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On Bregman Distances and Divergences
of Probability Measures
Wolfgang Stummer and Igor Vajda, Fellow, IEEE

Abstract—This paper introduces scaled Bregman distances of
probability distributions which admit nonuniform contributions of
observed events. They are introduced in a general form covering
not only the distances of discrete and continuous stochastic obser-
vations, but also the distances of random processes and signals. It is
shown that the scaled Bregman distances extend not only the clas-
sical ones studied in the previous literature, but also the informa-
tion divergence and the related wider class of convex divergences
of probability measures. An information-processing theorem is es-
tablished too, but only in the sense of invariance w.r.t. statistically
sufficient transformations and not in the sense of universal mono-
tonicity. Pathological situations where coding can increase the clas-
sical Bregman distance are illustrated by a concrete example. In
addition to the classical areas of application of the Bregman dis-
tances and convex divergences such as recognition, classification,
learning, and evaluation of proximity of various features and sig-
nals, the paper mentions a new application in 3-D exploratory data
analysis. Explicit expressions for the scaled Bregman distances are
obtained in general exponential families, with concrete applica-
tions in the binomial, Poisson, and Rayleigh families, and in the
families of exponential processes such as the Poisson and diffusion
processes including the classical examples of the Wiener process
and geometric Brownian motion.

Index Terms—Bregman distances, classification, divergences,
exponential distributions, exponential processes, information
retrieval, machine learning, statistical decision, sufficiency.

I. INTRODUCTION

B REGMAN [7] introduced for convex functions
with gradient the -depending nonnegative measure

of dissimilarity

(1)

of -dimensional vectors , . His motivation was the
problem of convex programming, but in the subsequent litera-
ture, it became widely applied in many other problems under
the name Bregman distance in spite of that it is not, in gen-
eral, the usual metric distance (it is a pseudodistance which is
reflexive but neither symmetric nor satisfying the triangle in-
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equality). The most important feature is the special separable
form defined by

(2)

for vectors , and convex dif-
ferentiable functions . For example, the function

leads to the classical squared Euclidean dis-
tance

(3)

In the optimization-theoretic context, the Bregman distances
are usually studied in the general form (1) (see, e.g., [5], [20],
and [21] for adjacent random projection studies). In the informa-
tion-theoretic or statistical context, they are typically used in the
separable form (2) for vectors , with nonnegative coordinates
representing generalized distributions (finite discrete measures)
and functions differentiable on (the
problem with is solved by resorting to the right-hand
derivative ). The concrete example leads to
the well-known Kullback divergence

Of course, the most common context are discrete probability
distributions , since vectors of hypothetical or observed fre-
quencies , are easily transformed to the relative frequencies
normed to 1. For example, Csiszár [17]–[19] and Pardo and
Vajda [36], [37] used the Bregman distances of probability dis-
tributions in the context of information theory and asymptotic
statistics.

Important alternatives to the Bregman distances (2) are the
-divergences defined by

(4)

for functions which are convex on , continuous on
and strictly convex at 1 with . Originating in

[15], they share some properties with the Bregman distances
(2), e.g., they are pseudodistances too. For example, the previ-
ously considered functions and
lead, in this case, to the classical Pearson divergence

(5)
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and the previously mentioned Kullback divergence
which are asymmetric in , and contradict the tri-

angle inequality. On the other hand, leads to
the -norm which is a metric distance and

defines the LeCam divergence

which is a squared metric distance (for more about the metricity
of -divergences, the reader is referred to [44]).

However, there also exist some sharp differences between
these two types of pseudodistances of distributions. One dis-
tinguishing property of Bregman distances is that their use as
loss criterion induces the conditional expectation as outcoming
unique optimal predictor from given data (cf., [2]); this is, for in-
stance, used in [3] for designing generalizations of the -means
algorithm which deals with the special case of squared Eu-
clidean error (3) (cf., the seminal work of Lloyd [32] reprinting
a Technical Report of Bell Laboratories dated by 1957). These
features are generally not shared by those of the -divergences
which are not Bregman distances, e.g., by the Pearson diver-
gence (5). On the other hand, a distinguishing property of

-divergences is the information-processing property, i.e., the
impossibility to increase the value by transformations
of the observations distributed by p, q and preservation of this
value by the statistically sufficient transformations ([16], see
in this respect also [31]). This property is not shared by the
Bregman distances which are not -divergences. For example,
the distributions and are
mutually closer (less discernible) in the Euclidean sense (3)
than their reductions and obtained by
merging the second and third observation outcomes into one.

