j |X ( j−1)}} (14.43)

Let us approximate after having observed X ( j−1) the mean value Ŷj = E{X j} by
the E{X j |X ( j−1) = x( j−1)) where x( j−1) are known past realisation for j. Thus
we suppose that all other possible realisations x( j−1) than the true past pixel val-
ues have negligible probabilities. This assumption implies conditional expectations
approximately equal to unconditional ones, i.e.,

E{X j} ≈ E{X j |X ( j−1)} , (14.44)

and
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Ŷ = E{X} ≈


E{X1 |X (0)} E{X2 |X (1)} . . . E{XM |X (M−1)}

E{XM+1 |X (M)} E{XM+2 |X (M+1)} . . . E{X2M |X (2M−1)}
...

...
. . .

...
E{XNM−M+1 |X (NM−M)} E{XNM−M+2 |X (NM−M+1)} . . . E{XNM |X (NM−1)}

 .

Suppose also that the noisy image X can be represented by a causal simultaneous
autoregressive model (14.1), then the conditional mean (14.44) values needed for
the estimation Ŷ is (14.52) if we replace in above equations X → Y,Z → X . The
estimator (14.44) can be efficiently computed using the following recursion

γ̂
T
r = γ̂

T
r−1 +(1+ZT

r V−1
z(r−1)Zr)

−1V−1
z(r−1)Zr(Xr− γ̂r−1Zr)

T . (14.45)

The selection of an appropriate model support (Ic
r ) is important to obtain good

restoration results. The optimal Bayesian decision rule for this selection is either
(14.6) or analogous statistics depending on the parameter prior.

14.5.0.1 Local Estimation of the Point-Spread Function

If we assume a non-homogeneous slowly changing point-spread function, we can
estimate its local value using the local least square estimate

ψ̂r = min
ψr

{
∑
∀r∈Jr

(Xr−ψrŴr)
2

}
. (14.46)

The locally optimal estimate is

ψ̂
T
r = Ṽ−1

Ŵ (r)
ṼŴ X(r) (14.47)

where ṼŴ (r), ṼŴ X(r) are corresponding local data gathering matrices analogous
to (14.14), (14.12), but using only data from local sub-lattice Jr ⊂ I, r ∈ Jr. This
estimator can be efficiently evaluated using the fast recursive square-root filter in-
troduced in section 14.2.2. If the point-spread function is constant for all lattice
position both PSF estimators (local and global) are equivalent.
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14.6 Multichannel Image Restoration

The major degradation of a ground-based telescope is caused by random fluctua-
tions originating mostly in the Earth’s atmosphere (seeing) along the optical path
between the object space and the image formation device. The image degradation
by seeing is a very complicated process due to blurring, motion, and distortion.
The image degradation is described by the changing complex point-spread-function
(PSF) of the telescope, which embodies all the important behaviour of the optical
image formation system. For the restoration we assume one unknown degradation
function involving all degradation aspects.

Suppose Y represents a true but unobservable monospectral image defined on the
finite rectangular N×M underlying lattice I. Suppose further that we have a set of
d observable images X where each X•,i ∈X is the i-th version of Y distorted by
the unknown PSF and noise independent of the signal. The notation • designates of
all possible values of the corresponding multiindex (e.g. the multiindex r = {r1,r2}
which has the row and columns indices, respectively). We assume knowledge of all
pixels from the reconstructed scene. For the treatment of the more difficult problem
when some data are missing see [229], [230]. The image degradation is supposed to
be approximated by the linear discrete spatial domain degradation model

Xr,• = ∑
s∈Ir

HsYr−s + εr,• (14.48)

where H is a discrete representation of the unknown point-spread function, Xr,• is
the d×1 vector of the r-th pixel in different distortions and Yr−s are ideal (unob-
servable) image pixels. The point-spread function is assumed to be either homoge-
neous or it can be non-homogeneous but in this case we assume it slowly changes
relative to the size of an image. Ir is some contextual support set, and a noise vec-
tor ε is uncorrelated with the true image, i.e., E{Y ε•,i} = 0 . The point-spread
function is unknown but such that we can assume the unobservable image Y to be
reasonably well approximated by the expectation of the corrupted image

