
1 23

Computational Statistics

ISSN 0943-4062
Volume 27
Number 1

Comput Stat (2012) 27:29-49
DOI 10.1007/s00180-011-0231-y

Computing multiple-output regression
quantile regions from projection quantiles

Davy Paindaveine & Miroslav Šiman

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

work, please use the accepted author’s

version for posting to your own website or

your institution’s repository. You may further

deposit the accepted author’s version on a

funder’s repository at a funder’s request,

provided it is not made publicly available until

12 months after publication.

Comput Stat (2012) 27:29–49
DOI 10.1007/s00180-011-0231-y

ORIGINAL PAPER

Computing multiple-output regression quantile regions
from projection quantiles

Davy Paindaveine · Miroslav Šiman

Received: 27 February 2010 / Accepted: 18 January 2011 / Published online: 11 February 2011
© Springer-Verlag 2011

Abstract In the multiple-output regression context, Hallin et al. (Ann Statist
38:635–669, 2010) introduced a powerful data-analytical tool based on regression
quantile regions. However, the computation of these regions, that are obtained by con-
sidering in all directions an original concept of directional regression quantiles, is a
very challenging problem. Paindaveine and Šiman (Comput Stat Data Anal 2011b)
described a first elegant solution relying on linear programming techniques. The pres-
ent paper provides another solution based on the fact that the quantile regions can
also be computed from a competing concept of projection regression quantiles, elab-
orated in Kong and Mizera (Quantile tomography: using quantiles with multivariate
data 2008) and Paindaveine and Šiman (J Multivar Anal 2011a). As a by-product,
this alternative solution further provides various characteristics useful for statistical
inference. We describe in detail the algorithm solving the parametric programming
problem involved, and illustrate the resulting procedure on simulated data. We show
through simulations that the Matlab implementation of the algorithm proposed in
this paper is faster than that from Paindaveine and Šiman (Comput Stat Data Anal
2011b) in various cases.

D. Paindaveine (B)
Université Libre de Bruxelles, Avenue F.D. Roosevelt,
50, ECARES, CP 114/04, 1050 Brussels, Belgium
e-mail: dpaindav@ulb.ac.be

M. Šiman
Institute of Information Theory and Automation of the ASCR,
Pod Vodárenskou věží 4, 18208 Prague 8, Czech Republic

123

Author's personal copy

30 D. Paindaveine, M. Šiman

Keywords Directional quantile · Halfspace depth · Multiple-output regression ·
Parametric programming · Quantile regression

Mathematics Subject Classification (2000) 65C60 · 62J99

1 Introduction

Due to the lack of a satisfactory concept of multivariate quantile, Koenker and Bas-
sett (Econometrica 1978)’s celebrated theory of quantile regression has for long been
restricted to single-output regression problems. In a world where multivariate data
are the rule rather than the exception, this clearly has been a severe limitation, which
explains why many works tried to extend quantile regression to the multiple-output
context; see, e.g., Chaudhuri (1996), Koltchinskii (1997), Chakraborty (2003), Wei
(2008) or Kong and Mizera (2008).

A new concept of multiple-output regression quantile, with powerful data-
analytical abilities, has recently been defined in Hallin et al. (2010)—hereafter referred
to as HPŠ10. In the empirical setup where the m-variate response Y is to be regressed
on the p-variate vector of regressors X = (1, W ′)′, this quantile can be defined as
follows. For a sample (xi , yi) ∈ R

p × R
m , i = 1, . . . , n, the HPŠ10 regression (τu)-

quantile—for fixed τ ∈ (0, 1) and u ∈ S m−1 := { y ∈ R
m : ‖ y‖ = 1}—is defined

as any element of the collection �
(n)

HPŠ;τu
of hyperplanes π

(n)

HPŠ;τu
:= {(w′, y′)′ ∈

R
p−1 × R

m : ̂b′
HPŠ;τu y − âHPŠ; τu(1,w′)′ = 0}, with

(

âHPŠ;τu
̂bHPŠ;τu

)

∈ arg min
n

∑

i=1

ρτ (˜b
′
yi − ã′xi) subject to u′̃b = 1, (1)

where ρτ (x) = x(τ − I(x < 0)) is the well-known τ -quantile check function. In
other words, this regression (τu)-quantile simply is the traditional (single-output)
Koenker and Bassett regression quantile of order τ obtained when considering, in
the (m + p − 1)-dimensional Euclidean space, the oriented vectorial line bearing
(0′

p−1, u′)′ as the “vertical” axis (that is, as the axis of the univariate response).
This quantile, which is clearly of a directional nature, generates regression quantile

regions when all directions u are considered for a fixed τ ∈ (0, 1). More precisely,
defining as

H (n)+
HPŠ;τu

:=
{

(w′, y′)′ ∈ R
p−1 × R

m : ̂b′
HPŠ;τu y − â′

HPŠ;τu
(1,w′)′ ≥ 0

}

the upper (τu)-quantile halfspace associated with the optimal solution
(

â′
HPŠ;τu

,

̂b
′
HPŠ;τu

)′ to (1), one can consider the τ -quantile region

R(n)

HPŠ
(τ) :=

⋂

u∈S m−1

⋂
{

H (n)+
HPŠ;τu

}

(2)

123

Author's personal copy

Computing multiple-output regression quantile regions 31

for any τ ∈ (0, 1), where
⋂

{

H (n)+
HPŠ;τu

}

stands for the intersection over all optimal

solutions corresponding to fixed τ and u. In the location case p = 1, these regions were
shown to coincide with the Tukey (1975) halfspace depth regions; see Theorem 4.2 of
HPŠ10. In the general regression case p > 1, they still form a family of polyhedral
regions nested up to the classical quantile crossings. As illustrated in Sect. 7 of HPŠ10,
these regression quantile regions allow for a much richer regression analysis than any
traditional multiple-output regression method can provide.

Quite interestingly, these quantile regions can also be obtained from a different
family of directional multiple-output regression quantiles, elaborated in Kong and
Mizera (2008) and Paindaveine and Šiman (2011a). In the same empirical setup as
above, these alternative quantiles—referred to as projection quantiles in the sequel—
can be defined as any element of the collection �

(n)
proj;τu of hyperplanes π

(n)
proj;τu :=

{(w′, y′)′ ∈ R
p−1 × R

m : ̂b′
proj;τu y − â′

proj;τu(1,w′)′ = 0}, with

(

âproj;τu
̂bproj;τu

)

∈ arg min
n

∑

i=1

ρτ (˜b
′
yi − ã′xi) subject to ˜b = u. (3)

In this context, we say that u is a τ -critical direction if there exists a π
(n)
proj;τu ∈ �

(n)
proj;τu

that contains exactly m + p − 1 data points, and we will denote the collection of
τ -critical directions by Kτ . Setting H (n)+

proj;τu := {(w′, y′)′ ∈ R
p−1 × R

m : ̂b′
proj;τu y −

â′
proj;τu(1,w′)′ ≥ 0}, it can then be shown that, under very mild conditions,

R(n)

HPŠ
(τ) = R(n)

proj(τ) :=
⋂

u ∈S m−1∩Kτ

⋂
{

H (n)+
proj;τu

}

(4)

for any τ ∈ (0, 1), where
⋂

{

H (n)+
proj;τu

}

stands for the intersection over all opti-

mal solutions for which the corresponding (τu)-quantile hyperplane π
(n)
proj;τu contains

exactly m + p − 1 data points; see Theorem 4.4 in Paindaveine and Šiman (2011a).
This shows that the HPŠ10 quantile regions can indeed be often obtained from projec-
tion quantiles. As an important by-product, we can get many characteristics useful for
statistical inference, including the hyperplane coefficients âproj;τu and the Lagrange
multiplier vectors corresponding to the equality constraint in (3).