Depending on the need to exploit one or the other of these
distinguished properties, the Bregman distances or Csiszár di-
vergences are preferred, and both of them are widely applied in
important areas of information theory, statistics and computer
science, for example, in the following.

Ai) information retrieval (see, e.g., [22] and [25]),
Aii) optimal decision (for general decision, see, e.g., [4],
[6], [23], and [45]; for speech processing, see, e.g., [11] and
[46]; for image processing, see, e.g., [33], [40], and [47]),
Aiii) machine learning (see, e.g., [1], [3], [28], [35], and
[43]).
Aiv) parallel optimization and computing (see, e.g., [12]).

In this context, it is obvious the importance of the functionals
of distributions which are simultaneously divergences in both
the Csiszár and Bregman sense or, more broadly, of the research
of relations between the Csiszár and Bregman divergences. This
paper is devoted to this research. It generalizes the separable
Bregman distances (2) as well as the -divergences (4) by in-
troducing the scaled Bregman distances which for the discrete
setup reduce to

(6)

for arbitrary finite scale vectors , convex
functions and right-hand derivatives . Obviously, the uni-
form scales lead to the Bregman distances (2)
and the probability distribution scales
lead to the -divergences (4). We shall work out further in-
teresting relations of the distances to the -diver-
gences and and evaluate explicit formulas
for the stochastically scaled Bregman distances in arbitrary ex-
ponential families of distributions, including also the nondis-
crete setup.

Section II defines the -divergences of general
probability measures and arbitrary finite measures and
briefly reviews their basic properties. Section III introduces
scaled Bregman distances and investigates their
relations to the -divergences and .
Section IV studies in detail the situation where all three
measures , , are from the family of general exponen-
tial distributions. Finally, Section V illustrates the results by
investigating concrete examples of , , from classical
statistical families as well as from a family of important random
processes.

Notational Conventions: Throughout this paper, denotes
the space of all finite measures on a measurable space
and the subspace of all probability measures. Unless
otherwise explicitly stated , , are mutually measure-theo-
retically equivalent measures on dominated by a -finite
measure on . Then, the densities

(7)

have a common support which will be identified with (i.e.,
the densities (7) are positive on ). Unless otherwise explicitly
stated, it is assumed that , , and that

is a continuous and convex function. It is known
that the possibly infinite extension and the
right-hand derivatives for exist, and that the
adjoint function

(8)

is continuous and convex on with possibly infinite ex-
tension . We shall assume that

II. DIVERGENCES

For and , we consider

(9)
generated by the same convex functions as considered in the
formula (4) for discrete and . An important special case is

with .
The existence (but possible infinity) of the -divergences fol-

lows from the bounds

(10)

on the integrand, leading to the -divergence bounds

(11)
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The integrand bounds (10) follow by putting and
in the inequality

(12)

where the left-hand side is the well-known support line of
at . The right-hand inequality is obvious for . If

, then it follows by taking in the inequality

obtained from the Jensen inequality for situated between
and . Since the function is ho-

mogeneous of order 1 in the sense for all
, the divergences (9) do not depend on the choice of the

dominating measure .
Notice that might be negative. For probability

measures , the bounds (11) take on the form

(13)

and the equalities are achieved under well-known conditions
(cf., [30] and [31]): the left equality holds if , and the
right one holds if (singularity). Moreover, if is
strictly convex at , the first if can be replaced by iff, and in
the case also the second if can be replaced
by iff.

An alternative to the left-hand inequality in (11), which ex-
tends the left-hand inequality in (13) including the conditions
for the equality, is given by the following statement (for a sys-
tematic theory of -divergences of finite measures we refer to
[42]).

Lemma 1: For every , , one gets the lower
divergence bound

(14)

where the equality holds if

- (15)

If and is strictly convex at ,
the equality in (14) holds if and only if (15) holds.

Proof: By (9) and the definition (8) of the convex function

Hence, by Jensen’s inequality

(16)

which proves the desired inequality (14). Since

-

is the condition for equality in (16), the rest is clear from the
easily verifiable fact that is strictly convex at if and
only if is strictly convex at .

For some of the representation investigations below, it will
also be useful to take into account that for probability measures

, , we get directly from definition (9) the “skew symmetry”
-divergence formula

as well as the sufficiency of the condition

(17)

for the -divergence symmetry

(18)

Liese and Vajda [30] proved that under the assumed strict con-
vexity of at the condition (17) is not only sufficient
but also necessary for the symmetry (18).

