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Abstract. In the paper we study consequences of incomplete information
to uncertainty of results of stochastic optimization. Stochastic characteristics
of optimized system are evaluated from observed data, moreover, the data
may be incomplete. Namely, we consider the random censoring of observations
frequently encountered in time-to-event (of lifetime) studies. The analysis of
uncertainty will be based both on theoretical properties of estimated stochastic
characteristics and on simulated examples.
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1 Introduction

In problems of optimization under uncertainty we often rely on a probabilistic model of optimized system.
Then the optimization task can, schematically, have the form

ϕ(F ) = inf
y

EF C(y, v), (1)

where C is a cost function, y are input variables (observed), EF stands for the expectation under
distribution function F , and, finally, v is a random variable (or vector) with distribution function F .
If F is known, we deal with a “deterministic” optimization. However, our information on probability
distributions governing the system could be non-complete. Either, known distribution type depends on
unknown parameters. Then, as a rule, the estimates of parameters are plugged into optimal solutions.
Or, we have to employ nonparametric estimates, as is the empirical distribution function. Hence, our
information on F is random and we have to analyze both possible bias and variability of obtained solution
(compared to an ideal solution when F is known). Alternatively, we then can be interested in a kind of
multi-objective optimization, minimizing simultaneously also variability (measured by variance, or certain
inter-quantile range). Nevertheless, standard approach considers a solution of (1) and uses estimated
characteristics instead of ‘true’ ones. An investigation of usage of empirical (estimated) characteristics in
stochastic optimization problems started already in 70-ties. A set of papers is available, let us mention
here just two: Dupačová and Wets (1984), and from more recent time Kaňková (2009) with brief overview
and a number of other references.

The situation is even more complicated if the data available for estimation are not complete. We
shall consider one special type of incompleteness, the random censoring from the right side. It is quite
frequent in the analysis of demographic, survival or insurance data. The lack of information leads to
higher variability (and, sometimes, to a bias) of estimates and, consequently, to higher uncertainty of
optimal solutions.

The approaches to statistical data analysis in cases when the data are censored or even truncated
are provided by a number of authors. Let us mention here works of C. Huber (e. g. Huber, 2000), with
classification of deigns of censored and truncated data and with many references to papers dealing with
specific methods of such data processing. The most of results were derived in the framework of statistical
survival analysis and collected also in several monographs (cf. Kalbfleisch and Prentice, 2002).

The main objective of the present paper is to study the increase of uncertainty of results of optimiza-
tion problem when the censoring is causing growing variability of estimates. We shall deal with both
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parametric and non-parametric cases. To this end, certain theoretical properties of estimates under ran-
dom right censoring will be recalled. In the next two parts, we shall consider the product-limit estimate
as a generalization of the empirical distribution function, and then the maximum likelihood estimates of
parameters when random right censoring is present. We shall compare properties of estimates with and
without censoring, in nonparametric case (in Part 2) as well as in the case of estimated parameters (Part
3). Finally, we shall study the consequence of incomplete data to a certain problem of optimization, in
Part 4. An example will deal with optimal maintenance schedule, properties of obtained ’quasi-optimal’
solution will be illustrated with the aid of simulations.

2 Non-parametric case and product-limit estimate

Let us first recall the scheme of randomly right-censored data. Consider a random variable Y char-
acterizing a random time to certain event, another random variable Z is a censoring variable, both are
positive, continuous and mutually independent. Further, denote f(y), g(z), F (y), G(z), F (y) = 1−F (y),
G(z) = 1 − G(z) density, distribution and survival functions of both variables. It is assumed that we
observe just X = min(Y, Z) and δ = 1[Y ≤ Z], i. e. δ indicates whether Y is observed or censored from
right side. The data are then given as random sample (Xi, δi, i = 1, . . . , N). Notice that the case without
censoring is obtained when G(z) ≡ 0 on region where F (y) < 1.

A generalization of empirical distribution function is well known Kaplan–Meier “Product Limit Esti-
mate” of survival function. Let us first sort (re-index) the data in increasing order, X1 ≤ X2 ≤ · · · ≤ XN ,
then this estimator has the form

FN (t) =
N∏

i=1

(
N − i

N − i + 1

)δi·1[Xi≤t]

. (2)

Again, notice that when all δi = 1, we obtain the empirical survival function. The following proposition
is due Breslow and Crowley (1974).

Proposition: Let T > 0 be such that still F (T ) ·G(T ) > 0. Then random process

VN (t) =
√

N

(
FN (t)
F (t)

− 1
)

=
√

N
FN (t)− F (t)

F (t)
(3)

converges, on [0, T ], when N →∞, to Gauss martingale with zero mean and variance function

C(t) =
∫ t

0

dF (s)
F (s)2 G(s)

. (4)

It means that, in other words, VN (t) converges in distribution on [0, T ] to Brown process β(C(t)), or the
process DN (t) = VN (t)

/
(1+C(t)) to Brownian bridge on [0, C(T )/(1+C(T ))]. The asymptotic variance

function can be estimated by its empirical version:

CN (t) =
N∑

i=1

Nδi

(N − i + 1)2
· 1[Xi ≤ t],

which is consistent uniformly on [0, T ].