In this paper, we develop an algorithm that solves the parametric programming
problem (3) and allows to compute efficiently the quantile regions R(n)

HPŠ
(τ) through

(3)–(4). The proposed procedure therefore appears as a competitor of the one described
in Paindaveine and Šiman (2011b)1 that computes the regions R(n)

HPŠ
(τ) directly from

(1)–(2). We shall see that the problem (3) falls into the category of linear programs
with parametric right hand side. They are quite common in practice and their theory is

1 The present paper somewhat mimics the structure and wording of Paindaveine and Šiman (2011b) to
highlight their mutual similarities and differences.

123

Author's personal copy

32 D. Paindaveine, M. Šiman

well developed. A Matlab toolbox for them has also been written; see Kvasnica et al.
(2004). However, the general problem can be simplified substantially in the special
case considered here, which gives rise to the fast and simple solver provided in this
paper. Our work confirms the trend that applications of parametric programming in
computational geometry still grow in number; see Raković et al. (2004) for another
paper on this topic.

The outline of the paper is as follows. In Sect. 2, we describe in detail a procedure
that solves the parametric programming problem (3) and allows for the computation
of the quantile regions R(n)

proj(τ). In Sect. 3, we present a step-by-step description of the

corresponding algorithm.2 In Sect. 4, we provide some illustrations of these quantile
regions and compare them with the quantile regions R(n)

HPŠ
(τ) computed from (1)–(2).

In Sect. 5, we conduct some simulations to evaluate the efficiency of our implemen-
tation of the algorithm and to compare it with the procedure described in Paindaveine
and Šiman (2011b). Finally, some technical matters related to the proposed algorithm
are discussed in Sect. 6.

2 Description of the procedure

In this section, we describe how the problem (3) with given fixed τ ∈ (0, 1) can be
solved for all u’s from S m−1 by means of parametric programming, with the focus on
τ -critical directions (since these are the only directions to be considered to compute the
quantile regions R(n)

proj(τ) from (3)–(4)). We assume throughout that, when deprived
of their first coordinate, the data points (xi , yi) ∈ R

p × R
m , i = 1, . . . , n, come

from a continuous distribution over R
m+p−1. Under this assumption, the algorithm

we describe below applies with probability one—problems can be expected only from
very exceptional data configurations, typically leading to degeneracy, unwanted zero
coordinates or non-invertible matrices in the procedure.

In what follows, we rewrite the problem (3) as a linear program in a convenient
way and show that the assumption u ∈ S m−1 can be relaxed without any harm into
u ∈ R

m (or more precisely, into u ∈ R
m \ {0}). We demonstrate that (i) the resulting

space R
m of the u’s can be segmented into polyhedral cones, each corresponding to

the same optimal basis of the associated linear program, and that (ii) the edges (or gen-
erating directions) of these cones must comprise all the τ -critical directions. Besides,
we describe the relation between any fixed (non-zero) u in each such cone and the
corresponding quantile hyperplane coefficients âproj;τu and ̂bproj;τu, and explain, for
any given non-zero vector u0, how to get the cone containing u0. Finally, we describe
the way how to find all neighboring cones adjacent to a given one by means of sim-
ple dual simplex post-optimization, which paves the way for finding the whole conic
segmentation, hence for solving the problem completely.

First, let us introduce the following notation. Let 0� be the �-dimensional zero vector
and 1� be the �-dimensional vector of ones. Denote by I�×� and Or×s the �-dimensional

2 Our Matlab implementation of this algorithm can be freely downloaded from the web page http://
homepages.ulb.ac.be/~dpaindav.

123

Author's personal copy

http://homepages.ulb.ac.be/~dpaindav
http://homepages.ulb.ac.be/~dpaindav

Computing multiple-output regression quantile regions 33

identity matrix and the zero r×s matrix, respectively. The positive and negative parts of
an �-vector v = (v1, . . . , v�)

′ are defined as v+ := (max(v1, 0), . . . , max(v�, 0))′ and
v− := (max(−v1, 0), . . . , max(−v�, 0))′, respectively. We write r = (r1, . . . , rn)′ for
the vector of residuals ri = ri (̃a,˜b) := ˜b

′
yi − ã′xi , i = 1, . . . , n. From the n × m

(response) matrix

Y := (y1, . . . , yn)′ =: (yc
1, . . . , yc

m)

and the n × p (design) matrix

X := (x1, . . . , xn)′ =: (xc
1, . . . , xc

p),

we define

U
y = U

y
n×2m := (yc

1,− yc
1, . . . , yc

m,− yc
m) and

V
x = V

x
n×2p := (xc

1,−xc
1, . . . , xc

p,−xc
p),

respectively. In the setup described in the Introduction, xc
1 = 1n . The general notation

is used here because sometimes it may be interesting to work with another xc
1 (for

example, when multiple identical observations occur in the sample, which may be
relevant for resampling procedures) and because our algorithm does not require any
special assumption on xc

1 at all. Finally, all vector inequalities are interpreted coordi-
natewise and some basic Matlab notation is used hereinafter, mainly for submatrices
and subvectors with possibly permuted rows or columns.

With this notation, the optimization problem (3), for any u ∈ S m−1, can be repre-
sented as the linear program

min
zP

c′
P zP subject to AP zP = bP , zP ≥ 0, (P)

with its dual twin brother

max
μP=(μb ′

,μr
P

′)′
u′μb subject to A

′
PμP ≤ cP , (D)

where, writing Mm×2m for the Kronecker product Im×m ⊗ (1,−1), we set

zP = (b′(˜b), a′(̃a), r ′+, r ′−)′ ∈ R
2m+2p+2n,

b = b(˜b) = (˜b1+,˜b1−, . . . ,˜bm+,˜bm−)′ ∈ R
2m,

a = a(̃a) = (̃a1+, ã1−, . . . , ãp+, ãp−)′ ∈ R
2p,

cP = (0′
2m+2p, τ1′

n, (1 − τ)1′
n)′ ∈ R

2m+2p+2n,

bP = (u′
m, 0′

n)′ ∈ R
m+n,

AP =
(

A
1
P(m×(2m+2p+2n))

A
2
P(n×(2m+2p+2n))

)

=
(

Mm×2m Om×2p Om×n Om×n

U
y
n×2m −V

x
n×2p −In×n In×n

)

;

123

Author's personal copy

34 D. Paindaveine, M. Šiman

here, μP is the Lagrange multiplier vector corresponding to the equality constraint
from (P).

Consider now some u0 such that there exists a solution
(

â′
proj;τu0

,̂b
′
proj;τu0

)′
to

(3) with only non-zero entries (which implies that u0 itself has non-zero coordinates
only), and denote by ẑP the corresponding optimal solution to (P). We then define

– Ib (resp.,˜Ib) as the vector containing indices (sorted in ascending order) of positive
coordinates in b(̂bproj;τu0) (resp., in b(−̂bproj;τu0)). Note that Ib and˜Ib have com-
mon dimension m. For instance, if̂bproj;τu0 = (2,−4)′, then one has b(̂bproj;τu0) =
(2, 0, 0, 4)′, Ib = (1, 4)′, b(−̂bproj;τu0) = (0, 2, 4, 0)′, and ˜Ib = (2, 3)′;

– Ia and˜Ia as the vectors obtained by adding 2m to each entry of the vectors obtained
analogously to Ib and ˜Ib, but from a(̂aproj;τu0) and a(−âproj;τu0). Note that Ia

and ˜Ia have common dimension p. With the same ̂bproj;τu0 as above (yielding
m = 2) and âproj;τu0 = (−1, 2)′, one obtains Ia = (2, 3)′ + (4, 4)′ = (6, 7)′ and
˜Ia = (1, 4)′ + (4, 4)′ = (5, 8)′;

– I Z , Ie and ˜Ie as the vectors containing indices (still sorted in ascending order) of
observations with zero, positive, and negative residuals, respectively. Their dimen-
sions—ζ , π , and ν, say (satisfying ζ + π + ν = n)—of course are the numbers of
zero, positive and negative residuals, respectively.