III. SCALED BREGMAN DISTANCES

Let us now introduce the basic concept this paper, which is a
measure-theoretic version of the Bregman distance (6). In this
definition, it is assumed that is a finite convex function in the
domain , continuously extended to . As previously,

denotes the right-hand derivative which for such ex-
ists and , , are the densities defined in (7).

Definition 1: The Bregman distance of probability measures
, scaled by an arbitrary measure on measure-

theoretically equivalent with , is defined by the formula

(19)

The convex under consideration can be interpreted as a gen-
erating function of the distance.

Remark 1:
1) By putting and in (12), we find the argu-

ment of the integral in (19) to be nonnegative. Hence, the
Bregman distance is well defined by (19)
and is always nonnegative (possibly infinite).

2) Notice that the integrand in the first (respectively, second)
integral of (19) constitutes a function, say, (re-
spectively, ) which is homogeneous of order 0
(respectively, order 1), i.e., for all , there holds

(respectively,
). Analogously, as already partially indicated

earlier, the integrand in the first (respectively, second) in-
tegral of (9) is also a function, say, (respectively,
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) which is homogeneous of order 0 (respectively,
order 1).

3) In our measure-theoretic context (19), we have incorpo-
rated the possible nondifferentiability of by using its
right-hand derivative, which will be essential at several
places below. For general Banach spaces, one typically
employs various directional derivatives (see, e.g., [9] in
connection with different types of convexity properties).

The special scaled Bregman distances for
probability scales were introduced by Stummer [41].
Let us mention some other important previously considered
special cases.

1) For finite or countable and counting measure ,
some authors were already cited earlier in connection with
the formula (2) and the research areas (Ai)–(Aiii). In ad-
dition to them, one can also mention [10], [13], [14], and
[34].

2) For open Euclidean set and Lebesgue measure
on it, one can mention [26], as well as [39].

In the rest of this paper, we restrict ourselves to the Bregman
distances scaled by finite measures
and to the same class of convex functions as considered in the

-divergence formulas (4) and (9). By using the remark after
Definition 1 and applying (12), we get

if at least one of the right-hand side expressions is finite. Simi-
larly

(20)
if at least two of the right-hand side expressions are finite [which
can be checked, e.g., by using (11) or (14)].

The formula (19) simplifies in the important special cases
and . In the first case, due to , it

reduces to

(21)

where the difference (21) is meaningful if and only if
is finite. The nonnegative diver-

gence measure is, thus, the
difference between the nonnegative dissimilarity measure

and the nonnegative -divergence . Furthermore, in
the second special case , the formula (19) leads to the
equality

(22)

without any restriction on , as realized already by
Stummer [41].

Conclusion 1: Equality (22)—together with the fact
that depends in general on (see, e.g.,
Section III-B)—shows that the concept of scaled Bregman
distance (19) strictly generalizes the concept of -divergence

of probability measures , .

Example 1: As an illustration not considered earlier, we can
take the nondifferentiable function for which

i.e., this particular scaled Bregman distance reduces to the well-
known total variation.

As demonstrated by an example in Section I, measurable
transformations (statistics)

(23)

which are not sufficient for the pair can increase those
of the scaled Bregman distances which are not

-divergences. On the other hand, the transformations (23)
which are sufficient for the pair need not preserve these
distances either. Next, we formulate conditions under which
the scaled Bregman distances are preserved by
transformations of observations.

Definition 2: We say that the transformation (23) is sufficient
for the triplet if there exist measurable functions

and such that

(24)

If is probability measure, then our definition reduces to the
classical statistical sufficiency of the statistic for the family

(see [29, pp. 18–19]). All transformations (23) in-
duce the probability measures , and the finite mea-
sure on . We prove that the scaled Bregman dis-
tances of induced probability measures , scaled by

are preserved by sufficient transformations .

Theorem 1: The transformations (23) sufficient for the triplet
preserve the scaled Bregman distances in the sense

that

(25)

Proof: By (19) and (24), the right-hand side of (25) is equal
to

(26)

for

(27)
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and

(28)

From [24, Sec. 39, Th. D], the integral (26) is equal to

(29)

and, moreover

and similarly for instead of . Therefore

which together with (19), (27), and (28) implies that the integral
(29) is nothing but the left-hand side of (25). This completes the
proof.

