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ABSTRACT

Approximate joint block diagonalization (AJBD) of a set of

matrices has applications in blind source separation, e.g.,

when the signal mixtures contain mutually independent sub-

spaces of dimension higher than one. In this paper we present

three novel AJBD algorithms which differ in the final target

criterion to be minimized in the optimization process. Two

of the algorithms extend the principle of Jacobi elementary

rotations to the more general concept of matrix elementary

rotations. The proposed algorithms are compared to existing

state-of-the art AJBD algorithms.

Index Terms— Source separation, independent sub-

spaces

1. INTRODUCTION

Consider a set of square symmetric matrices Mn, n =
1, . . . , N , that are all block diagonal, with K blocks along its

main diagonal, Mn = Bdiag(Mn1, . . . ,MnK), where Mnk

is the k−th block of Mn and the Bdiag(·) operator constructs

a block-diagonal matrix from its argument matrices. The size

of the blocks might not be identical. We assume that the size

of the block Mnk is Ik × Ik. The dimension of the matrices

Mn is d = I1 + . . . IK .

Next, assume that (possibly perturbed) congruence trans-

formations of these matrices are given as

Rn = AMnA
T +Nn, n = 1, . . . , N (1)

where the superscript T denotes a matrix transposition, A is

an unknown square “mixing matrix”, and Nn is a perturba-

tion (or “noise”) matrix. We shall refer to the case where all

Nn = 0, n = 1, . . . , N as the “unperturbed” (or “noiseless”)

case. The choice of symbol R reflects the fact that the matri-

ces in the set often play a role of (sample-) covariance matri-

ces of a partitioned data, or time-lagged (sample-) covariance

matrices.

The goal in Approximate Joint Block Diagonalization

(AJBD) is to find a “demixing” matrix W, such that the
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congruence matrices

RW
n = WRnW

T , n = 1, . . . , N (2)

are all approximately block diagonal, having the blocks on the

main diagonal of the same size as the original matrices Mn.

Ideally, one may wish to estimate W = A−1 and get RW
n ≈

Bdiag(RW
n1 , . . . ,R

W
nK), where RW

nk ≈Mnk. Sometimes the

task is reversed and consists in fitting the given data matrices

Rn by the model (1) with parameters A, {Mn}.
In general, however, it is impossible to recover the orig-

inal blocks Mnk (even in the “noiseless” case), because of

inherent ambiguities of the problem (e.g., [6]), but it is possi-

ble to recover “independent subspaces”, as explained below.

Let W0 = A−1, also called demixing matrix, be parti-

tioned in K blocks Wk of size Ik×d, W0 = [WT
1 , . . . ,W

T
K ]T .

Each block Wk represents a linear space of all linear com-

binations of its rows. These linear spaces are in general

uniquely identifiable [6, 2]. Let Ŵ be an estimated demixing

matrix. We say that Ŵ is “essentially equivalent” to W0 (and

therefore represents an ideal joint block diagonalization), if

there exists a suitable d × d permutation matrix Π such that

for each k = 1, . . . ,K the subspaces spanned by Wk and by

the respective k-th block of ΠŴ coincide, and their mutual

angle1 is zero.

Some existing AJBD algorithms are restricted to the case

where A (and therefore also Ŵ) are orthogonal [3], some

other algorithms consider a general matrix A [4, 6]. In this

paper, we examine the general case.

It was shown in [8] that reasonable solutions to AJBD can

be obtained using a two step approach, by first applying an

ordinary approximate joint diagonalization (AJD) algorithm,

and then clustering the separated components (rows of the

demixing matrix). More specifically, it was shown that un-

like several popular AJD approaches, one recently proposed

AJD method (U-WEDGE, Uniformly Weighted Exhaustive

Diagonalization with Gauss itErations [9]) features a unique

ability to attain ideal separation in the unperturbed (“noise-

less”) case, for general (not necessarily orthogonal) matrices

1The mutual angle between two subspaces can be obtained in Matlab us-

ing the subspace function.
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A. The above mentioned methods are computationally ap-

pealing, but it appeared that in the presence of the noise, ded-

icated block algorithms may perform better. This paper is

therefore devoted to finding AJBD solutions that minimize

some a priori chosen criteria.

