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Abstract. A novel tensor decomposition is proposed to make it possible to iden-
tify replicating structures in complex data, such as textures and patterns in music
spectrograms. In order to establish a computational framework for this paradigm,
we adopt a multiway (tensor) approach. To this end, a novel tensor product is
introduced, and the subsequent analysis of its properties shows a perfect match
to the task of identification of recurrent structures present in the data. Out of a
whole class of possible algorithms, we illuminate those derived so as to cater
for orthogonal and nonnegative patterns. Simulations on texture images and a
complex music sequence confirm the benefits of the proposed model and of the
associated learning algorithms.

Keywords: tensor decomposition, tensor product, pattern analysis, nonnegative
matrix decomposition, structural complexity.

1 Problem Formulation

Estimation problems for data with self-replicating structures, such as images, various
textures and music spectrograms require specifically designed approaches to identify,
approximate, and retrieve the dynamical structures present in the data. By modeling
data via summations of Kronecker products of two matrices (scaling and pattern ma-
trices), Loan and Pitsianis [1] established an approximation to address this problem.
Subsequently, Nagy and Kilmer [2] addressed 3-D image reconstruction from real-
world imaging systems in which the point spread function was decomposed into a
Kronecker product form, Bouhamidi and Jbilou [3] used Kronecker approximation for
image restoration, Ford and Tyrtyshnikov focused on sparse matrices in the wavelet
domain [4], while the extension to tensor data was addressed in [5].
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It is important to note that at present, the Kronecker approximation [1] is limited
to 2-D structures which are required to have the same dimension. In this paper, we
generalize this problem by considering replicas (or similar structures) for multiway data
Y . To this end, we explain the tensor Y by a set of patterns and their locations, while
allowing the patterns to have different dimensions. In order to formulate mechanism
of data replication, we define a new tensor product which is a generalization of the
standard matrix Kronecker product, and is particularly suited for data with recurrent
complex structures.

Definition 1 (Kronecker tensor product). Let A = [a j] and B = [bk] be two N-
dimensional tensors of size J1 × J2 × · · · × JN and K1 × K2 × · · · × KN, respectively, j =
[ j1, j2, . . . , jN], 1 ≤ jn ≤ Jn and k = [k1, k2, . . . , kN], 1 ≤ kn ≤ Kn. A Kronecker
tensor product of A and B is defined as an N-D tensor C = [ci] ∈ RI1×I2×···×IN , i =
[i1, i2, . . . , iN], In = JnKn such that ci = a j bk, in = kn + ( jn − 1)Kn, and is expressed as
C =A ⊗B.

Remark 1. If C is partitioned into an J1 × J2 × · · · × JN block tensor, each block- j
( j = [ j1, j2, . . . , jN]) can be written as a jB.

In this article, we aim to solve the following problem:

Problem 1 (A New Tensor Decomposition). Given an N-dimensional tensorY of size
I1 × I2 × · · · × IN , find smaller scale tensorsAp, Xp, p = 1, ..., P such that

Y ≈
P∑

p=1

Ap ⊗Xp. (1)

We term sub-tensors Xp of size Kp1 × Kp2 × · · · × KpN as patterns, whileAp of dimen-
sions Jp1 × Jp2 × · · · × JpN such that In = Jpn Kpn, are called intensities (see Remark 1).

As such, Problem 1 is a generalization of the 13th problem of Hilbert, which seeks to
perform universal function approximation for a function of n variables by a number of
functions of (n− 1) or fewer variables. This new tensor decomposition is different from
other existing tensor/matrix decompositions such as the canonical polyadic decomposi-
tion (CP) [6], the Tucker decomposition (TD) [7] and the block component decomposi-
tion (BCD) [8], in that it models the relation between latent variables via links between
factor matrices and core tensor(s) which can be diagonal (for CP) or dense tensors (for
TD). In a particular case when all Ap, p = 1, . . . , P in (1) become vectors of size In

or have only one non-singleton dimension, Problem 1 simplifies into BCD which finds
only one factor matrix for each core tensor.

In the sequel, we introduce methods to solve Problem 1 with/without nonnegative
constraints. Simulations on a music sequence and on complex images containing tex-
tures validate the proposed tensor decomposition.