We will consider only the case π 	= 0 and ν 	= 0 below, but the other (simpler)
cases can be handled analogously. Finally, we put

I B = (I ′
b, I ′

a, 2(p + m)1′
π + I ′

e, (2p + 2m + n)1′
ν +˜I

′
e)

′, I R = (I ′
Z , I ′

e,
˜I

′
e)

′,

and

IC = (I ′
B,˜I

′
b,

˜I
′
a, 2(p + m)1′

ζ + I ′
Z , (2p + 2m + n)1′

ζ

+I ′
Z , (2p + 2m + n)1′

π + I ′
e, 2(p + m)1′

ν +˜I
′
e)

′;

the vector I B then consists of all the indices of basic variables. Therefore, it seems
natural to permute rows and columns of AP according to I R and IC [in the spirit of
Narula and Wellington (2002)], and to replace (P) with the strictly equivalent problem

min
zN

c′
N zN subject to AN zN = bN , zN ≥ 0, (N)

where

zN = zP (IC), cN = cP (IC), bN = bP ,

and

AN =
(

A
1
N (m×(2m+2p+2n))

A
2
N (n×(2m+2p+2n))

)

=
(

A
1
P (IC)

A
2
P (I R, IC)

)

123

Author's personal copy

Computing multiple-output regression quantile regions 35

(the vector bP remains untouched by this change since its n last components are equal).
Alternatively, we can write

zN = P
′
C zP , cN = P

′
C cP , bN =

(

Im×m Om×n

On×m PR

)

bP ,

and

AN =
(

Im×m Om×n

On×m PR

)

APPC ,

where PR and PC are the row and column permutation matrices (so that P
′
R = P

−1
R

and P
′
C = P

−1
C). One can easily check that

cN = (0′
m, 0′

p, τ1′
π , (1 − τ)1′

ν, 0′
m, 0′

p, τ1′
p, (1 − τ)1′

p, (1 − τ)1′
π , τ1′

ν)
′

=: (c′
0, c′

1, c′
2, c′

3, c̃′
0, c̃′

1, c̃′
2, c̃′

3, c̃′
4, c̃′

5)
′

=: (c′
(m+n)×1, c̃′

(m+2p+n)×1)
′

and that AN is of the form AN =
(

B(m+n)×(m+n)

... ˜B(m+n)×(m+2p+n)

)

, with

B =

⎛

⎜

⎜

⎝

Jm×m Om×p Om×π Om×ν

E
1
p×m F

1
p×p Op×π Op×ν

E
2
π×m F

2
π×p −Iπ×π Oπ×ν

E
3
ν×m F

3
ν×p Oν×π Iν×ν

⎞

⎟

⎟

⎠

and

˜B =

⎛

⎜

⎜

⎝

−Jm×m Om×p Om×p Om×p Om×π Om×ν

−E
1
p×m −F

1
p×p −Ip×p Ip×p Op×π Op×ν

−E
2
π×m −F

2
π×p Oπ×p Oπ×p Iπ×π Oπ×ν

−E
3
ν×m −F

3
ν×p Oν×p Oν×p Oν×π −Iν×ν

⎞

⎟

⎟

⎠

,

where J stands for the invertible m × m diagonal matrix with J�� = sign((u0)�),
� = 1, . . . , m, and where E

i and F
i , i = 1, 2, 3, are some known data-dependent

matrices related to U
y or V

x .
The columns of B correspond to the optimal basic variables of (N) so that ẑN (m +

n + 1 : 2m + 2p + 2n) is zero and ẑN (1 : m + n) = B
−1bN = B

−1(:, 1 : m)u0.
This readily implies that ẑN (1 : m) = abs(u0) := u0+ + u0−, and that the norm
of u0 does not affect the resulting quantile hyperplane π

(n)
proj;τu0

but only the scale

of its coefficients. Also note that B
−1 can be easily computed thanks to the special

123

Author's personal copy

36 D. Paindaveine, M. Šiman

blockwise structure of B. We simply have

B
−1 =

⎛

⎝

C
−1
1 O(m+p)×π O(m+p)×ν

C2C
−1
1 −Iπ×π Oπ×ν

−C3C
−1
1 Oν×π Iν×ν

⎞

⎠ ,

where

C1 =
(

Jm×m Om×p

E
1
p×m F

1
p×p

)

, C2 =
(

E
2
π×m

... F
2
π×p

)

, and C3 =
(

E
3
ν×m

... F
3
ν×p

)

.

Blockwise inversion of C1 analogously leads to

C
−1
1 =

(

J O

−(F1)−1
E

1
J (F1)−1

)

=:
(

J O

K L

)

.

Now the question is when B = B(u) ceases to be optimal. According to the theory
of linear programming, B is optimal if and only if u satisfies both primal and dual
feasibility conditions (PF) and (DF):

z = B
−1bN ≥ 0m+n, (PF)

d ′ := c′
B

−1
˜B − c̃′ ≤ 0′

m+2p+n . (DF)

The vector μ̂′
N :=

(

μb
m

′
,μr0

p
′
,μr+

π
′
,μr−

ν
′) = c′

B
−1 hidden in (DF) solves the

problem dual to (N) and contains the Lagrange multipliers corresponding to the equal-
ity constraint in (N). Clearly,

μb ′ = τ1′
π (E2

J + F
2
K) − (1 − τ)1′

ν(E
3
J + F

3
K),

μr0′ = τ1′
πF

2
L − (1 − τ)1′

νF
3
L, μr+′ = −τ1′

π , and μr−′ = (1 − τ)1′
ν

(note that if p = 1 and xc
1 = 1n , then μr0 = τπ − (1− τ)ν). The Lagrange multiplier

vector μ̂P from the original problem (P) can then be obtained from

μ̂N =
(

Im×m Om×n

On×m PR

)

μ̂P .

Note that μ̂P (1 : m) = μ̂N (1 : m).
Now, let us partition d according to c̃ into

d = (

d ′
0, d ′

1, d ′
2, d ′

3, d ′
4, d ′

5

)′
.

123

Author's personal copy

Computing multiple-output regression quantile regions 37

Then simple algebra leads to

z =

⎛

⎜

⎜

⎝

J

K

E
2
J + F

2
K

−(E3
J + F

3
K)

⎞

⎟

⎟

⎠

u (5)

d0 = 0m , d1 = 0p, d2 = −μr0 − τ1p, d3 = μr0 − (1 − τ)1p = −d2 − 1p,
d4 = −τ1π − (1 − τ)1π = −1π , and d5 = −(1 − τ)1ν − τ1ν = −1ν . Note that
the matrices E

i , i = 1, 2, 3, are used only in the product with J that can be obtained

from EJ = Y(I R, :), where we set E := (E1′ ... E
2′ ... E

3′)′.
Note as well that (DF) is equivalent to

(d ′
2, d ′

3)
′ ≤ 02p,

which can be rewritten as

−τ1p ≤ μr0 ≤ (1 − τ)1p.

Most importantly, (DF) must be satisfied at least for u0 and does depend on u only
implicitly through B. Consequently, B remains dual feasible whenever (PF) holds.

All u’s satisfying (PF) form a polyhedral cone, say Cu0 . Such cones (corresponding
to various u0’s) fill the whole space R

m and our goal is to find them all, together with
the corresponding optimal bases. Note that all u’s in the interior of such cones lead
to the hyperplane solutions fitting exactly p observations and that the solution hyper-
planes fitting m + p − 1 data points must be included among those corresponding to
the generating vectors of all these cones.

Let us assume that we have identified all non-redundant constraints in (PF) and
facets of Cu0 . Each such facet must be shared with another (adjacent) cone. That is
why we may simply pass through all the cones Cu counter-clockwise when m = 2.
In general, it is possible to use the breadth-first search algorithm and always consider
all such Cu’s that are adjacent to a cone treated in the previous step and have not been
considered yet.