The paper is organized as follows. Section 2 presents a

survey of three main cost functions used for AJBD in the lit-

erature. In Section 3, a general AJBD algorithm based on

generalized Jacobi rotations is proposed. Specific details of

the general procedure for the two criteria are derived in Sec-

tion 4. Section 5 presents an algorithm for minimizing the

third criterion. In Section 6, a novel initialization method is

proposed. A simulation study in Section 7 verifies effective-

ness of the proposed AJBD methods.

2. SURVEY OF MAIN AJBD CRITERIA

In the literature, we can see three main criteria used for joint

block diagonalization.

CLS(W) =
1

2

N∑
n=1

‖Boff(RW
n )‖2F (3)

where the operator “Boff” nullifies the elements of a matrix

that lie in the diagonal blocks. This is used in [3] to build a

unitary block diagonalization algorithm. In the case of non-

orthogonal diagonalization, the criterion has to be completed

by adding a constraint that prevents the algorithm from con-

verging to the trivial solution W = 0. The constraint is that

all rows of W have unit Euclidean norm. An example is [4].

A different criterion was proposed by Lahat et al [5].

CLL(W) =
1

2

N∑
n=1

log
detBdiag(RW

n )

det(RW
n )

(4)

where Bdiag is the opposite of the operator “Boff”, nullifies

the elements of a matrix that lie out of the diagonal blocks.

The criterion in motivated by maximum likelihood estima-

tion. It is a generalization of the criterion proposed for ap-

proximate joint diagonalization in [7]. Minimization of this

criterion leads to the maximum likelihood estimator, if Rn

are sample covariance matrices from Gaussian distributed iid

random vectors that have covariance matrices admitting the

exactly block diagonal structure.

The third possible criterion was suggested by Nion [6].

The latest method is based on fitting the block diagonal model

to the given set of matrices, seeking the mixing matrix A =
W−1,

CFIT(A) =
N∑

n=1

‖Rn −AMA
n AT ‖2F (5)

where

MA
n = arg min

Mn=Bdiag(Mn)
‖Rn −AMnA

T ‖2F . (6)

Success of the joint block diagonalization can be measured by

these three criteria or, if the ideal mixing/demixing matrix is

known, by the angle between the true and estimated subspaces

mentioned in the previous subsection.

3. THE ELEMENTARY MATRIX ROTATION
ALGORITHM

Each of the criterion mentioned in the former section (and

namely the first two criteria) can be optimized by applying

set of elementary rotations that follow the idea of well known

Jacobi rotations. The elementary rotations follow the block

structure of the assumed block matrices Mn. The rotations

have the form

Eij(B,C) =

⎡⎢⎢⎢⎢⎣
I . . . 0

. . . B

C
. . .

0 I

⎤⎥⎥⎥⎥⎦ (7)

where the diagonal is as in the identity matrix and the only

nonzero off-diagonal blocks B and C of the sizes Ii × Ij
and Ij × Ii lie at positions (i, j) and (j, i), respectively, for

1 ≤ i < j ≤ K.

The blocks B and C are selected so that the updated

demixing matrix W′ = Eij(B,C)W approximates the low-

est attainable criterion function C(W′), where C(W′) is one

of the criteria (3), (4), (5). The idea of the minimization is

that the elementary rotations Eij(B,C) should be small, i.e.

the matrices B and C should be small. The true criterion

function C(W′) is replaced by the second order approxi-

mation in terms of B and C, and is minimized in a closed

form.