2 Notation and Basic Multilinear Algebra

Throughout the paper, an N-dimensional vector will be denoted by an italic lowercase
boldface letters, with its components in squared brackets, for example i = [i1, i2, . . . , iN]
or I = [I1, I2, . . . , IN].
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Definition 2 (Tensor unfolding [9]). Unfolding a tensorY ∈ RI1×I2×···×IN along modes
r = [r1, r2, . . . , rM] and c = [c1, c2, . . . , cN−M] where [r, c] is a permutation of [1, 2, . . . ,N]

aims to rearrange this tensor to a matrix Yr×c of size
M∏

k=1

Irk ×
N−M∏

l=1

Icl whose entries

( j1, j2) are given by Yr×c( j1, j2) = Y(ir, ic), where ir = [ir1 . . . irM ], ic = [ic1 . . . icN−M ],

j1 = ivec(ir, Ir), j2 = ivec(ic, Ic), and ivec(i, I) = i1 +
N∑

n=2

(in − 1)
n−1∏

j=1

I j.

If c = [c1 < c2 < · · · < cN−M], then Yr×c simplifies into Y(r), while for r = n and
c = [1, . . . , n − 1, n + 1, . . . ,N], we have mode-n matricization Yr×c = Y(n).

Definition 3 (Reshaping). The reshape operator for a tensor Y ∈ RI1×I2×···×IN to a
tensor of a size specified by a vector L = [L1, L2, . . . , LM] with

∏M
m=1 Lm =

∏N
n=1 In

returns an M-D tensor X, such that vec(Y) = vec(X), and is expressed as

X = reshape(Y , L) ∈ RL1×L2×···×LM . (2)

Definition 4 (Kronecker unfolding). A (J × K) Kronecker unfolding ofC ∈ RI1×I2×···×IN

with In = JnKn,∀n, is a matrix C(J×K) of the size
∏N

n=1 Jn ×∏N
n=1 Kn whose entries ( j, k)

are given by
C(J×K)( j, k) = C(i),

for all j = [ j1, . . . , jN], jn = 1, . . . , Jn, k = [k1, . . . , kN], kn = 1, . . . ,Kn, n = 1, . . . ,N
and j = ivec( j, J), and k = ivec(k, K), i = [i1, . . . , iN], in = kn + ( jn − 1)Kn.

Lemma 1 (Rank-1 Factorization). Consider a tensor product C = A ⊗ B whereA
and B have the dimensions as in Definition 1. Then a Kronecker unfolding C(J×K) is a
rank-1 matrix

C(J×K) = vec(A) vec(B)T . (3)

Lemma 1 also provides a convenient way to compute and updateA ⊗B.

Lemma 2 (Implementation of the Kronecker unfolding). Let C̃ = reshape(C, L) of
C ∈ RI1×I2×···×IN following L = [K1, J1,K2, J2, . . . ,KN , JN], In = Jn Kn, n = 1, 2, . . . ,N.
An (J × K) Kronecker unfolding of C is equivalent to a tensor unfolding C̃(r) = C(J×K)

where r = [2, 4, . . . , 2N].

Lemma 3 (Rank-P Factorization). Let a tensor C be expressed as a sum of P Kro-
necker products C = ∑P

p=1Ap ⊗ Bp, where Ap ∈ RJ1×···×JN and Bp ∈ RK1×···×KN ,
p = 1, 2, . . . , P. Then the Kronecker unfolding of C is a matrix of rank-P, such that

C(J×K) =

P∑

p=1

vec
(
Ap

)
vec
(
Bp

)T
. (4)

Lemmas 1 and 3 give us the necessary insight and physical intuition into methods for
solving Problem 1, establishing that the Kronecker tensor decomposition ofY is equiv-
alent to factorizations of Kronecker unfoldings Y(J×K). The algorithms for solving Prob-
lem 1 are presented in the subsequent section.
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3 Decomposition Methods

The desired property of the tensor decomposition (1) is that not all patterns Xp (and
consequently intensitiesAp) are required to have the same size. Assume that there are
G pattern sizes (G ≤ P) Kg1 × Kg2 × · · · × KgN (g = 1, 2, . . . ,G) corresponding to P
patterns Xp (p = 1, 2, . . . , P). Patterns Xp which have the same size are classified into
the same group. There are G groups of pattern sizes whose indices are specified by
Ig = {p : Xp ∈ RKg1×Kg2×···×KgN } = {p(g)

1 , p
(g)
2 , . . . , p

(g)
Pg
}, card{Ig} = Pg,

∑G
g=1 Pg = P.