Remark 2: Notice that by means of Remark 1(2) after Defi-
nition 1, the assertion of Theorem 1 can be principally related
to the preservation of -divergences by transformations which
are sufficient for the pair .

In the rest of this section, we discuss some important special
classes of scaled Bregman distances obtained for special dis-
tance-generating functions .

A. Bregman Logarithmic Distance

Let us consider the special function . Then,
so that (19) implies

(30)

Thus, for , the Bregman distance
exceptionally does not depend on the choice of the scaling and
reference measures and ; in fact, it always leads to the
Kulllback–Leibler information divergence (relative entropy)

(cf., [41]). As a side effect, this independence
gives also rise to examples for the conclusion that the validity
of (25) does generally not imply that is sufficient for the
triplet .

B. Bregman Reversed Logarithmic Distance

Let now so that . Then, (19)
implies

(31)

(32)

(33)

where the equalities (32) and (33) hold if at least two out of
the first three expressions on the right-hand side are finite. In
particular, (31) implies [consistent with (22)]

(34)

and (32) implies for (consistent with (21))

(35)

where

is the well-known Pearson information divergence. From
(34) and (35), one can also see that the Bregman distance

does, in general, depend on the choice of the
reference measure .

C. Bregman Power Distances

In this section, we restrict ourselves for simplicity to proba-
bility measures , i.e., we suppose . Under
this assumption, we investigate the scaled Bregman distances

(36)
for the family of power convex functions

(37)

For comparison and representation purposes, we use for
(and analogously for instead of ) the power divergences

(38)

of real powers different from 0 and 1, studied for arbitrary
probability measures , in [30]. They are one–one related to
the Rényi divergences

introduced in [30] as an extension of the original narrower class
of the divergences
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of Rényi [38].
Returning now to the Bregman power distances, observe that

if is finite, then (20), (36), and (37)
imply for ,

(39)

In particular, we get from here [consistent with (22)]

and in case of also

In the following theorem, and elsewhere in the sequel, we use
the simplified notation

for the probability measures , under consideration (and also
later on where is only a finite measure). This step is motivated
by the limit relations

(40)

proved as [30, Prop. 2.9] for arbitrary probability measures ,
. Applying these relations to the Bregman distances, we ob-

tain

Theorem 2: If , then

(41)

(42)

If and

(43)

then

(44)

(45)

Proof: If , then , are finite
so that (39) holds. Applying the first relation of (40) in (39),
we get (41) where the right-hand side is well defined because

is by assumption finite. Similarly, by
using the second relation of (40) and the assumption (43) in
(39), we end up at (44) where the right-hand side is well defined
because is assumed to be finite. The
identity (42) follows from (41), (33) and the identity (45) from
(44), (30).

Motivated by this theorem, we introduce for all probability
measures , , under consideration the simplified notations

(46)

and

(47)

and thus, (45) and (42) become

and

Furthermore, in these notations, the relations (30), (34), and (35)
reformulate (under the corresponding assumptions) as follows:

and

(48)

Remark 3: The power divergences are usually
applied in the statistics as criteria of discrimination or good-
ness-of-fit between the distributions and . The scaled
Bregman distances as generalizations of the
power divergences allow to extend
the 2-D discrimination plots

into more informative 3-D discrimination plots

(49)
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Fig. 1. Three-dimensional discrimination plots (49) for � � ������� ��, � � ������� �� with ��	 � � � 	 and � � � � �.

reducing to the former ones for . The simpler 2D-plots
known under the name Q–Q plots are famous tools for the ex-
ploratory data analysis. It is easy to consider that the computer-
aided appropriately colored projections of the 3-D plots (49)
allow much more intimate insight into the relation between data
and their statistical models. Therefore this computer-aided 3-D
exploratory analysis deserves a deeper attention and research.
The next example presents projections of two such plots ob-
tained for a binomial model and its data-based binomial al-
ternative .

Example 2: Let be a binomial distribution
with parameters , (with a slight abuse of notation), and

. Fig. 1 presents projections of the corresponding 3-D
discrimination plots (49) for and ,
where the Fig. 1(a) used the parameter constellation ,

, whereas the Fig. 1(b) used ,
, . In both cases, the ranges of

are subsets of the interval .