We will show in the next section that the approximation

of C(W′) might have the form C(W′) = ϕ(B,C),

ϕ(B,C) = ϕ0 +
N∑

n=1

[tr(Jn1B) + tr(Jn2C)

+ tr(Jn3BJn4B) + tr(Jn5BJn6B
T )

+ tr(Jn7CJn8C) + tr(Jn9CJn10C
T )

+tr(Jn11BJn12C) + tr(Jn13BJn14C
T )

]
(8)

where the matrices Jnm, m = 1, . . . , 14, depend on RW
n ,

ϕ0 = ϕ(0,0), and “tr” denotes the trace of a matrix (sum

of diagonal elements). Explicit expressions for the matrices

Jnm, m = 1, . . . , 14, for the criteria, (3) and (4) will be de-

rived in the next section.

The criterion in (8) can be rewritten as

ϕ(B,C) = ϕ0 + gTv(B,C) +
1

2
v(B,C)THv(B,C) (9)

where

v(B,C) =

[
vec(B)
vec(C)

]
(10)
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g is a suitable vector of the same length, and H is a symmetric

matrix. It holds

g =
N∑

n=1

[
vec(JT

n1)
vec(JT

n2)

]
(11)

H =
N∑

n=1

[
HBBn HBCn

HT
BCn HCCn

]
(12)

where

HBBn = Jn6 ⊗ JT
n5 + JT

n6 ⊗ Jn5

+(Jn3 ⊗ JT
n4 + Jn4 ⊗ JT

n3)P (13)

HBCn = Jn14 ⊗ JT
n13 + (Jn12 ⊗ JT

n11)P (14)

HCCn = Jn10 ⊗ JT
n9 + JT

n10 ⊗ Jn9

+(Jn7 ⊗ JT
n8 + Jn8 ⊗ JT

n7)P, (15)

⊗ is the Kronecker product, and where P stands for a permu-

tation matrix such that Pvec(M) = vec(MT ) for any matrix

M of a suitable dimension (Ii × Ij).

Once g and H are computed, the optimum v(B,C) that

minimizes ϕ(B,C) can be found as

v(B,C) = −H−1g . (16)

After each elementary transformation, i.e. update W′ =
Eij(B,C)W, it is recommended to check if the original op-

timization criterion has really decreased its value. If this is not

the case, it means that the quadratic approximation was not

accurate enough. One can proceed by replacing the step (16)

by another one as it is done in the so called damped Gauss-

Newton algorithm, also known as Levenberg-Marquardt,

v(B,C) = −(H+ μI)−1g (17)

where μ is a suitable positive parameter. Discussion of this

modification, however, exceeds the scope of this paper.

The main algorithm consists after a suitable initialization

in cyclic minimization of the elementary rotations with re-

spect to all pairs (i, j), 1 ≤ i < j ≤ K, until norms of the

matrices B and C are smaller than a threshold for all the pairs.

4. EXPANSION OF THE COST FUNCTIONS

In this section we analyze the criteria (3), (4) in order to de-

rive matrices Jnm that are needed for computation of the el-

ementary rotations considered in the previous section. For

simplicity of presentation we assume here that there are only

three blocks in the matrices Mn, and the elementary rotation

is sought for i = 1 and j = 2. We can assume without any

loss in generality that the third block includes all remaining

blocks. We skip the running index n.

4.1. Case LS

Let RW and R̃ = ERWET be partitioned to blocks

R11, . . . ,R33 and R̃11, . . . , R̃33, respectively. Since

R̃ =

⎡⎣ I B 0
C I 0
0 0 I

⎤⎦⎡⎣ R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤⎦⎡⎣ I CT 0
BT I 0
0 0 I

⎤⎦
we have R̃12 = R12+R11C

T +BR22, R̃13 = R13+BR23

and R̃23 = R23 +CR13. Then

ϕLS(B,C) = ‖R̃12‖2F + ‖R̃13‖2F + ‖R̃23‖2F . (18)

A straightforward computation gives J1 = 2R22R
T
12, J2 =

2R11R12, J5 = I, J6 = R2
22, J9 = I, J10 = R2

11, J11 =
R11, J12 = 2R22, J3 = J4 = J7 = J8 = J13 = J14 = 0.