For simplicity, we assume that the first P1 patterns Xp (p = 1, 2, . . . , P1) belong to
group 1, the next P2 patterns (p = P1 + 1, . . . , P1 + P2) belong to group 2, and so on.
The tensor decomposition (1) can now be rewritten as

Y =
G∑

g=1

∑

pg∈Ig

Apg ⊗Xpg + E =
G∑

g=1

Y (g) + E = Ŷ + E, (5)

where Apg ∈ RJg1×Jg2×···×JgN , Xpg ∈ RKg1×Kg2×···×KgN and Y (g) =
∑

pg∈Ig
Apg ⊗ Xpg . Ac-

cording to Lemma 3, Kronecker unfoldings Y(g)
(Jg×Kg) with Kg = [Kg1,Kg2, . . . ,KgN],

Jg = [Jg1, Jg2, . . . , JgN] are rank-Pg matrices, that is

Y(g)
(Jg×Kg) =

∑

pg∈Ig

vec
(
Apg

)
vec
(
Xpg

)T
. (6)

In order to estimate Apg and Xpg , ∀pg ∈ Ig, we define Y (−g) = Y −
∑

h�g

Y (h), and

minimize the cost function

D(Y ||Ŷ) = ‖Y − Ŷ‖2F = ‖Y (−g) −Y (g)‖2F = ‖Y(−g)
(Jg×Kg) − Y(g)

(Jg×Kg)‖2F
= ‖Y(−g)

(Jg×Kg) −
∑

pg∈Ig

vec
(
Apg

)
vec
(
Xpg

)T ‖2F . (7)

In general, without any constraints, the matrix decomposition in (7) or the tensor de-
composition (1) are not unique, since any basis of the columnspace of the matrix
Y(−g)

(Jg×Kg) in (7) can serve as vec
(
Apg

)
, pg ∈ Ig. One possibility to enforce uniqueness

is to restrict our attention to orthogonal bases in which the scalar product of two pat-
terns Xp, Xq, defined as a sum of the element-wise products of Xp, Xq, is zero for all
p � q. Alternative constraints for nonnegative data Y , such as nonnegativity, can also
be imposed on Ap and Xp. In other words, by using the background physics to con-
strain all Aq and Xq in the other groups q � Ig, we can sequentially minimize (7).
These constraints do not have a serious effect on the generality of the proposed solu-
tions as real world nonnegative data often exhibit a degree of orthogonality, and images
are nonnegative.

3.1 Orthogonal Patterns

Solving the matrix decomposition in (7) with orthogonal constraints yields vectoriza-
tions vec

(
Apg

)
and vec

(
Xpg

)
(pg ∈ Ig) that are proportional to Pg leading left and
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right singular vectors of Y(−g)
(J×K) ≈ U diag{s}VT , where U = [u1, u2, . . . , uPg ] and

V = [v1, v2, . . . , vPg ], that is,

Ap(g)
l
= reshape

(
sl ul, Jg

)
, Jg = [Jg1, Jg2, . . . , JgN], (8)

Xp(g)
l
= reshape

(
vl, Kg

)
, Kg = [Kg1,Kg2, . . . ,KgN]. (9)

If all the patterns have the same size, then Kp = K,∀p,Ap and Xp are reshaped from
P leading left and right singular vectors of the Kronecker unfolding Y(J×K).

3.2 Nonnegative Patterns

We shall now revisit Problem 1 and introduce nonnegative constraints in order to find
nonnegativeAp and Xp from a nonnegative tensor Y . Such a constrained problem can
be solved in a manner similar to the previous problem, that is,Ap andXp are updated by
minimizing the cost functions in (7). Note that we can employ straightforwardly update
rules for nonnegative least squares approximation: the multiplicative update rules [10]
and the ALS algorithms. In the following, we present the multiplicative update rules,
which can be directly applied to (7) and have the form

vec
(
Apg

)
← vec

(
Apg

)
�
(
Y(Jg×Kg) vec

(
Xpg

))


(
Ŷ(Jg×Kg) vec

(
Xpg

))
, (10)

vec
(
Xpg

)
← vec

(
Xpg

)
�
(
YT

(Jg×Kg) vec
(
Apg

))


(
ŶT

(Jg×Kg) vec
(
Apg

))
. (11)

Note that if all the patterns have the same size, the constrained Problem 1 becomes
nonnegative matrix factorization of the Kronecker unfolding Y(J×K). In a particular case
when data Y is matrix and all patterns have the same size, Problem 1 simplifies into the
matrix decomposition proposed in [1].