It remains to clarify the process leading to the adjacent cone from a facet of Cu0 .
This facet, say, corresponds to the i th constraint in (PF) and has an interior point u f .
This point is still certain to meet the dual feasibility conditions (DF) and therefore we
may further proceed with the dual simplex post-optimization until the optimal basis
of the adjacent cone is found.

Let us describe this process in detail. The IC (i)th original variable will be the first
to leave the basis. Then we should compute the auxiliary vector

t = (t ′0, t ′1, t ′2, t ′3, t ′4, t ′5)′ = B
−1(i, :)˜B

123

Author's personal copy

38 D. Paindaveine, M. Šiman

(partitioned according to d) and find an index j satisfying

d j

t j
= min

{dh

th
: th < 0, h = 1, . . . , m + 2p + n

}

.

The IC (n + m + j)th original variable should then replace the removed one. We get
a new dual feasible basis, say B1.

Note that

i ≤ m m + 1 ≤ i ≤ m + p m + p + 1 ≤ i ≤ m + p + π m + p + π + 1 ≤ i
t ′0 = −Im×m(i, :) 0′

m 0′
m 0′

m
t ′1 = 0′

p −Ip×p(i − m, :) 0′
p 0′

p
t ′2 = 0′

p −L(i − m, :) −F
2(i − m − p, :)L F

3(i − m − p − π, :)L
t ′3 = 0′

p L(i − m, :) F
2(i − m − p, :)L −F

3(i − m − p − π, :)L
t ′4 = 0′

π 0′
π −Iπ×π (i − m − p, :) 0′

π

t ′5 = 0′
ν 0′

ν 0′
ν −Iν×ν(i − m − p − π, :)

Consequently, we may consider only certain subvectors of t and d without any loss
of generality.

If i ≤ m + p, then we can always choose j = i , which only changes the sign of a
regression coefficient. If i > m + p, then the optimal j results from

d j

t j
= min

{dh

th
: th < 0, h = m + p + 1, . . . , m + 3p

}

if this fraction is less than or equal to 1; otherwise we can set j = 2p + i . If more-
over p = 1 and the only regressor is the unit vector, then (t ′2, t ′3)′ equals (−1, 1)′ for
i ≤ m + p + π and (1,−1)′ otherwise.

The resulting basis B1 is optimal if and only if

z1 = B
−1
1 (:, 1 : m)u f ≥ 0m+n, (6)

which appears to hold with probability one (otherwise, we would have to repeat the
previous steps until the optimal basis of the adjacent cone is found, which is not
supported by the accompanying Matlab code).

3 Algorithm

To sum up, the basic form of the algorithm can always be performed in the following
steps where the highlighted text refers to the topical subsections of Sect. 6 that discuss
some issues in more detail:

1. Adjust the data and τ if necessary; see Input Data and Choice of τ , respectively.
2. Consider (P) and find its optimal basis B=B(u0) for a given directional vector u0,

see Computing the first directional quantile.
3. Set Bnew := {B(u0)}.
4. Set Bold := Bnew, then Bnew := ∅.

123

Author's personal copy

Computing multiple-output regression quantile regions 39

5. For each B = B(u) in Bold,
(a) compute z = z(u) from (5) that determines the inequalities in (PF) defining

the cone Cu of all directions leading to the same optimal basis B as u
(b) find facets and vertices of Cu; see Finding non-redundant constraints, facets

and interior points
(c) drop all facets of Cu whose adjacent cones have already been investigated;

see Realization of the breadth-first search algorithm
(d) for each remaining facet of Cu, find its interior point u f and use it in the sim-

plex post-optimization step to determine the optimal basis Bnew(u f) of the
adjacent cone sharing that facet with Cu (as described at the end of Sect. 2),
and add Bnew(u f) to Bnew;

6. If Bnew is non-empty, go to Step 4.

If Bnew is empty, then the algorithm terminates successfully (all cones C have been
found and there is no new cone facet to investigate).

4 Illustrations

This section presents some illustrative examples of the quantile regions R(n)
proj(τ)

obtained from our Matlab implementation of the procedure described above. What
we plot for each region is actually the corresponding quantile contour, namely its
boundary ∂ R(n)

proj(τ). In each case, we compare the results with the contours ∂ R(n)

HPŠ
(τ)

computed from (1)–(2), as described in Paindaveine and Šiman (2011b).

Bivariate location case We start with the bivariate location case obtained with m = 2
and p = 1. We independently generated data points yi , i = 1, . . . , n = 2,499, from
the uniform distribution over the unit square [0, 1]2. Figure 1a plots the resulting quan-
tile contours ∂ R(n)

proj(τ) for τ = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and
0.45. These contours match very well their population versions—namely the popula-
tion halfspace depth contours (see Rousseeuw and Ruts 1999)—and seem to coincide,
as expected, with the contours ∂ R(n)

HPŠ
(τ) plotted in Fig. 1c—that are computed from

(1)–(2). Our code can deal with weighted observations (which in particular allows for
multiple observations): if weights ωi > 0, i = 1, . . . , n (summing up to one or not)
are given, the resulting “weighted” optimization problem is obtained by substituting
yωi := ωi yi and xωi := ωi xi , i = 1, . . . , n, for the yi ’s and xi ’s in (3). Figure 1b
reports, for the same τ ’s as in Fig. 1a, the quantile contours ∂ R(n)

proj(τ) associated with
weighted data points yωi := ωi yi , i = 1, . . . , n, where the weights are given by

ωi =
{

2499
20 for i = 1, . . . , 10

1 for i = 11, . . . , n = 2,499

and the original data points yi are the same as in Fig. 1a. The ten points plotted in
Fig. 1b are the original data points yi , i = 1, . . . , 10, that receive the larger weight.

123

Author's personal copy

40 D. Paindaveine, M. Šiman

Fig. 1 In subfigure a, quantile contours ∂ R(n)
proj(τ) of order τ = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,

0.35, 0.40, and 0.45 are plotted, by using the method described in this paper, from a sample of n = 2, 499
observations drawn independently from the uniform distribution over [0, 1]2. Subfigure b reports the cor-
responding contours after the weights of the first ten data points (that are plotted there) were changed from

1 to 2499/20. Subfigures c–d provide the corresponding quantile contours ∂ R(n)

HPŠ
(τ) computed from the

method described in Paindaveine and Šiman (2011b)

The corresponding contours ∂ R(n)

HPŠ
(τ), which are reported in Fig. 1d, still appear to

be equal to the contours computed from projection quantiles.

Trivariate location case Figure 2 illustrates the trivariate location case with m = 3 and
p = 1. The sample considered there consists of n = 249 data points obtained indepen-
dently from the uniform distribution over the unit cube [0, 1]3. Figure 2a reports the
quantile contours ∂ R(n)

proj(τ) computed from projection quantiles for τ = 0.05, 0.15,
and 0.25. The only other method available for computing halfspace depth regions
beyond dimension two is the one from Paindaveine and Šiman (2011b) that is based
on (1)–(2); the corresponding contours ∂ R(n)

HPŠ
(τ) are plotted in Fig. 2b. As expected,

both methods seem to lead to the same contours.