4.2. Case LL

Consider the following Taylor series expansion of the matrix

function log detR in a neighborhood of a positive definite

matrix R0. Let ΔR = R−R0. It holds

log
detR

detR0
≈ tr(R−1

0 ΔR)− 1

2
tr(R−1

0 ΔRR−1
0 ΔR) .

We apply this approximation to the last line of the expression

ϕLL(B,C) =
1

2
log

detBdiag(R̃)

det R̃

= ϕ0 +
1

2
log

detBdiag(R̃)

det R̃
− 1

2
log

detBdiag(RW )

detRW

= ϕ0 +
1

2
log

detBdiag(R̃)

detBdiag(RW )
− 1

2
log

det R̃

detRW
.

After some computation we get (8) with J1 = J3 =
R21R

−1
11 , J2 = J7 = R12R

−1
22 , J4 = − 1

2J1, J5 = 1
2R

−1
11 ,

J6 = R22 − R21R
−1
11 R12, J8 = − 1

2J7, J9 = 1
2R

−1
22 ,

J10 = R11 −R12R
−1
22 R21, J11 = J12 = I, J13 = J14 = 0.

The resultant algorithm is similar to the one proposed in [5].

5. MINIMIZING THE FIT COST FUNCTION

The generalized Jacobi rotations presented in Section 3, ap-

pear not to be so effective in the case of the FIT criterion (5).

The reason is that while in the case of the former two crite-

ria, the Hessian matrix H can be shown to be always positive

(semi-)definite, it is no longer true in the last case. There-

fore, we propose another simple iterative procedure for this

cost function. Starting from an initial estimate of the mixing

matrix A, its update A′ is obtained as

A′ = argmin
Ã

N∑
n=1

‖Rn − ÃMA
n AT ‖2F . (19)
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Since

‖Rn − ÃMA
n AT ‖2F = ‖vec(Rn)− (AMA

n ⊗ I)vec(Ã)‖2

the optimum vec(Ã) can be found by solving the overdeter-

mined system of linear equations⎡⎢⎣ AMA
1 ⊗ I
...

AMA
N ⊗ I

⎤⎥⎦ vec(Ã) ≈

⎡⎢⎣ vec(R1)
...

vec(RN )

⎤⎥⎦
in the least square sense. The result is

vec(A′) =

[
N∑

n=1

(AMA
n ⊗ I)T (AMA

n ⊗ I)

]−1

[
N∑

n=1

(AMA
n ⊗ I)T vec(Rn)

]
. (20)

After some simplifications we get

A′ =

[
N∑

n=1

RnAMA
n

][
N∑

n=1

MA
n ATAMA

n

]−1

. (21)

It remains to explain computation of MA
n in (6). Let the mix-

ing matrix A be vertically partitioned as A = [A1, . . . ,AK ],
where the size of blocks Ak is d× Ik, and let Mnk be the kth

diagonal block of MA
n . Then

‖Rn −AMA
n AT ‖2F = ‖Rn −

K∑
k=1

AkMnkA
T
k ‖2F

= ‖vec(Rn)−
K∑

k=1

(Ak ⊗Ak)vec(Mnk)‖2 (22)

The desired elements of MA
n can be arranged in a vector

mn = [vec(Mn1)
T , . . . , vec(MnK)T ]T .

The optimum mn is given as

mn = (GTG)−1GT vec(Rn)

where

G = [A1 ⊗A1, . . . ,AK ⊗AK ] .

The convergence of the iterative process (19) appears to be

very good, as it is shown in the simulation section.

6. THE ALGORITHMS INITIALIZATION

The algorithms proposed in the previous session are iterative

and convergence to the global minimum of the respective cri-

teria (3), (4), and (5) is not guaranteed. In order to minimize

probability of getting the algorithm stuck in a local but not

global minimum, it is convenient to find a suitable initializa-

tion. We propose to use the method advocated in [8], apply

the AJD algorithm U-WEDGE, followed by a suitable clus-

tering of rows of the mixing matrix, which would reveal the

block structure of the demixed matrices.