4 Simulations

The introduced algorithms were verified by comprehensive simulations on synthetic
benchmark data and on real-world images with texture and music data.

4.1 Synthetic Data

In the first set of simulations, we considered 3-D data of the size 90×90×12 composed
of 12 random nonnegative patterns of different sizes, as given in Table 1 (row 2). Our
aim was to extract orthogonal and nonnegative patterns in 50000 iterations or until

differences of successive relative errors (SNR) −20 log10

(
‖Y−Ŷ‖F
‖Y‖F

)
are lower than 10−5.

Results (SNR) in Table 1 (the second row) show an average SNR = 110.16 dB over
100 runs for orthogonal decomposition, and an average SNR = 107.43 dB based on
nonnegative patterns. The results confirm the validity of the proposed model and the
excellent convergence of the proposed algorithms.
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4.2 Analysis of Texture Images

The next set of simulations were performed on RGB textures “tile 0021” and “metal-
plate 0020” taken from http://texturelib.com. Textures can be represented by

3-D tensors of pixels, or by 4-D tensors with additional modes for approximation and
detail coefficients in the wavelet domain. For example, the image “tile 0021” of size
600 × 600 × 3 is tiled by patterns Xp of size 75 × 75 × 3 as illustrated in Fig. 1(a). De-
tail coefficients of this image obtained by the biorthogonal wavelet transform formulate
a 3-D tensor of size 300 × 300 × 3 × 3. The approximation coefficients can be inde-
pendently decomposed or combined with the tensor of detail coefficients. Parameters
of Kronecker decompositions such as the number of patterns and their dimensions are
given in Table 1. Approximation errors (SNR (dB)) and ratio (%) between the number
of fitting parameters and the number of data elements are also given in Table 1.

In Fig. 1, the image “tile 0021” was approximated by two groups of orthog-
onal and nonnegative patterns. Two nonnegative basis images corresponding to two
groups of patterns are shown in Figs. 1(c), 1(d). The first group consists of 10 patterns
Xp1 ∈ R75×75×3

+ (shown in Fig. 1(e)) expressing replicating structures, whereas the sec-
ond group consists of 7 patterns of size 600 × 1 × 3 representing the background as
in Fig. 1(d). In addition, ten orthogonal patterns are shown in Fig. 1(f). For nonneg-
ative patterns, each pattern in Fig. 1(e) represents a replicating structure in the image,
whereas the orthogonal patterns in Fig. 1(f) were ranked according to the order of singu-
lar values which indicate detail level of patterns. Observe from Fig. 1(f) that the higher
the order of the orthogonal patterns Xp, the more details these patterns comprise.

Results for decompositions of the color image “metal plate 0012” are shown
in Fig. 2. In the wavelet domain, we formulated a 3-D tensor for the approximation

(a) Original “tile 0021”,
600 × 600 × 3.

(b) Approximation Ŷ , SNR
= 28.37 dB .

(c) Ŷ (1)
constructed from 10

Xp1 (75 × 75 × 3)
(d) Ŷ (2)

constructed from 7
Xp2 (600 × 1 × 3).

(e) 10 nonnegative Xp1 (75 × 75 × 3). (f) 10 orthogonal Xp1 (75 × 75 × 3).

Fig. 1. Illustration for orthogonal and nonnegative pattern decompositions of the image
“tile 0021”. (b)-(d) reconstructed images and two basis images by 10 patterns of size 75×75×3
and 7 patterns of size 600 × 1 × 3. (e)-(f) 10 nonnegative and orthogonal patterns.

http://texturelib.com
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(a) “metal plate 0012”,
180 × 240 × 3.

(b) Approximation Ŷ , SNR
= 28.38 dB.

(c) Ŷ (1)
constructed from

orthogonal DWT Xp1 .
(d) Ŷ (2)

constructed from
orthogonal DWT Xp2 .

Fig. 2. Approximation of “metal plate 0012” in the wavelet domain

coefficients and a 4-D tensor comprising the details in the three orientations (horizon-
tal, vertical, and diagonal). The two tensors were independently decomposed to find two
groups of patterns whose sizes are given in Table 1 (row 4). The approximate image was
then constructed from the basis patterns and achieved an SNR = 28.38 dB using 13.74
% of the number of entries. Figs. 2(c) and 2(d) visualize two basis images, each of
which was constructed from one pattern group for the approximation coefficients and
all the patterns for the detail coefficients.