123

Author's personal copy

Computing multiple-output regression quantile regions 41

Fig. 2 In subfigure a, quantile contours ∂ R(n)
proj(τ) of order τ = 0.05, 0.15, and 0.25 are plotted by using

the method described in this paper from a sample of n = 249 observations drawn independently from

the uniform distribution over [0, 1]3. Subfigure b provides the corresponding quantile contours ∂ R(n)

HPŠ
(τ)

computed as described in Paindaveine and Šiman (2011b)

Regression setup with two responses and one random covariate We consider the sim-
ple heteroscedastic regression model

Y = (W, W)′ + √
W ε,

where the random covariate W is uniformly distributed over [0, 1] and the random vec-
tor ε (which is independent of W) is uniformly distributed over the unit square [0, 1]2.
From this model, we independently generated data points (x′

i , y′
i)

′ = (1, wi , y′
i)

′ ∈
R

p × R
m = R

2 × R
2, i = 1, . . . , n = 249. Figure 3a displays the resulting (trivari-

ate, since they are objects of the (w, y)-space) regression quantile contours ∂ R(n)
proj(τ)

for τ = 0.05, 0.15, 0.30, and 0.45. Figure 3b provides the corresponding regression
quantile contours ∂ R(n)

HPŠ
(τ) computed from (1)–(2) as described in Paindaveine and

Šiman (2011b).

5 Simulations

We now present some empirical results that quantify the speed (and show the pos-
sibilities) of our Matlab implementation of the procedure described in this paper.
We used an Apple computer with Intel Core Duo 1.83 GHz, 512MB RAM, Win XP
SP2 and Matlab 7.3.0.267. Of course, other hardware or initial settings may lead to
different results.

5.1 Location case

We first focus on the location case (p = 1), hence on the computation of halfspace
depth contours. We considered only the bivariate case (m = 2) so that we could
compare the Matlab implementation of the method described in this paper with that

123

Author's personal copy

42 D. Paindaveine, M. Šiman

Fig. 3 Subfigure a reports the quantile contours ∂ R(n)
proj(τ) of order τ = 0.05, 0.15, 0.30, and 0.45 for

n = 249 observations drawn independently from the regression model described in Sect. 4 (to which

we refer for details). Subfigure b provides the corresponding quantile contours ∂ R(n)

HPŠ
(τ) computed as

described in Paindaveine and Šiman (2011b)

coauthored and kindly provided to us by Ivan Mizera that we chose for a benchmark
(in Sect. 5.2, we will use the code from Paindaveine and Šiman (2011b), which is the
only competitor available in the general regression case).

We generated n i.i.d. bivariate (m = 2) observations (i) from the bivariate standard
normal distribution N (0, 1)2 (S = 1) and (ii) from the centered bivariate uniform dis-
tribution over the unit square U ([−0.5, 0.5])2 (S = 2). For any combination of τ =
{0.010, 0.025, 0.050, 0.100, 0.200, 0.400} and n ∈ {50, 100, 150, 200, 300, 500,
1,000, 2,000, 5,000, 10,000, 20,000}, we ran the computation ten times for each
scenario S.3 Average execution times in seconds are reported in Tables 1 and 2 (for
S = 1 and S = 2, respectively) and show that the computation hardly takes more than
1 min and a half even for n = 10,000. As expected, they increase with τ and they
are higher for S = 2 than for S = 1 if τ is low while the reverse becomes true with
growing τ . However, their dependence on n seems, on average, higher than linear and
not worse than quadratic in any case.

For the same reasons as those presented in Paindaveine and Šiman (2011b), the
comparison with the benchmark is not free of limitations. Still, the results seem to
demonstrate high stability and superiority of the code proposed in this paper over the
benchmark because it was always observed faster, sometimes even more than 27 times.

3 Actually, with the following changes to the default settings of our code: CTechST.PFZ1CheckI = 0,
CTechST.InCheckI = 0, CTechST.ReportI = 0, CTechST.TestModeI = 0, and CTechST.OutSaveI = 0. This
suppresses some almost surely redundant testing, checking the input for correctness, detailed output on the
screen, computing some auxiliary technical statistics and storing the output on the disk, all that to make our
code faster and possible to use in an extensive simulation. Note that the output for m = 2 and n ≤ 10,000
is usually small enough to be kept in the internal memory; so the last option does not affect the results too
much here.

123

Author's personal copy

Computing multiple-output regression quantile regions 43

Table 1 Average execution time (in seconds) of our code is provided for scenario S = 1, number of
observations n, and order τ in the bivariate location context

n\τ 0.010 0.025 0.050 0.100 0.200 0.400

50 0.03 (4.3) 0.04 (5.0) 0.04 (7.0) 0.07 (6.3) 0.09 (8.1) 0.10 (9.5)

100 0.06 (5.7) 0.05 (8.4) 0.09 (8.4) 0.10 (11.1) 0.14 (13.0) 0.17 (15.2)

150 0.05 (8.4) 0.07 (10.1) 0.09 (12.9) 0.14 (14.1) 0.19 (17.6) 0.23 (20.0)

200 0.07 (9.4) 0.10 (11.0) 0.13 (13.4) 0.18 (16.1) 0.23 (20.6) 0.30 (22.6)

300 0.09 (11.8) 0.12 (14.2) 0.19 (15.6) 0.26 (19.6) 0.36 (23.3) 0.47 (25.9)

500 0.16 (11.1) 0.19 (16.6) 0.29 (18.8) 0.42 (22.6) 0.62 (25.6) 0.81 (27.7)

1,000 0.27 (15.2) 0.44 (17.6) 0.65 (20.8) 0.99 (23.9) 1.51 (26.0) 2.05 (27.7)

2,000 0.75 (12.4) 1.03 (18.2) 1.67 (19.9) 2.66 (22.0) 4.06 (23.8) 5.74 (24.2)

5,000 2.20 (13.3) 4.33 (14.2) 6.96 (15.6) 11.44 (16.9) 18.27 (17.7) 26.20 (17.5)

10,000 8.18 (8.8) 14.34 (10.6) 24.88 (11.0) 42.14 (11.6) 68.00 (12.0) 97.04 (12.1)

20,000 26.65 (9.4) 56.10 (9.2) 96.90 (9.8) 168.34 (9.9) 267.38 (10.3) 373.98 (10.4)

The numbers in parentheses indicate how many times it is faster than the benchmark (2D location setting:
m = 2 and p = 1, scenario S = 1)

Table 2 Average execution time (in seconds) of our code is provided for scenario S = 2, number of
observations n, and order τ in the bivariate location context

n\τ 0.010 0.025 0.050 0.100 0.200 0.400

50 0.04 (4.3) 0.05 (4.8) 0.05 (6.4) 0.07 (7.0) 0.09 (7.8) 0.10 (8.8)

100 0.06 (6.3) 0.07 (7.7) 0.09 (9.2) 0.11 (11.8) 0.13 (14.9) 0.16 (15.4)

150 0.06 (8.2) 0.11 (7.7) 0.10 (13.5) 0.15 (14.5) 0.19 (17.7) 0.22 (19.9)

200 0.09 (9.1) 0.12 (10.9) 0.15 (13.7) 0.19 (16.8) 0.24 (20.1) 0.29 (22.1)

300 0.12 (10.3) 0.14 (14.3) 0.22 (15.2) 0.28 (20.1) 0.35 (23.7) 0.44 (25.7)

500 0.18 (12.1) 0.22 (17.0) 0.34 (18.7) 0.46 (22.8) 0.63 (25.6) 0.78 (27.8)

1,000 0.42 (12.0) 0.55 (17.9) 0.77 (20.7) 1.10 (23.8) 1.55 (26.1) 1.95 (27.2)

2,000 0.90 (13.3) 1.30 (17.7) 1.96 (19.5) 2.92 (22.0) 4.14 (23.9) 5.50 (23.8)

5,000 3.91 (9.7) 5.39 (14.2) 8.32 (15.5) 12.68 (16.9) 18.87 (17.5) 24.96 (17.6)

10,000 12.06 (7.9) 19.13 (10.2) 30.35 (10.8) 47.91 (11.3) 70.27 (12.0) 91.92 (12.0)

20,000 37.87 (8.5) 69.58 (9.4) 117.69 (9.1) 189.72 (9.5) 276.51 (10.1) 356.12 (10.2)

The numbers in parentheses indicate how many times it is faster than the benchmark (2D location settings:
m = 2 and p = 1, scenario S = 2)

It excels especially when applied to medium-sized data sets and not too extreme values
of τ .