First, we propose a modified method of clustering the

rows, compared to the one proposed in [8]. It is a greedy al-

gorithm again. Given the AJD demixing matrix W, compute

an auxiliary matrix D as

D =
N∑

n=1

|WRnW
T | (23)

where the absolute value is taken elementwise. If the demix-

ing is perfect, D should have, after arranging columns and

rows, the same block structure as the original matrices Mn.

Let the block sizes be ordered increasingly, I1 ≤ . . . ≤ IK .

Elements of all columns of D are sorted decreasingly to form

a matrix D′. Then, sort the (I1+1)-th row of D′ and denote it

r1 for easy reference. The first block of the demixing matrix

will be composed of the indices that correspond to the small-

est I1 elements in r1. It means that W1 is built of the rows

of W with these indices. The rows and columns of D at the

positions i1, . . . , iI1 are set to zero, and the procedure iterated

until K − 1 subspaces (blocks) Wk, k = 1, . . . ,K − 1, have

been determined. The K-th block WK is then composed of

the rows that have not been selected before.

7. SIMULATIONS

We have compared performance of five AJBD algorithms:

(1) U-WEDGE completed by clustering of rows of a demix-

ing matrix, this algorithm is used to initialize all subsequent

ones, (2) algorithm JBD NCG [6], (3) the ad hoc algorithm

of Ghennioui et al [4], and two algorithms proposed in this pa-

per: (4) LSJBD and (5) FITJBD, minimizing the criteria (3)

and (5), respectively. The LLAJD algorithm is not included,

because it would need a different setup with all target matrices

positive (semi-)definite.

We consider ten target matrices, each having four diago-

nal blocks of the size 5×5. The blocks were taken at random,

different at each simulation trial, normally distributed with a

zero mean, and were symmetrized by adding their transposi-

tion. The mixing matrix A was taken at random, also new

in each simulation trial. Finally, an additive noise was added

as in (1); the noise matrices were symmetrized as well, and

scaled to achieve desired signal-to-noise ratio (SNR), which

is defined as 10 log10 of Frobenius norm of the mixtures di-

vided by Frobenius norm of the noise.

The noisy mixtures were processed by each of the five

algorithms in 100 independent trials. Each algorithm has its

own cost function, which is optimized, therefore we have cho-

sen to measure the performance by the angular difference of

the subspaces spanned by corresponding groups of rows of the
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true and estimated demixing matrix. The resultant mean and

median average angular differences, as a function of SNR are

plotted in Figure 1. We note namely excellent performance of
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20 40 60 80
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FITJBD
LSJBD
GHENNIO
JBD_NCG

Fig. 1. Performance of the five AJBD techniques.

the FITJBD algorithm, which appears to work at lower SNR’s

than its competitors. Convergence of the algorithm is nearly

linear, as in gradient methods or as in JBD NCG. In this par-

ticular example, the latter algorithm does not work well, but

it is not bad in general, namely in lower dimensions. Both

algorithms need thousands of iterations to converge.

An advantage of the methods based on generalized Jacobi

rotations (here LSJBD) is that they have nearly quadratic con-

vergence. In general they require only 10-100 iterations to

converge. The algorithm of Ghennioui is something between.

Sometimes it converges quickly, as it had a quadratic conver-

gence, namely at high SNR scenarios, in other cases it is slow.

Numbers of iterations and the CPU time of the algorithms are

shown in Figures 2 and 3, respectively.

8. CONCLUSIONS

We have presented novel algorithms for approximate joint

block–diagonalization. They differ in the cost function that

is optimized. Matlab codes of the proposed algorithms are

posted on the Internet at http://si.utia.cas.cz/downloadPT.htm .
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