4.3 Analysis of Patterns in Music

In this example, we decomposed a sampled song “London Bridge” composed of five
notes A3, G3, F3, E3 and D3 played on a guitar for 5 seconds [10]. The log-frequency
spectrogram Y (364 × 151), illustrated in Fig. 3(a), was converted from the
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(a) Spectrogram of the sequence.
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(b) Spectrogram for G3.
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(c) Spectrogram for A3
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(d) Spectrogram for F3.
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(e) Spectrogram for E3.
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(f) Spectrogram for D3.

Fig. 3. Log-frequency spectrograms of the music sequence and 5 basis nonnegative patterns cor-
responding to 5 notes G3, A3, F3, E3 and D3. The reconstructed signal has SNR = 20.78 dB.
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Table 1. Parameters and results for orthogonal (Orho.) and nonnegative (NNG) pattern
decompositions

Data Size Pattern Size SNR (dB) Ratio
(Kg1 × · · · × KgN) × Pg Ortho. NNG (%)

random 90 × 90 × 12
(5 × 5 × 2) × 2 &
(6 × 6 × 3) × 4 &

(9 × 9 × 4) × 6
110.16 107.43 12.10

tile 0021

600 × 600 × 3
(75 × 75 × 3) × 10 &

(600 × 1 × 3) × 7
29.69 28.37 17.24

300 × 300 × 3 × 3
(DWT, Detail Coefs.)

(20 × 15 × 1 × 3) × 20 &
(300 × 1 × 1 × 3) × 3

27.84 9.48
300 × 300 × 3

(DWT, Approx. Coefs.)
(15 × 15 × 3) × 40 &

(300 × 1 × 3) × 15

metal plate 0012

180 × 240 × 3
(20 × 20 × 3) × 15 &

(180 × 1 × 3) × 10
27.58 25.35 21.16

90 × 120 × 3 × 3
(DWT, Detail Coefs.)

(5 × 20 × 1 × 3) × 3 &
(90 × 1 × 1 × 3) × 10

28.38 13.74
90 × 120 × 3

(DWT, Approx. Coefs.)
(15 × 15 × 1) × 20 &
(90 × 1 × 1 × 3) × 5

guitar

music sequence
364 × 151

log-freq. spectrogram

(4 × 151) × 5 &
(2 × 151) × 4 &

(7 × 151) × 2
22.71 20.78 13.88

linear-frequency spectrogram in the frequency range from f0 = 109.4 Hz (bin 8) to
fI = fs/2 = 4000 Hz (bin 257) with 70 bins per octave. When there was no decom-
position, the approximation error was 27.56 dB. The spectrogram was decomposed to
find 11 patterns replicating along frequency (see row 5 in Table 1). Among the 11 log-
frequency spectrograms Ŷ(p) constructed from Xp, five spectrograms corresponding to
five notes are illustrated in Figs. 3(b)-3(f). The approximate sequences (in the time do-
main) achieved SNR = 22.71 dB and 20.78 dB using orthogonal and nonnegative pat-
terns, respectively. For this example, we may also apply the nonnegative matrix/tensor
deconvolutions to seek for the similar patterns Xp replicating along frequency [11],
however, the new tensor decomposition requires fewer fitting parameters.

5 Conclusions

A new tensor approximation has been proposed to identify and extract replicating struc-
tures from multiway data. By imposing a constraint on the replicating structures to be
nonnegative or orthogonal, the model has been shown to significantly reduce the num-
ber of fitting parameters, compared with existing tensor/matrix factorizations. In a par-
ticular case when all the patterns have the same size, the new tensor decomposition
simplifies into rank-P matrix factorization. This gives us a new insight and the abil-
ity to seek for hidden patterns by employing well-known matrix factorizations such as
SVD and NMF. It has also been shown that a low-rank approximation by directly ap-
plying SVD or NMF to a data tensor results in common patterns which represent the
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background of the data, whereas factorization on the rearranged data extracts replicat-
ing structures. Simulation results for synthetic data, images and music sequence have
shown that the proposed model and algorithms have the ability to extract desired pat-
terns, and explain the data with relatively low approximation errors. Future extensions
of the presented of this pattern decomposition will include approximating complex data
by several subtensors instead of only two (scaling and pattern) tensors. One interesting
implementation would be a multistage approach, in which patterns or scaling tensors
are Kronecker products of subtensors.
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