The decrease of relative efficiency of our code for very small values of τ or n can
be explained by the fact that it is the inefficient finding of the initial solution that
contributes the most to the overall execution time in these cases. Indeed, profiling of
the code in Matlab shows that this contribution is usually higher than 30% even for
n = 5,000 if τ = 0.01 (and exceeds 70% for n = 50 and the same τ). On the other
hand, if τ = 0.3, then this contribution is still often larger than 30% for n = 50 but

123

Author's personal copy

44 D. Paindaveine, M. Šiman

usually drops below 5% for n = 5,000. Different memory space requirements can
also play some role, especially if n is set very high.

5.2 General regression case

Next we consider the general regression context represented by the simple model

Y p×1 = Bp×m Xm×1 + ε p×1,

where X1 = 1, (X2, . . . , X p)
′ has i.i.d. marginals that are uniformly distributed over

(0, 1), ε is p-variate standard normal, and B can be obtained from the p × m matrix
of ones by replacing the elements in the first column with zeros. Average execution
times4 in seconds, for a total of r replications, are recorded for many combinations of
n, p and τ in Table 3 (for m = 2 with r = 10) and in Table 4 (for m = 3 with r = 5,
and for m ∈ {4, 5} with r = 3).

Here, the only competitor is the code described in Paindaveine and Šiman (2011b).
The code presented in this paper seems to slightly improve on that of Paindaveine and
Šiman (2011b) at least if m = 2 or (in the location case) if m = 3.5

6 Technical details

In this section, we are going to discuss in more detail some technical matters related
to the algorithm described in Sects. 2 and 3.

Choice of τ If nτ is an integer and p = 1, then linear programming problem (P) has
infinitely many solutions for each u. In general, if such a complication occurs, we
solve it by a small perturbation of τ , which can hardly make any important difference
in most applications. Besides, there is only a finite number of different quantile regions
anyway, so that such small perturbations of τ could always be done without loss of
generality when the goal is only to compute the quantile regions.

Input data The code assumes m ∈ {2, 3, . . . , 8} and n ≤ 100,000 and its output
should be quite reliable for m ∈ {2, 3}, p ≤ 10 and n ≤ 10,000 (if m = 2) or 500
(if m = 3) at least. The program was heavily tested only on data from our simulation
study, with all coordinates less than 5 or so. This is why we suggest to standard-
ize the input observations in some way to a similar range whenever possible, which
should enhance numerical stability of the algorithm. Besides, most real data are dis-
crete because they are measured or recorded only with limited precision. This makes
some bad data configurations more likely than almost impossible. Therefore we also

4 Still with the same changes to the default settings as in Sect. 5.1.
5 Nevertheless, note that the accuracy of efficiency ratios is limited due to the rounding error of execution
times and that the average execution times themselves may (slightly) differ even for the same data set,
which follows from comparing corresponding values from Tables 1 and 3.

123

Author's personal copy

Computing multiple-output regression quantile regions 45

Table 3 Average execution time (in seconds) of our code, based on r = 10 replications, is provided for
quantile order τ , p regressors (including the intercept) and n observations

p : n\τ 0.010 0.025 0.050 0.100 0.200 0.400

1: 100 0.06 (1.5) 0.05 (2.0) 0.09 (1.4) 0.10 (1.6) 0.14 (1.6) 0.17 (1.6)

2: 100 0.08 (1.1) 0.10 (1.1) 0.12 (1.3) 0.14 (1.4) 0.17 (1.4) 0.21 (1.5)

3: 100 0.09 (1.1) 0.11 (1.1) 0.13 (1.2) 0.16 (1.3) 0.21 (1.3) 0.25 (1.4)

6: 100 0.12 (1.2) 0.13 (1.2) 0.15 (1.3) 0.20 (1.3) 0.25 (1.4) 0.32 (1.4)

1: 200 0.08 (1.5) 0.10 (1.6) 0.13 (1.5) 0.18 (1.6) 0.24 (1.6) 0.31 (1.6)

2: 200 0.11 (1.2) 0.14 (1.2) 0.18 (1.3) 0.23 (1.4) 0.31 (1.4) 0.40 (1.4)

3: 200 0.12 (1.2) 0.16 (1.1) 0.20 (1.2) 0.27 (1.3) 0.37 (1.4) 0.47 (1.4)

6: 200 0.15 (1.2) 0.19 (1.2) 0.25 (1.2) 0.34 (1.3) 0.48 (1.4) 0.61 (1.4)

1: 300 0.09 (1.8) 0.12 (1.7) 0.20 (1.4) 0.26 (1.6) 0.37 (1.6) 0.49 (1.6)

2: 300 0.15 (1.1) 0.19 (1.2) 0.25 (1.3) 0.34 (1.4) 0.47 (1.4) 0.62 (1.4)

3: 300 0.16 (1.1) 0.21 (1.2) 0.28 (1.2) 0.40 (1.3) 0.56 (1.4) 0.72 (1.4)

6: 300 0.19 (1.2) 0.27 (1.2) 0.38 (1.2) 0.50 (1.4) 0.71 (1.4) 0.96 (1.4)

12: 300 0.30 (1.3) 0.37 (1.3) 0.50 (1.3) 0.70 (1.5) 1.05 (1.4) 1.44 (1.5)

1: 500 0.16 (1.4) 0.19 (1.6) 0.30 (1.5) 0.44 (1.5) 0.63 (1.6) 0.85 (1.6)

2: 500 0.20 (1.2) 0.27 (1.3) 0.39 (1.3) 0.56 (1.4) 0.81 (1.4) 1.08 (1.4)

3: 500 0.24 (1.1) 0.32 (1.3) 0.46 (1.3) 0.66 (1.4) 0.96 (1.4) 1.28 (1.4)

6: 500 0.30 (1.2) 0.43 (1.2) 0.61 (1.3) 0.87 (1.4) 1.30 (1.4) 1.74 (1.4)

12: 500 0.44 (1.4) 0.61 (1.4) 0.91 (1.4) 1.37 (1.5) 2.06 (1.4) 2.59 (1.5)

1: 1000 0.28 (1.5) 0.44 (1.4) 0.67 (1.4) 1.02 (1.4) 1.53 (1.5) 2.10 (1.4)

2: 1000 0.37 (1.2) 0.57 (1.2) 0.84 (1.3) 1.33 (1.3) 1.97 (1.3) 2.70 (1.3)

3: 1000 0.42 (1.2) 0.68 (1.2) 1.01 (1.2) 1.54 (1.2) 2.34 (1.3) 3.15 (1.3)

6: 1000 0.61 (1.1) 0.92 (1.2) 1.41 (1.2) 2.14 (1.2) 3.26 (1.3) 4.34 (1.3)

12: 1000 0.90 (1.2) 1.45 (1.2) 2.35 (1.1) 3.42 (1.3) 5.70 (1.3) 6.71 (1.3)

1: 2000 0.74 (1.1) 1.01 (1.4) 1.64 (1.4) 2.65 (1.4) 3.94 (1.4) 5.45 (1.4)

2: 2000 0.82 (1.2) 1.41 (1.1) 2.16 (1.2) 3.47 (1.2) 5.19 (1.2) 7.24 (1.2)

3: 2000 0.98 (1.1) 1.64 (1.1) 2.56 (1.2) 4.05 (1.2) 6.23 (1.2) 8.65 (1.2)

6: 2000 1.42 (1.1) 2.33 (1.1) 3.59 (1.2) 5.80 (1.2) 9.02 (1.2) 12.39 (1.2)

12: 2000 2.30 (1.1) 3.86 (1.2) 6.28 (1.2) 10.11 (1.2) 15.12 (1.3) 20.56 (1.3)