For the case without censoring we obtain that C(t) = F (t)
/
F (t) and DN (t) =

√
N(FN (t) − F (t))

leading to standard Kolmogorov–Smirnov statistics. From (4) it is also seen that variance in the case
with censoring (when G(t) ≤ 1) is larger than without it (i.e. when G(t) = 1 on whole [0, T ]). Further, it
has been proved (see, for instance Robbins and Siegmund, 1970) that for c, d > 0 and sufficiently large
T ,

P

(
sup

0<t<T
|β(t)| < c + d · t

)
.= 1− 2 exp(−2cd).

Hence, if we take c = d and “time” C(t) instead t, we obtain that approximately

P

(
sup

t
|DN (t)| > c

)
.= 2 exp(−2c2).
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In order to construct 1 − α band for DN (t) on (0, C(T )), we set α = 2 exp(−2c2) and obtain critical
value cα =

√− ln α
2 /2. In the case without censoring cα is the distribution-free critical value for the

Kolmogorov–Smirnov test, namely

P

(
sup

t
|FN (t)− F (t)| ≥ cα/

√
N

)
.= α.

In the case with censoring, we have

DN =
√

N (FN (t)− F (t))
/
F (t)

/
(1 + C(t)),

hence, corresponding 1−α confidence band for F (t) depends on both F and G and its width is increasing
for larger t. Namely, 1− α borders for |FN (t)− F (t)| on [0, T ] are given as cα/

√
N · F (t) · (1 + C(t)).

Example: Let us here, as an example, consider so called Koziol–Green model assuming that G(t) =
F (t)a, for some a > 0. Then

C(t) =
∫ t

0

dF (s)
F (t)2+a

=
1

F (t)1+a
− 1

and F (t) · (1+C(t)) = 1/F (t)a. It tends to infinity with increasing t because F (t) → 0. A more concrete
example is presented in Part 4.

3 Parametric estimates under censoring

In the present part we shall study the influence of censoring to precision of estimated parameters. It
means that we assume that the type of distribution F (y, θ) of random variable Y is known and parameter
θ is estimated by the method of maximum likelihood. The precision of estimation will be based on the
Fisher information. It is defined as

I(θ) = E

(
d ln L(θ, X)

dθ

)2

,

where L(θ, X) is the likelihood of θ based on random variable X. Naturally, if θ is multi-dimensional,
we consider a vector of partial derivatives, What is important from our point of view, I−1(θ) is also the
asymptotic variance of

√
N(θ̂N − θ), where θ̂N is the maximum likelihood estimate from random sample

of extent N .

In the case of random right censoring, the log of likelihood (its part depending on θ), is ln L(θ, X) =
δ · ln f(X) + (1− δ) · ln F̄ (X). Hence, with notation f ′ = df/dθ and F̄ ′ = dF̄ /dθ,

E

(
d ln L(θ, X)

dθ

)2

=
∫ ∞

0

Ḡ(x)
(

f ′(x)
f(x)

)2

f(x)dx +
∫ ∞

0

F̄ (x)
(

F̄ ′(x)
F̄ (x)

)2

g(x)dx.

When the second integral is transformed with the aid of per-partes, we obtain that

I(θ) =
∫ ∞

0

Ḡ(x)
(f ′(x)F̄ (x)− f(x)F̄ ′(x))2

f(x)F̄ ((x)2
dx,

which is positive and is larger when Ḡ(x) ≡ 1, i.e. when there is no censoring. Again, a more concrete
comparison is presented within the example in Part 4.

4 Example of optimization problem

Let us consider the following rather simple example of optimization problem: A component of a machine
has its time to failure Y given (modeled) by a continuous-type probability distribution with distribution
function, density, survival function F, f, F̄ = 1−F , respectively. The cost of repair after failure is C1, the
cost of preventive repair is C2 < C1. For the simplicity we assume that only complete repairs, ’renewals’,
are provided, i.e. after each repair the component is new (exchanged) or as new. Let τ be the (fixed)
time from renewal to preventive repair.
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Then, the mean time between renewals is ET (τ) = τ · P (Y > τ) +
∫ τ

0
tf(t)dt =

∫ τ

0
F̄ (t)dt, while the

mean cost of one renewal equals EC(τ) = C1 ·F (τ)+C2 · F̄ (τ). Our task is to find optimal τ minimizing

min
τ

φF (τ) = min
τ

EC(τ)/ET (τ). (5)

In the sequel the lifetime distribution will be specified and we shall compare the deterministic so-
lution provided F is known, and the variability of ’quasi-solutions’ in cases when lifetime distribution
is estimated, in parametric or non-parametric setting, from censored and non-censored data. Namely,
let the distribution of Y be Weibull, with parameters a = 100, b = 2, i.e. its survival function is
F (t) = exp

(
− (

t
a

)b
)
, numerical characteristics are EY ∼ 89, std(Y ) ∼ 46. Costs of repairs were fixed

as C1 = 10, C2 = 1. When the distribution function F is known, there exists an unique optimal solution
with τ∗ = 33.64 and minimal costs per time unit φ(τ∗) = 0.061.