Ŷ = E{X•,i} (14.49)

in regions with gradual pixel value changes, and the i-th degraded image X•,i ∈X
is the least degraded image from the set X . The index i of the least degraded im-
age is excluded from the following equations (14.50)-(14.52) to simplify the corre-
sponding notation. The above method (14.49) changes all pixels in the restored im-
age and thus blurs discontinuities present in the scene although to much less extent
than the classical restoration methods due to our restoration model (14.51) adaptiv-
ity. This excessive blurring can be avoided if pixels with steep step discontinuities
are left unrestored, i.e.,
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Ŷr =

{
E{Xr} if p(Xr |X (r−1))> κ

Xr otherwise
, (14.50)

where κ is a probabilistic threshold based on the prediction density. Single ma-
trix elements in the expectation E{X} are approximated [231] by the conditional
expectation E{X j |X ( j−1) = x( j−1) where x( j−1) are known past realisation for
j. Thus we suppose that all other possible realisation x( j−1) than the true past
pixel values have negligible probabilities. This assumption implies conditional ex-
pectations approximately equal to unconditional ones, i.e., then the expectation is
E{X j} ≈ E{X j |X ( j−1)} .

Suppose further that a noisy image can be represented by an adaptive 2.5D causal
simultaneous autoregressive model

Xr,i = γZr + εr , (14.51)

where γ = [A1, . . . ,Aη ] , η = card(Ic
r ) is a 1×dη parameter matrix, Zr is a cor-

responding vector of Xr−s, εr is a white Gaussian noise vector with zero mean, and
a constant but unknown covariance matrix Σ . The noise vector is uncorrelated with
data from a causal neighbourhood Ic

r . As = [as,1, . . . ,as,d ] ∀s are parameter
vectors. The model adaptivity is introduced using the exponential forgetting factor
technique in parameter learning part of the algorithm. The conditional mean value
can be derived under few acceptable conditions [231] in the following form:

E{Xr|X (r−1)}=V T
zx(r−1)V

−T
zz(r−1) Zr (14.52)

where Vr−1 = Ṽr−1 + I and

Ṽr−1 =

(
∑

r−1
k=1 XkXT

k ∑
r−1
k=1 XkZT

k
∑

r−1
k=1 ZkXT

k ∑
r−1
k=1 ZkZT

k

)
=

(
Ṽxx(r−1) Ṽ T

zx(r−1)
Ṽzx(r−1) Ṽzz(r−1)

)
.

An appropriate model support (Ic
r ) can be found using the Bayesian decision rule

(cf. [231]).

The proposed recursive multitemporal blur minimizing reconstruction method is
very fast (approximately five times faster than the median filter) robust and its recon-
struction results surpasses some standard reconstruction methods, which we were
able to implement for the verification. Our causal model has the advantage to have
the analytical solution for all needed model statistics. Possible artifacts introduced
by this type of models are diminished by introducing adaptivity into the model.
This novel formulation allow us to obtain extremely fast adaptive multichannel /
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multitemporal restoration and it can be easily parallelled as well as generalized for
multispectral (e.g. color, multispectral satellite images) or registered images which
is seldom the case for alternative methods.

Fig. 14.3 The measured degraded (left), reconstructed sunspot image using our method, and its
corresponding prediction probability image.

14.7 Video Restoration

Every movie deteriorates with usage and time irrespective of any care it gets. Movies
(on both optical and magnetic materials) suffer with blotches, dirt, sparkles and
noise, scratches, missing or heavily corrupted frames, mold, flickering, jittering,
image vibrations and some other problems. For each kind of the defect usually
different kind of restoration algorithm is needed. The scratch notion in this sec-
tion means every coherent region with missing data (simultaneously in all spectral
bands) in a color movie frame. Our method [218] reconstructs missing multispec-
tral (e.g., color) pixels from available data in neighboring frames and pixels from
the corrupted frame as well. A digitized color movie is supposed to be represented
with the 3.5D causal AR model (see section 14.2):

Yr1,r2,•,r4 = γ Xr1,r2,•,r4 + er1,r2,•,r4 ∀r ∈ I . (14.53)

The missing scratch data are reconstructed from the topologically nearest known
data in the lattice I using temporal and spatial correlation in the neighbourhood.
Scratch pixels are computed from the set of one-step-ahead predictions using the
conditional mean predictor

Ỹr = E
{

Yr1,r2,•,r4 |Y (r−1)
}
= γ̂r−1Xr1,r2,•,r4 , (14.54)
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where

Y (r−1) = {Yr−1,Yr−2, . . . ,Y1}
is the known process history and γ̂r−1 is the estimator of unknown model parameter
matrix γ (see section 14.2).