1: 5000 2.46 (1.3) 4.93 (1.2) 7.46 (1.3) 11.63 (1.3) 18.05 (1.3) 25.16 (1.4)

2: 5000 3.23 (1.1) 6.00 (1.1) 9.53 (1.2) 15.40 (1.2) 24.50 (1.2) 34.28 (1.2)

3: 5000 4.26 (1.1) 7.71 (1.1) 11.92 (1.2) 18.75 (1.3) 29.73 (1.2) 41.46 (1.5)

6: 5000 6.41 (1.2) 11.88 (1.1) 20.35 (1.2) 29.87 (1.3) 46.71 (1.2) 65.28 (1.5)

12: 5000 13.09 (1.4) 23.80 (1.6) 41.79 (1.5) 59.10 (1.5) 91.65 (1.4) 124.02 (1.8)

123

Author's personal copy

46 D. Paindaveine, M. Šiman

Table 3 Continued

p : n\τ 0.010 0.025 0.050 0.100 0.200 0.400

1: 10000 9.61 (1.2) 17.75 (1.3) 26.22 (1.4) 42.36 (1.3) 71.10 (1.4) 100.87 (1.4)

2: 10000 11.19 (1.2) 22.23 (1.1) 35.25 (1.2) 58.24 (1.2) 98.01 (1.1) 134.76 (1.2)

3: 10000 14.84 (1.1) 28.01 (1.2) 44.54 (1.2) 71.65 (1.2) 117.46 (1.2) 170.83 (1.2)

6: 10000 21.66 (1.5) 43.72 (1.5) 71.85 (1.5) 113.38 (1.6) 186.31 (1.4) 256.98 (1.5)

12: 10000 55.20 (1.4) 111.74 (1.4) 187.01 (1.5) 309.01 (1.5) 485.73 (1.5) 667.55 (1.5)

The numbers in parentheses indicate how many times it is faster than the code from Paindaveine and Šiman
(2011b) (2D regression settings: m = 2)

Table 4 Average execution time (in seconds) of our code, based on r = 5 replications if m = 3 and on
r = 3 replications otherwise, is provided for quantile order τ , p regressors (including the intercept) and n
m-dimensional responses

p : n\τ m = 3 m = 4 m = 5

0.010 0.025 0.100 0.200 0.010 0.025 0.010

1: 100 0.96 (1.4) 1.42 (1.4) 9.86 (1.2) 22.73 (1.2) 5.60 (1.1) 13.99 (1.3) 48.63 (1.0)

2: 100 1.04 (1.1) 2.23 (1.1) 11.74 (1.1) 28.66 (1.1) 5.17 (1.4) 24.03 (1.1) 41.72 (1.6)

3: 100 1.58 (1.0) 2.79 (1.0) 15.19 (1.1) 37.12 (1.1) 11.40 (1.0) 34.14 (0.9) 125.90 (1.1)

4: 100 2.29 (0.9) 3.55 (0.9) 18.23 (1.0) 45.80 (1.1) 25.18 (0.8) 53.39 (0.8) 346.56 (0.8)

6: 100 4.60 (0.8) 5.40 (0.8) 24.95 (0.9) 61.84 (1.0) 91.55 (0.6) 116.28 (0.6) 1801.58 (0.5)

1: 200 1.96 (1.3) 5.60 (1.2) 40.07 (1.1) 105.60 (1.1) 21.87 (1.0) 133.23 (1.1) 274.27 (0.9)

2: 200 2.12 (1.1) 6.38 (1.1) 50.45 (1.1) 139.77 (1.1) 21.00 (1.0) 151.40 (1.0) 265.30 (1.0)

3: 200 2.77 (1.0) 8.18 (1.0) 67.16 (1.0) 182.39 (1.0) 36.80 (0.9) 225.93 (0.9) 552.52 (0.8)

4: 200 3.75 (0.9) 10.26 (0.9) 82.73 (1.0) 225.80 (1.0) 55.61 (0.8) 325.67 (0.8) 999.58 (0.7)

6: 200 6.47 (0.8) 14.52 (0.9) 113.09 (1.0) 311.26 (1.0) 153.91 (0.6) 592.77 (0.7) 3933.44 (0.5)

1: 300 3.40 (1.2) 10.43 (1.1) 101.18 (1.1) 281.95 (1.0) 60.46 (1.0) 390.83 (1.0) 1059.70 (0.9)

2: 300 3.88 (1.0) 14.08 (1.0) 130.36 (1.0) 371.95 (1.0) 63.10 (0.9) 587.82 (0.9) 1124.81 (0.9)

3: 300 5.19 (0.9) 18.53 (0.9) 170.44 (1.0) 496.96 (1.0) 104.67 (0.8) 905.64 (0.8) 2254.24 (0.8)

4: 300 6.56 (0.9) 22.91 (0.9) 208.12 (1.0) 636.60 (1.0) 157.67 (0.7) 1321.53 (0.8) 4050.45 (0.6)

6: 300 10.49 (0.8) 32.51 (0.9) 295.13 (1.0) 951.20 (1.0) 321.32 (0.6) 2473.22 (0.7) 16978.51 (0.4)

12: 300 36.26 (0.7) 69.33 (0.8) 593.24 (0.9) 2154.13 (1.0)

1: 400 5.91 (1.1) 22.44 (1.0) 198.14 (1.0) 616.93 (1.0) 138.26 (0.9) 1389.91 (0.9) 3219.40 (0.9)

2: 400 6.85 (1.0) 27.13 (1.0) 259.47 (1.0) 832.20 (1.0) 155.62 (0.9) 1842.90 (0.9) 3742.53 (0.9)

3: 400 9.00 (0.9) 35.72 (0.9) 339.13 (0.9) 1138.06 (1.0) 244.52 (0.8) 2896.03 (0.8) 8584.16 (0.7)

4: 400 11.36 (0.9) 43.23 (0.9) 426.63 (0.9) 1461.29 (1.0) 363.51 (0.7) 4375.24 (0.8) 24130.39 (0.4)

6: 400 16.34 (0.8) 60.29 (0.9) 609.63 (1.0) 2248.87 (1.0) 669.73 (0.6) 8784.51 (0.7)

12: 400 47.52 (0.7) 123.45 (0.8) 1375.59 (0.9) 5411.35 (0.9)

1: 500 9.15 (1.0) 32.93 (1.0) 357.53 (1.0) 1186.97 (1.0) 274.41 (0.9) 2867.31 (0.9)

2: 500 10.40 (0.9) 43.17 (0.9) 470.28 (0.9) 1634.72 (1.0) 316.32 (0.8) 4727.81 (0.8)

123

Author's personal copy

Computing multiple-output regression quantile regions 47

Table 4 Continued

p : n\τ m = 3 m = 4 m = 5

0.010 0.025 0.100 0.200 0.010 0.025 0.010

3: 500 13.66 (0.9) 56.80 (0.9) 618.37 (0.9) 2285.95 (0.9) 504.06 (0.7) 8213.09 (0.8)

4: 500 17.39 (0.8) 70.29 (0.9) 788.91 (0.9) 2969.72 (1.0) 733.00 (0.7) 17159.85 (0.6)

6: 500 25.88 (0.8) 99.45 (0.9) 1142.40 (0.9) 4665.41 (1.0) 1407.06 (0.6) 67844.38 (0.4)

12: 500 64.65 (0.7) 198.35 (0.8) 2557.46 (0.9) 11624.00 (0.9)

The numbers in parentheses indicate how many times it is faster than the code from Paindaveine and Šiman
(2011b) (Multidimensional regression settings)

recommend to perturb the input data points by some random noise of a reasonably
small magnitude to prevent their discreteness from causing any troubles.