In the next parts we provide a numerical study where it is assumed that the distribution of variable Y is
estimated from data. In all from four cases (parametric or nonparametric case, without or with censoring)
100 samples of 100 observation Yi are generated from the Weibull distribution mentioned above. In cases
with censoring, they are censored by the censoring variables Zi having uniform distribution on [0, 250],
hence with survival function G(z) = (250 − z)/250 (value 250 corresponds roughly to 0.998 quantile of
distribution of Y ). The rate of censoring is then about 36% ∼ EY/250.

4.1 Parametric case

In the first part of the study the Weibull-type distribution was taken for granted, its parameters were
estimated from generated samples of data, by the maximum likelihood method. Hence, 100 couples of
estimates am, bm,m = 1, 2, ..., 100 were obtained. They are displayed in Figure 1, left plot shows estimates
from non-censored cases, the right plot corresponds to censored cases. From those values their means and
sample standard deviations were computed. Simultaneously, we computed theoretical Fisher information
I for both parameters and approximate standard deviations of estimates I-std=

√
1/I/N , for extent of

sampled data N = 100. All these characteristics are collected in Table 1. Further, to each estimated
couple of parameters, an optimal solution of (5), τm and φ(τm), m = 1, 2, ..., 100, was computed. They
are shown in Figure 2, again for non-censored (left) and censored cases (right). Table 1 contains also
sample means and standard deviations of those ’optimal’ τm and φ(τm).

non-censored: sample sample censored: sample sample
I I-std mean std I I-std mean std

a 3.80 · 10−4 5.13 100.3849 5.5523 2.64 · 10−4 6.15 100.0807 6.9541
b 0,409 0,154 2.0147 0.1585 0.287 0.187 2.0074 0.1680

τ∗ 33.9970 1.9425 33.9070 2.3610
φ(τ∗) 0.0606 0.0071 0.0611 0.0070

Table 1: Comparison of theoretical and sample-based characteristics of estimates and optimal solutions

4.2 Nonparametric estimate of distribution function

Let us now imagine that we do not know the type of distribution of Y and therefore we estimate it
with the aid of the product-limit estimator (i.e. as the empirical distribution function when censoring is
absent). Figure 3 displays cloud of 100 estimates obtained from 100 generated samples, the cases without
censoring are plotted in the left subplot, the right subplot shows estimates obtained from censored data.
It is well seen how the variability in the right subplot increases for large times. Theoretically, if we take
α = 0.05 and N = 100, the half-width of 95% confidence band for ’true’ distribution function, in the
non-censored case, is given approximately as cα/

√
N = 0.136. As regards the censored data, function C(t)

(here defined on [0, 250)) has no analytical form, nevertheless, we can compute it numerically. We have
seen in Part 3 that, at a given t, the half-width of 1−α band is given as dN,α(t) = cα/

√
N ·F (t)·(1+C(t)).

We computed it at three points corresponding roughly to three quartiles of utilized Weibull distribution.
Namely, at points t = 55, 85, 120 we obtained dN,α(t) = 0.142, 0.158, 0.195, respectively.
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Figure 1: Maximum likelihood estimates of parameters (am, bm) from 100 samples of non-censored (left)
and censored data (right)
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Figure 2: Optimal solutions (τm, φ(τm)) based on estimates displayed in Figure 1, for non-censored (left)
and censored (right) cases

Figure 4 displays optimal solutions τ∗m and φ(τ∗m), each obtained as the solution of (5) with m-th
estimate of F , m = 1, 2, ..., 100. Again, the left subplot shows the case without censoring, the right
subplot then results from censored samples. Notice (expected) larger variability (i.e. uncertainty) in
censored data cases.

5 Conclusion

We have studied the impact of variability of statistical estimates to solutions in stochastic optimization
problems. We have compared theoretical as well as empirical behavior of estimates in various situations,
namely in the parametric or non-parametric setting, cases of fully observed or randomly right-censored
data. Influence of variability of estimates to imprecision of optimal solutions has been studied on an
example with a model case and randomly generated data.
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Figure 3: Set of 100 estimates of distribution function, Fm(t), from non-censored (left) and censored data
(right). ’True’ distribution function F (t) is plotted by solid curve
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Figure 4: Optimal solutions (τm, φ(τm)) based on nonparametric estimates displayed in Figure 3, for
non-censored (left) and censored (right) cases
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