IV. EXPONENTIAL FAMILIES

In this section we show that the scaled Bregman power
distances can be explicitly evaluated for prob-
ability measures , , from exponential families. Let
us restrict ourselves to the Euclidean observation spaces

and denote by the scalar product of ,
. The convex extended real valued function

(50)

and the convex set

define on an exponential family of probability measures
with the densities

(51)

The cumulant function is infinitely differentiable on the
interior with the gradient

Note that (51) are exponential type densities in the natural form.
All exponential-type distributions such as Poisson, normal, etc.,
can be transformed to into this form (cf., e.g., [8]).

The formula

(52)

follows from (50) and implies

(53)

Both formulas (52) and (53) will be useful in the sequel.
We are interested in the scaled Bregman power distances

Here, , , and are measure-theoretically equivalent
probability measures, so that we can turn attention to the for-
mulas (39), (30), (33), and (46) to (48), promising to reduce the
evaluation of to the evaluation of the power
divergences . Therefore, we first study these diver-
gences and, in particular, verify their finiteness, which was a suf-
ficient condition for the applicability of the formulas (30), (33),
and (39). To begin with, let us mention the following well-es-
tablished representation.

Theorem 3: If differs from 0 and 1, then the power
divergence is for all , finite and given
by the expression

(54)
In particular, it is invariant with respect to the shifts of the cumu-
lant function linear in in the sense that it coincides with
the power divergence in the exponential family
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with the cumulant function , where is
a real number and a -vector.

This can be easily seen by slightly extending (38) to get for
arbitrary and ,

which together with (52) gives the desired result.
The skew symmetry as well as the remaining power diver-

gences and is given in the next,
straightforward theorem.

Theorem 4: For all , and different from 0
and 1, there holds

and for

(55)

(56)

The main result of this section is the following representation
theorem for Bregman distances in exponential families. We for-
mulate this in terms of the functions

(57)
(where the right-hand side is finite if ), as well as the
functions defined as the
difference

(58)

of the nonnegative (possibly infinite)

(59)

and the finite

(60)

Alternatively

(61)

Theorem 5: Let , , be arbitrary. If ,
then the Bregman distance of the exponential family distribu-
tions and scaled by is given by the formula

(62)

If , respectively, is from the interior , then the limiting
Bregman power distances are

(63)

respectively,

(64)

In particular, all scaled Bregman distances (62)–(64) are in-
variant with respect to the shifts of the cumulant function linear
in in the sense that they coincide with the scaled Bregman
distances in the exponential family with the

cumulant function , where is a real
number and is a -vector.

Proof:
1) By (51), it holds for every and , ,

with from (60). Since (52) leads to

for given by (59), it holds

(65)

where was defined in (58). Now, by plugging
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in (39), we get for the Bregman distances

(66)

By combining the power divergence formula (54) with
(57), one ends up with
which together with (65) and (66) leads to the desired rep-
resentation (62).

2) By the definition of in (47) and by (41)

where

For , the desired assertion (63) follows from here
and from the formulas

obtained from (55).
3) The desired formula (64) follows immediately from the

definition (46) and from the formulas (44) and (45), (55)
and (56).

4) The finally stated invariance is immediate.

The Conclusion 1 of Section III about the relation between
scaled Bregman distances and -divergences can be completed
by the following relation between both of them and the classical
Bregman distances (1).

Conclusion 2: Let be the classical Bregman dis-
tance (1) of , and the exponential
family with cumulant function , i.e., with densities

, . Then, for all , ,

i.e., there is a one-to-one relation between the classical
Bregman distance and the scaled Bregman dis-
tances and power divergences
of the exponential probability measures generated by
the cumulant function . This means that the family

of scaled Bregman power
distances and the family of power
divergences extend the classical Bregman distances
to which they reduce at and arbitrary . In fact, we
meet here the extension of the classical Bregman distances in
three different directions: the first represented by various power
parameters , the second represented by various possible
exponential distributions parametrized by , and the third

represented by the exponential distribution parameters
which are relevant when .

Remark 4: We see from Theorems 4 and 5 that—consistent
with (30), (45)—for arbitrary interior parameters , ,

i.e., that the Bregman distance of order of exponential
family distributions does not depend on the scaling
distribution . The distance of order satisfies the re-
lation

where

represents a deviation from the skew-symmetry of the Bregman
distances and of and

. This deviation is zero if (for strictly convex if and only
if) .

Remark 5: We see from the formulas (54)–(64) that for all
, the quantities , ,

and only depend on the cumulant function
defined in (50), and not directly on the reference measure

used in the definition formulas (50), (51).