When a few identical observations occur, we may either aggregate the same rows
of AP into a single one or introduce (positive) weights into cP and proceed analo-
gously (the formulae would have to be changed a little but the crucial simplification
of (DF) would persist). We prefer the first approach that is faster, easier to implement
and still leads to the same quantile coefficients. Since the algorithm does not rely on
any special form of xc

1, the code can also handle such aggregated or weighted rows
(corresponding to weighted observations). Therefore the program can be used even
for bootstrap and subsampling methods quite easily. We might also refer to Hlubinka
et al. (2010) for another interesting attempt to combine weights and halfspace depth
ideas.

Computing the first directional quantile We decided to solve (P) with the aid of free
Matlab toolbox SeDuMi 1.1 (see Pólik 2005 and Sturm 1999) that exploits sparsity
and is very fast, flexible, and easy-to-use. Any fast and reliable solver designed for
univariate quantile regression might be substituted here. In fact, only fast computation
of ordinary quantiles is needed (but not implemented) if p = 1.

As mentioned above, we can relax the assumption u ∈ S m−1 without any loss of
generality because all nonzero vectors u in the same direction lead to the same upper
halfspace H (n)+

proj;τu. In general, we choose u0 as a normalized corner of [−1, 1]m . Large
or high-dimensional problems can be solved more effectively by segmenting the whole
space to U0 regions of the form

U0 = {u ∈ R
m : sign(u) = sign(u0)},

and considering each of these 2m different orthants separately. Note that the first m
constraints in (PF) are trivially satisfied in each U0.

If the starting direction leads to troubles, then other choices are tried until the
optimal solution with the required number of non-zero coordinates is found.

Finding non-redundant constraints, facets and interior points If m = 2, then the
problem of finding non-redundant constraints and facets can be solved by assigning
angles (say θ ’s) to all the constraints in a clever way. The interior point can then be
found simply by means of the facet normal vector.

123

Author's personal copy

48 D. Paindaveine, M. Šiman

For m > 2, the problem is far more complicated. First, we make the problem
bounded by restricting to vectors u in [−1, 1]m , which turns the cones into polytopes.
Then we find all vertices and facets of such a polytope by means of the dual relationship
between vertex and facet enumeration (see Bremner et al. (1998)) and program qhull
(see Barber et al. (1996)) for the latter one, fortunately accessible in Matlab (In fact,
we only modify the function con2vert.m by Michael Kleder from Matlab Central
File Exchange.) This enumeration procedure requires an interior point of the resulting
polytope to start. We search for it from the scaled center of the known (parent) facet
and in the direction of its normal vector.

In principle, u f might be found even without the artificial bounding with subsequent
vertex enumeration and the zero vertex problem might be addressed as well; see
Chvátal (1983). However, we decided to tailor our code for qhull, which is an already
developed and mature tool for solving similar problems that is quite stable, fast and
familiar with rounding errors.

Realization of the breadth-first search algorithm When this algorithm is employed,
then some identifiers (scaled facet centers or facet normal vectors) of all (or lastly)
used facets are stored in sorted archive(s) and a new facet is used for building the
adjacent cone only if its identifier differs from all those archived, which is checked by
the binary search algorithm.

Plotting the contours The program output provides upper halfspaces including those
whose intersection equals the quantile region of our interest (if all of them are uniquely
defined). Vertices of these regions could be obtained by the vertex enumeration men-
tioned above (and also used in our code in a different context). The quantile contour
with known vertices can be plotted easily as their convex hull, for example. This is
essentially the procedure we used to generate all figures of the present paper.

Computing many (or all) contours at once The first (initial) solutions could be found
faster for all relevant τ ’s at once than for each τ separately, by linear programming
parametric in τ . In the purely location case, it would be advantageous to compute the
contours from the highest τ < 0.5 to the lowest and to reduce the data set in each step
(with adjusting τ accordingly), since inner points are redundant for computing outer
contours. If we were interested even in the individual quantile hyperplanes and their
coefficients, we could still replace all the surely interior observations with a single
aggregated pseudo-observation keeping the new resulting subgradient conditions the
same as before (as Roger Koenker kindly suggested to us). These proposals are not
implemented in our code as it is designed to compute a single contour only.

Acknowledgments The research work of Davy Paindaveine, who is also member of ECORE (the asso-
ciation between CORE and ECARES), was supported by a Mandat d’Impulsion Scientifique of the Fonds
National de la Recherche Scientifique, Communauté française de Belgique, and by an A.R.C. contract of
the Communauté Française de Belgique. That of Miroslav Šiman was partly supported by a chercheur post-
doctoral temporaire contract of the Fonds National de la Recherche Scientifique, Communauté française
de Belgique, and partly by Project 1M06047 of the Ministry of Education, Youth and Sports of the Czech
Republic. The authors would like to thank Roger Koenker and Ivan Mizera for inspiring discussions and
advices. They also express their gratitude to Ivan Mizera for kindly providing the Matlab code for compu-

123

Author's personal copy

Computing multiple-output regression quantile regions 49

tation of bivariate halfspace depth contours he coauthored with David Eppstein. Finally, they would like to
thank two anonymous referees for their careful reading of the first version of the paper and their constructive
comments that led to substantial improvements of the manuscript.

References

Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math
Softw 22:469–483

Bremner D, Fukuda K, Marzetta A (1998) Primal-dual methods for vertex and facet enumeration. Discrete
Comput Geom 20:333–357

Chakraborty B (2003) On multivariate quantile regression. J Stat Plann Inference 110:109–132
Chaudhuri P (1996) On a geometric notion of quantiles for multivariate data. J Am Stat Assoc 91:862–872
Chvátal V (1983) Linear programming. W.H. Freeman & co, New York
Hallin M, Paindaveine D, Šiman M (2010) Multivariate quantiles and multiple-output regression quantiles:

from L1 optimization to halfspace depth (with discussion). Ann Stat 38:635–669
Hlubinka D, Kotík L, Vencálek O (2010) Weighted halfspace depth. Kybernetika 46:125–148
Koenker R, Bassett GJ (1978) Regression quantiles. Econometrica 46:33–50
Koltchinskii V (1997) M-estimation, convexity and quantiles. Ann Stat 25:435–477
Kong L, Mizera I (2008) Quantile tomography: using quantiles with multivariate data. Submitted.

http://arxiv.org/abs/0805.0056
Kvasnica M, Grieder P, Baotić M (2004) Multi-Parametric Toolbox (MPT). http://control.ee.ethz.ch/~mpt
Narula SC, Wellington JF (2002) Sensitivity analysis for predictor variables in the MSAE regression. Com-

put Stat Data Anal 40:355–373
Paindaveine D, Šiman M (2011a) On directional multiple-output quantile regression. J Multivar Anal

102:193–212
Paindaveine D, Šiman M (2011b) Computing multiple-output regression quantile regions. Comput Stat

Data Anal (to appear)
Pólik I (2005) Addendum to the SeDuMi user guide: Version 1.1. Reference guide
Raković SV, Grieder P, Jones C (2004) Computation of Voronoi diagrams and Delaunay triangulation via

parametric linear programming. ETH Technical Report AUT04-03
Rousseeuw PJ, Ruts I (1999) The depth function of a population distribution. Metrika 49:213–244
Sturm JF (1999) Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim

Methods Softw 11(12):625–653
Tukey JW (1975) Mathematics and the picturing of data. In: Proceedings of the international congress

of mathematicians, Vancouver, BC, 1974, vol 2. Canadian Mathematical Congress, Montreal,
pp 523-–531

Wei Y (2008) An approach to multivariate covariate-dependent quantile contours with application to bivar-
iate conditional growth charts. J Am Stat Assoc 103:397–409

123

Author's personal copy

http://arxiv.org/abs/0805.0056
http://control.ee.ethz.ch/~mpt

	Computing multiple-output regression quantile regions from projection quantiles
	Abstract
	1 Introduction
	2 Description of the procedure
	3 Algorithm
	4 Illustrations
	5 Simulations
	5.1 Location case
	5.2 General regression case

	6 Technical details
	Acknowledgments
	References