Fig. 14.4 A car frame restoration (original, scratch, quadratic interpolation method, 3D CAR, 3.5D
CAR).

A model movement towards the scratch is assumed. When the model reaches the
scratch, the corrupted pixel prediction is evaluated. This is performed for each line
in the scratch from top and bottom edge of the scratch using two symmetrical down-
wards and upwards moving models and their results are averaged. This helps to
counterbalance artificial restriction on the contextual neighbourhood which has to
be causal. Similarly another couple of models is moving in the opposite direction.
Two computed predictions for each missing pixel have to be combined. Simple av-
eraging is not appropriate, because each of both predictors has different distance
from the last known original data and consequently it has also a different precision.
Hence the exponential interleaving was used to weight the data influence from each
side of the scratch as a function of the horizontal position of the predicted pixel on
a scratch line to be reconstructed.

14.8 Texture Synthesis and Compression

Texture synthesis methods may be divided primarily into intelligent sampling and
model-based methods. Sampling approaches [96, 130, 129, 233, 472, 109, 474] rely
on sophisticated sampling from real texture measurements while the model-based
techniques [32, 33, 196, 214, 223, 222, 339, 480] describe texture data using mul-
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tidimensional mathematical models and their synthesis is based on the estimated
model parameters only.

There are several texture modeling approaches published [262, 223, 222] and some
survey articles are also available [214, 217]. Most published texture models are
restricted only to monospectral textures for few models developed for multispectral
(mostly color) textures refer [32, 33, 223, 222].

The Bidirectional Texture Function (BTF) [219, 221, 220, 151] is the most advanced
representation of visual properties for realistic real-world materials. BTF describes
rough texture appearance for varying illumination and viewing conditions. Such a
function can be represented by thousands of measurements (images) per material
sample. The resulting BTF size excludes its direct rendering in graphical applica-
tions and some compression of these huge BTF data spaces is obviously inevitable.
The BTF modeling ultimate aim is to create a visual impression of the same material
without a pixel-wise correspondence to the original measurements. The cornerstone
of our BTF compression and modeling method is the replacement of a huge number
of original BTF measurements by their efficient parametric estimates derived from
an underlying set of 2DCAR or 3DCAR spatial probabilistic models.

Fig. 14.5 BTF measurements mapped on part of a car gearbox. Original BTF data (enlarged using
image tiling) (left) compared with synthesized BTF (right) for four distinct materials: wood01,
foil01, wood02, foil02 (3D model courtesy of DaimlerChrysler).

The off-line part of the algorithm [220] starts with the BTF illumination / view
(θi,φi/θv,φv) space segmentation into several subspace images using the K-means
algorithm on color cumulative histograms features. Thus we trade off between an
extreme compression ratio and the visual quality by using several probabilistic BTF
subspace dedicated models. The overall roughness of a textured surface significantly
influences the BTF texture appearance. Such a surface can be specified using its
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range map, which is estimated by the photometric stereo approach. The subspace
2DCAR texture model starts with a spectral PCA-based decorrelation of subspace
image (result of BTF segmentation) into mono-spectral factors. The 3DCAR model
does not need this decorrelation step. Each of these factors is subsequently de-
composed into sub-band components using the multi-resolution Gaussian-Laplacian
pyramid. This allows to use simpler 2D/3D CAR models to model wide range of tex-
tures. Each such sub-band component is analyzed by a dedicated CAR factor model
to obtain a compact set of model parameters.

The 3DCAR model [220, 151] offers a huge BTF compression ratio unattainable by
any alternative sampling-based BTF synthesis method. Simultaneously this model
can be used to reconstruct missing parts of the BTF measurement space.

14.9 Conclusion

The 3DCAR models are among rare exceptions in the Markovian model family that
allow to derive extremely efficient and fast data processing algorithms. All their
statistics can be evaluated recursively and they do not need any Monte Carlo sam-
pling typical for other Markovian models. The 3DCAR models have the advantage
over non causal (3DAR) ones that they can be treated analytically. It is possible to
find analytical solution of model parameters, optimal model support, model predic-
tor, etc. Similarly the 3DCAR model synthesis is very simple and a causal SAR
RF can be directly generated from model equation. The disadvantage on the other
hand is the causality which is usually rather artificially imposed on image data for
algorithmic reasons and it is seldom supported by real image data. A causal model
introduces an arbitrary directional bias, which depends on the orientation of a causal
neighbourhood used. The CAR model can represent only wide-sense stationary data
and data which have linear mutual relationships.
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