V. EXPONENTIAL APPLICATIONS

In this section, we illustrate the evaluation of scaled Bregman
divergences for some important discrete and
continuous exponential families, and also for exponentially dis-
tributed random processes.

Binomial Model: Consider for fixed on the observation
space the binomial distribution determined
by

for , where

After some calculations, one obtains from (57) and (61)

and

Applying Theorem 5, one achieves an explicit formula for the
binomial Bregman distances from here.
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Rayleigh Model: An important role in communication theory
play the Rayleigh distributions defined by the probability den-
sities

(67)

with respect to the restriction of the Lebesgue measure on
the observation space . The mapping

from the positive halfline to the negative halfline
transforms (67) into the family of Rayleigh densities

with respect to the restriction of the Lebesgue measure on
the observation space . These are the Rayleigh
densities in the natural form assumed in (51). After some calcu-
lations one derives from (57)

(68)

and

Applying Theorem 5, one obtains the Rayleigh–Bregman dis-
tances from here.

Theorem 1 about the preservation of the scaled Bregman dis-
tances by statistically sufficient transformations is useful for the
evaluation of these distances in exponential families. It implies
for example that these distances in the normal and lognormal
families coincide. The next two examples dealing with distances
of stochastic processes make use of this theorem too.

Exponentially Distributed Signals: Most of the random pro-
cesses modeling physical, social, and economic phenomena are
exponentially distributed. Important among them are the real
valued Lévy processes with trajec-
tories from the Skorokchod observation
spaces and parameters from the set

defined by means of the function

where is a Lévy measure which determines the probability
distribution of the size of jumps of the process and the intensity
with which jumps occur. It is assumed that 0 belongs to and
it is known (cf., e.g., [27]) that the probability distributions
induced by these processes on are mutually measure-
theoretically equivalent with the relative densities

(69)

for the end of the trajectory . The cumulant function ap-
pearing here is

(70)

for two genuine parameters , respectively, of the
process which determine its intensity of drift respectively its
volatility, and for the function

The formula (69) implies that the family
is exponential on for which the “extremally reduced”
observation is statistically sufficient. Thus, by The-
orem 1

(71)

where is a probability distribution on the real line gov-
erning the marginal distribution of the last observed value
of the process .

Queueing Processes and Brownian Motions: For illustration
of the general result of the previous section, we can take the
family of Poisson processes with initial value and in-
tensities , for which and

so that . Then, is the
Poisson distribution with parameter and
probabilities

The exponential structure is similar as earlier, so that by ap-
plying (57) to the cumulant function we get
for the Poisson processes with parameters and

Combining this with (61) and Theorem 5, we obtain an explicit
formula for the scaled Bregman distance (71) of these Poisson
processes.

To give another illustration of the result of the previous sub-
section, let us first introduce the standard Wiener process
which is the Lévy process with , , and .
It defines the family of Wiener processes

which are Lévy processes with , and so
that (70) implies . They are well-known models of
the random fluctuations called Brownian motions. If the initial
value is zero, then is the normal distribution with mean
zero and variance . The corresponding Lebesgue den-
sities
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are transformed by the mapping of on the
negative halfline into the natural exponential densi-
ties with respect to the dominating density

, where . Thus,
by (57)

This together with (61) and Theorem 5 leads to the explicit for-
mula for the scaled Bregman distance (71) of the Wiener pro-
cesses under consideration.

Geometric Brownian Motions: From the aforementioned
standard Wiener process one can also build up the family of
geometric Brownian motions (geometric Wiener processes)

where the family-generating can be interpreted as drift pa-
rameters, and the volatility parameter is assumed to
be constant all over the family. Then, is normally
distributed with mean and variance , and

is lognormally distributed with the same parameters
and . By (71), the scaled Bregman distance of two geo-
metric Brownian motions with parameters , reduces to
the scaled Bregman distance of two lognormal distributions

, . As said previously, it coincides
with the scaled Bregman distance of two normal distributions

, . This is seen also from the fact that
the reparametrization

and transformations similar to that from the previous
example lead in both distributions and to
the same natural exponential density

with

These two distributions differ just in the dominating measures
on the transformed observation space . For

and we get

and thus

Hence, for distributions , of the geometric Brownian
motions considered earlier, we get from (57)

Expression (61) can be automatically evaluated using this. Ap-
plying both these results in Theorem 5, one obtains explicit for-
mula for the scaled Bregman distance (71) of these geometric
Brownian motions.
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